A Density Functional Theory Study of 4-OH Aldehydes †
Abstract
:1. Introduction
2. Materials and Methods
Computationals Details
3. Results and Discussion
3.1. Optimized Structural Parameters
3.2. Electronic Properties
3.3. Molecular Electrostatic Potential Surface
3.4. Global Reactivity Descriptors
3.5. Nonlinear Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dionísio, A.P.; Molina, G.; de Carvalho, D.S.; dos Santos, R.; Bicas, J.; Pastore, G. Natural flavourings from biotechnology for foods and beverages. In Natural Food Additives, Ingredients and Flavourings; Elsevier: Amsterdam, The Netherlands, 2012; pp. 231–259. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Chauhan, A.; Bhukya, B. Natural benzaldehyde from Prunus persica (L.) Batsch. Int. J. Food Prop. 2017, 20, 1259–1263. [Google Scholar] [CrossRef]
- Chen, H.; Ji, H.; Zhou, X.; Wang, L. Green synthesis of natural benzaldehyde from cinnamon oil catalyzed by hydroxypropyl-β-cyclodextrin. Tetrahedron 2010, 66, 9888–9893. [Google Scholar] [CrossRef]
- Abraham, D.J.; Harris, L.S.; Meade, B.J.; Munson, A.E.; Swerdlow, P.S.; Patrick, G.A. Method of Calming or Sedating an Animal with a Hydroxy Benzaldehyde Compound. U.S. Patent US5668182, 31 March 1997. [Google Scholar]
- Alamri, A.; El-Newehy, M.H.; Al-Deyab, S.S. Biocidal polymers synthesis and antimicrobial properties of benzaldehyde derivatives immobilized onto amine-terminated polyacrylonitrile. Chem. Cent. J. 2012, 6, 111. [Google Scholar] [CrossRef]
- Aslam, K.K.; Khosa, M.K.; Jahan, N.; Nosheen, S. Short communication synthesis and applications of Coumarin. Pak. J. Pharm. Sci. 2010, 23, 449–454. [Google Scholar]
- Rafiee, M.; Javaheri, M. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using ab initio calculated NQCC parameters. Mol. Biol. Res. Commun. 2015, 4, 151–159. [Google Scholar]
- Ksendzova, G.A.; Samovich, S.N.; Sorokin, V.L.; Shadyro, O.I. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals. Radiat. Phys. Chem. 2018, 146, 115–120. [Google Scholar] [CrossRef]
- Townsend, G.F. Benzaldehyde: A new repellent for driving bees. Bee World 1963, 44, 146–149. [Google Scholar] [CrossRef]
- MacEwen, E.G. Anti-tumor evaluation of benzaldehyde in the dog and cat. Am. J. Vet. Res. 1986, 47, 451–452. [Google Scholar]
- Selvaraj, S.; Rajkumar, P.; Santhiya, A.; Gunasekaran, S.; Kumaresan, S. 4-Methoxysalicylaldehyde: Spectroscopic and computational investigations. J. Emerg. Technol. Innov. Res. 2018, 5, 222–229. [Google Scholar]
- Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations. J. Mol. Struct. 2016, 1111, 151–156. [Google Scholar] [CrossRef]
- Krishnakumar, V.; Balachandran, V. FTIR, FT-Raman spectral analysis and normal coordinate calculations of 2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone. Indian J. Pure Appl. Phys. 2004, 42, 313–318. [Google Scholar]
- Kuş, N.; Sharma, A.; Reva, I.; Lapinski, L.; Fausto, R. Thermal and photoinduced control of relative populations of 4- methoxybenzaldehyde (p-anisaldehyde) conformers. J. Phys. Chem. A 2010, 114, 7716–7724. [Google Scholar] [CrossRef] [PubMed]
- Velcheva, E.A.; Stamboliyska, B.A.; Boyadjieva, P.J. DFT and experimental study on the IR spectra and structure of 2- hydroxy-3-methoxybenzaldehyde (o-vanillin) and its oxyanion. J. Mol. Struct. 2010, 963, 57–62. [Google Scholar] [CrossRef]
- Velcheva, E.A.; Stamboliyska, B.A. IR spectral and structural changes caused by the conversion of 3-methoxy-4-hydroxybenzaldehyde (vanillin) into the oxyanion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 2013–2019. [Google Scholar] [CrossRef]
- Iwasaki, F.; Tanaka, I.; Aihara, A. 2-Hydroxy-3-methoxybenzaldehyde (O-vanillin). Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1976, 32, 1264–1266. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Ponnusamy, S. Vibrational spectra and normal coordinate analysis on an organic non-linear optical crystal-3-methoxy-4-hydroxy benzaldehyde. Indian J. Pure Appl. Phys. 2005, 43, 838–843. [Google Scholar]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Becke, A.D. Density functional thermo chemistry—III: The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09W, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009.
- Frisch, E.; Hratchian, H.P.; Dennington, R.D., II; Keith, T.A.; Millam, J.; Nielsen, B.; Holder, A.J.; Hiscocks, J. GaussView, Version 5.0.8; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Selvaraj, S.; Rajkumar, P.; Kesavan, M.; Gunasekaran, S.; Kumaresan, S. Experimental and theoretical analyzes on structural and spectroscopic properties of monomer and dimeric form of (S)-Piperidine-2-Carboxylic acid: An attempt on medicinal plant. Vib. Spectrosc. 2019, 100, 30–39. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, NY, USA, 1989. [Google Scholar]
- Roeges, N.P.G. A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Pearson, R.G. Absolute Electronegativity and Hardness: Applications to Organic Chemistry. J. Org. Chem. 1989, 54, 1423–1430. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Balakit, A.A.; Makki, S.Q.; Sert, Y.; Ucun, F.; Alshammari, M.B.; Thordarson, P.; El-Hiti, G.A. Synthesis, Spectrophotometric and DFT Studies of New Triazole Schiff Bases as Selective Naked-Eye Sensors for Acetate Anion. Supramol. Chem. 2020, 32, 519–526. [Google Scholar] [CrossRef]
- Ramesh, G.; Reddy, B.V. Spectroscopic Investigation on Structure (Monomer and Dimer), Molecular Characteristics and Comparative Study on Vibrational Analysis of Picolinic and Isonicotinic Acids Using Experimental and Theoretical (DFT & IVP) Methods. J. Mol. Struct. 2018, 1160, 271–292. [Google Scholar] [CrossRef]
- Abdulridha, A.A.; Allah, M.A.A.H.; Makki, S.Q.; Sert, Y.; Salman, H.E.; Balakit, A.A. Corrosion Inhibition of Carbon Steel in 1 M H2SO4 Using New Azo Schiff Compound: Electrochemical, Gravimetric, Adsorption, Surface and DFT Studies. J. Mol. Liq. 2020, 315, 113690. [Google Scholar] [CrossRef]
- Prasad, P.N.; Williams, D.J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Meyers, F.; Marder, S.R.; Pierce, B.M.; Bredas, J.L. Electric Field Modulated Nonlinear Optical Properties of Donor- Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities and Bond Length Alternation. J. Am. Chem. Soc. 1994, 116, 10703–10714. [Google Scholar] [CrossRef]
- Hinchliffe, A.; Munn, R.W. Molecular Electromagnetism; John Wiley and Sons Ltd.: Chichester, UK, 1985. [Google Scholar]
Bond Length (°A) | Bond Angle (°) | Dihedral Angle (°) | |||
---|---|---|---|---|---|
B3LYP | B3LYP | B3LYP | |||
C(1,2) | 1.3843 | A(2,1,6) | 120.6882 | D(6,1,2,3) | −0.0001 |
R(1,6) | 1.4065 | A(2,1,10) | 121.0305 | D(6,1,2,11) | −180.0001 |
R(1,10) | 1.0853 | A(6,1,10) | 118.2813 | D(10,1,2,3) | 180.0 |
R(2,3) | 1.405 | A(1,2,3) | 119.5664 | D(10,1,2,11) | 0.0 |
R(2,11) | 1.0847 | A(1,2,11) | 121.745 | D(2,1,6,5) | 0.0001 |
R(3,4) | 1.4015 | A(3,2,11) | 118.6886 | D(2,1,6,7) | 180.0001 |
R(3,8) | 1.3593 | A(2,3,4) | 120.3802 | D(10,1,6,5) | 180.0 |
R(4,5) | 1.3905 | A(2,3,8) | 117.0398 | D(10,1,6,7) | 0.0 |
R(4,12) | 1.0877 | A(4,3,8) | 122.58 | D(1,2,3,4) | 0.0 |
R(5,6) | 1.4006 | A(3,4,5) | 119.4648 | D(1,2,3,8) | 180.0 |
R(5,13) | 1.0875 | A(3,4,12) | 119.98 | D(11,2,3,4) | 180.0001 |
R(6,7) | 1.473 | A(5,4,12) | 120.5553 | D(11,2,3,8) | 0.0001 |
R(7,9) | 1.218 | A(4,5,6) | 120.7194 | D(2,3,4,5) | 0.0 |
R(7,14) | 1.1137 | A(4,5,13) | 119.7292 | D(2,3,4,12) | 180.0 |
R(8,15) | 0.9667 | A(6,5,13) | 119.5514 | D(8,3,4,5) | −180.0 |
A(1,6,5) | 119.181 | D(8,3,4,12) | 0.0 | ||
A(1,6,7) | 120.5982 | D(2,3,8,15) | 179.9998 | ||
A(5,6,7) | 120.2208 | D(4,3,8,15) | −0.0002 | ||
A(6,7,9) | 124.8792 | D(3,4,5,6) | 0.0 | ||
A(6,7,14) | 114.4237 | D(3,4,5,13) | −180.0 | ||
A(9,7,14) | 120.6971 | D(12,4,5,6) | 180.0 | ||
A(3,8,15) | 109.5344 | D(12,4,5,13) | 0.0 | ||
D(4,5,6,1) | 0.0 | ||||
D(4,5,6,7) | −180.0001 | ||||
D(13,5,6,1) | −180.0 | ||||
D(13,5,6,7) | 0.0 | ||||
D(1,6,7,9) | −0.0006 | ||||
D(1,6,7,14) | 180.001 | ||||
D(5,6,7,9) | −180.0006 | ||||
D(5,6,7,14) | 0.001 |
S. No. | Excitation | Energy (eV) | Wave Length (nm) | Oscillation Constant (f) |
---|---|---|---|---|
1. | HOMO-1-LUMO | 3.9179 eV | 316.45 nm | 0.0001 |
2. | HOMO-LUMO | 4.7408 eV | 261.52 nm | 0.4092 |
3. | HOMO-2 -> LUMO | 4.8340 eV | 256.48 nm | 0.0061 |
Compound Name | εH | εL | εL-εH | I | A | χ | η | μ | ω | δNmax |
---|---|---|---|---|---|---|---|---|---|---|
4-OH benzaldehyde | −6.46 | −1.45 | 5.01 | 6.46 | 1.45 | 3.955 | 2.505 | −3.955 | 3.09 | 1.57 |
Dipole Moment | Polarizability | Hyperpolarizability | |||
---|---|---|---|---|---|
µx | 3.7144 | αxx | 121.266 | βxxx | 702.65 |
µy | 2.8260 | αyy | −1.689 | βyyy | 108.85 |
µz | 0.0721 | αzz | 83.375 | βzzz | −50.65 |
µ | 4.6678 | αxy | 0.0024 | βxyy | 45.83 |
αxz | −0.0010 | βxxy | −0.834 | ||
αyz | 28.316 | βxxz | 0.632 | ||
α0 | 67.65 | βxzz | −0.266 | ||
βyzz | −1.483 | ||||
βyyz | 0.965 | ||||
βxyz | −0.0004 | ||||
β0 | 757.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanam, H.; Singh, R.; Pandey, J. A Density Functional Theory Study of 4-OH Aldehydes. Chem. Proc. 2023, 14, 90. https://doi.org/10.3390/ecsoc-27-16076
Khanam H, Singh R, Pandey J. A Density Functional Theory Study of 4-OH Aldehydes. Chemistry Proceedings. 2023; 14(1):90. https://doi.org/10.3390/ecsoc-27-16076
Chicago/Turabian StyleKhanam, Huda, Ruchi Singh, and Jyoti Pandey. 2023. "A Density Functional Theory Study of 4-OH Aldehydes" Chemistry Proceedings 14, no. 1: 90. https://doi.org/10.3390/ecsoc-27-16076
APA StyleKhanam, H., Singh, R., & Pandey, J. (2023). A Density Functional Theory Study of 4-OH Aldehydes. Chemistry Proceedings, 14(1), 90. https://doi.org/10.3390/ecsoc-27-16076