Synthesis of a Bio-Based Methacrylic Polymer Using Camphor Terpene as a Renewable Resource †
Abstract
:1. Introduction
2. Experimental
2.1. Artemisia Arborescens Oil Extraction
2.2. Reduction of Camphor
2.3. Esterification of Isoborneol
2.4. Polymerization of Isobornyl Methacrylate
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, R.; Zheng, J.; Guo, R.; Luo, J.; Yuan, Y.; Liu, X. Synthesis of new biobased antibacterial methacrylates derived from tannic acid and their application in UV-cured coatings. Ind. Eng. Chem. Res. 2014, 53, 10835–10840. [Google Scholar] [CrossRef]
- Le Nôtre, J.; Witte-van Dijk, S.C.; van Haveren, J.; Scott, E.L.; Sanders, J.P. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts. ChemSusChem 2014, 7, 2712–2720. [Google Scholar] [CrossRef] [PubMed]
- Valencia, L.; Kumar, S.; Jalvo, B.; Mautner, A.; Salazar-Alvarez, G.; Mathew, A.P. Fully bio-based zwitterionic membranes with superior antifouling and antibacterial properties prepared via surface-initiated free-radical polymerization of poly (cysteine methacrylate). J. Mater. Chem. A 2018, 6, 16361–16370. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I. Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-poly (ethylene terephthalate)(Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Lin, F.-Y.; Forrester, M.; Henrichsen, W.; Murphy, G.; Wang, T.; Cochran, E.W. Glycerol ketals as building blocks for a new class of biobased (meth) acrylate polymers. ACS Sustain. Chem. Eng. 2021, 9, 10620–10629. [Google Scholar] [CrossRef]
- Belarbi, N.; Dergal, F.; Chikhi, I.; Merah, S.; Lerari, D.; Bachari, K. Study of anti-corrosion activity of Algerian L. stoechas oil on C38 carbon steel in 1 M HCl medium. Int. J. Ind. Chem. 2018, 9, 115–125. [Google Scholar] [CrossRef]
- Belarbi, N.; Dergal, F.; El-Haci, I.A.; Attar, T.; Lerari, D.; Dahmani, B.; Ramdane-Terbouche, C.A.; Bachari, K. Gravimetric, Electrochemical, and Surface Morphological Studies of Ammodaucus Lecotrichus Essential Oil as Corrosion Inhibitor for Copper Surface in Hydrochloric Acid Medium. Anal. Bioanal. Electrochem. 2021, 13, 340–357. [Google Scholar]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Chiali, A.; Dergal, F.; Bellaoui, M.; Bouda, L.N.; Atmani, D.; Sar, N.E.C.; Braham, N.C. Synthesized carbon structure from local fruit using rapid thermal annealing process. Boletín Del Grupo Español Del Carbón 2022, 64, 12–17. [Google Scholar]
- Stamm, A.; Tengdelius, M.; Schmidt, B.; Engström, J.; Syrén, P.O.; Fogelström, L.; Malmström, E. Chemo-enzymatic pathways toward pinene-based renewable materials. Green Chem. 2019, 21, 2720–2731. [Google Scholar] [CrossRef]
- Firdaus, M.; Montero de Espinosa, L.; Meier, M.A. Terpene-based renewable monomers and polymers via thiol–ene additions. Macromolecules 2011, 44, 7253–7262. [Google Scholar] [CrossRef]
- Wilbon, P.A.; Chu, F.; Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. 2013, 34, 8–37. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Tang, C. Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 2013, 46, 1689–1712. [Google Scholar] [CrossRef]
- Winnacker, M.; Rieger, B. Recent progress in sustainable polymers obtained from cyclic terpenes: Synthesis, properties, and application potential. ChemSusChem 2015, 8, 2455–2471. [Google Scholar] [CrossRef] [PubMed]
- SSainz, M.F.; Souto, J.A.; Regentova, D.; Johansson, M.K.G.; Timhagen, S.T.; Irvine, D.J.; Buijsen, P.; Koning, C.E.; Stockman, R.A.; Howdle, S.M. A facile and green route to terpene derived acrylate and methacrylate monomers and simple free radical polymerisation to yield new renewable polymers and coatings. Polym. Chem. 2016, 7, 2882–2887. [Google Scholar] [CrossRef]
- Chabane, N.; Dergal, F.; Pata, H.; Chikhi, I.; Cherigui, S.; Lerari, D.; Choukchou-Braham, N. From absinthe extraction of hydrocarbon-rich cyclic terpene to methacrylic thermoplastic polymer. In Proceedings of the International Conference on Polymer Materials, USTHB, Algiers, Algeria, 3–4 July 2022. [Google Scholar]
No. | Compounds a | RIa b | RIa c | % |
---|---|---|---|---|
1 | α-Thujene | 913 | 914 | 3.6 |
2 | Camphene | 946 | 944 | 2.1 |
3 | Artemisiatriene | 922 | 924 | 2.5 |
4 | α-Terpineol | 1185 | 1183 | 1.0 |
5 | β-Pinene | 979 | 978 | 2.2 |
6 | Terpinen-4-ol | 1171 | 1169 | 1.7 |
7 | Camphor | 1143 | 1048 | 71.8 |
8 | Sabinene | 952 | 954 | 0.8 |
9 | Chamazulene | 1735 | 1734 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chabane, N.; Dergal, F.; Pata, H.; Chikhi, I. Synthesis of a Bio-Based Methacrylic Polymer Using Camphor Terpene as a Renewable Resource. Chem. Proc. 2023, 14, 89. https://doi.org/10.3390/ecsoc-27-16336
Chabane N, Dergal F, Pata H, Chikhi I. Synthesis of a Bio-Based Methacrylic Polymer Using Camphor Terpene as a Renewable Resource. Chemistry Proceedings. 2023; 14(1):89. https://doi.org/10.3390/ecsoc-27-16336
Chicago/Turabian StyleChabane, Naziha, Fayçal Dergal, Hervé Pata, and Ilyas Chikhi. 2023. "Synthesis of a Bio-Based Methacrylic Polymer Using Camphor Terpene as a Renewable Resource" Chemistry Proceedings 14, no. 1: 89. https://doi.org/10.3390/ecsoc-27-16336
APA StyleChabane, N., Dergal, F., Pata, H., & Chikhi, I. (2023). Synthesis of a Bio-Based Methacrylic Polymer Using Camphor Terpene as a Renewable Resource. Chemistry Proceedings, 14(1), 89. https://doi.org/10.3390/ecsoc-27-16336