Synthesis of Aromatic Macrodiolides and Study of Their Antitumor Activity In Vitro †
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Chemistry
- (11Z,15Z)-8,9,10,13,14,17,18,19,28,33-decahydro-5H,22H-tribenzo[c,g,k][1,5,10,14]tetraoxacyclooctacosine-7,20-dione (7a). White waxy solid; yield 54%. Rf = 0.55, hexane/EtOAc 5:1. 1H NMR (500 MHz, CDCl3) δ = 7.59–7.50 (m, 2H), 7.43–7.25 (m, 6H), 7.02–6.91 (m, 4H), 5.38–5.15 (m, 12H), 2.37–1.90 (m, 8H), 1.72–1.65 (m, 4H), 1.65–1.55 (m, 4H). 13C NMR (126 MHz, CDCl3): δ = 173.7, 156.9, 134.9, 131.0, 130.2, 129.9, 128.9, 128.4, 128.3, 124.6, 120.9, 111.9, 68.1, 61.9, 33.4, 27.3, 26.3, 24.6. ESI-MS: calcd. for C36H40O6 + Na+ [M + Na]+ 591.2717; found 591.2731.
- (14Z,18Z)-2,6,9,24-tetraoxa-1,7(1,2),4(1,3)-tribenzenacyclopentacosaphane-14,18-diene-10,23-dione (7b). White waxy solid; yield 58%. Rf = 0.54, hexane/EtOAc 5:1. 1H NMR (400 MHz, CDCl3): δ = 7.53–7.24 (m, 8H), 7.03–6.88 (m, 4H), 5.48–4.94 (m, 12H), 2.33 (t, J = 7.4 Hz, 4H), 2.15–1.86 (m, 8H), 1.74–1.59 (m, 4H). 13C NMR (101 MHz, CDCl3): δ = 173.5, 156.6, 137.4, 130.2, 129.9, 129.6, 128.9, 128.8, 126.5, 125.6, 124.8, 120.8, 111.9, 69.8, 61.7, 33.7, 27.2, 26.6, 24.9. ESI-MS: calcd. for C36H40O6 + NH4+ [M + NH4]+ 586.3163; found 586.3187.
- (14Z,18Z)-2,6,9,24-tetraoxa-1,7(1,2),4(1,4)-tribenzenacyclopentacosaphane-14,18-diene-10,23-dione (7c). White waxy solid; yield 67%. Rf = 0.54, hexane/EtOAc 5:1. 1H NMR (400 MHz, CDCl3): δ = 7.48 (s, 4H), 7.42–7.21 (m, 4H), 7.00 (t, J = 7.4 Hz, 4H), 5.43–5.08 (m, 12H), 2.42–2.27 (m, 4H), 2.15–1.92 (m, 8H), 1.76–1.63 (m, 4H). 13C NMR (101 MHz, CDCl3): δ = 173.6, 157.1, 136.6, 130.9, 130.2, 129.9, 129.0, 127.3, 127.3, 124.7, 120.8, 111.9, 69.7, 62.2, 33.6, 27.3, 26.4, 24.8.ESI-MS: calcd. for C36H40O6 + Na+ [M + Na]+ 591.2717; found 591.2694
- (11Z,15Z)-8,9,10,13,14,17,18,19,28,29-decahydro-5H,22H-dibenzo[e,y][1,4,8,23]tetraoxacyclohexacosine-7,20-dione (7d). White waxy solid; yield 53%. Rf = 0.57, hexane/EtOAc 3:1. 1H NMR (500 MHz, CDCl3): δ = 7.34 (dd, J = 13.6, 7.4 Hz, 4H), 7.03–6.93 (m, 4H), 5.49–5.27 (m, 4H), 5.20 (d, J = 9.5 Hz, 4H), 4.38 (s, 4H), 2.36–2.26 (m, 4H), 2.13–1.94 (m, 8H), 1.72–1.62 (m, 4H). 13C NMR (126 MHz, CDCl3): δ = 173.6, 156.7, 130.2, 130.1, 129.6, 129.1, 125.0, 121.0, 111.8, 66.9, 61.5, 33.4, 27.5, 26.4, 24.8. ESI-MS: calcd. for C30H36O6 + Na+ [M + Na]+ 515.2404; found 515.2391.
- (11Z,15Z)-8,9,10,13,14,17,18,19,28,29,31,32-dodecahydro-5H,22H-dibenzo[b1,h][1,4,7,11,26]pentaoxacyclononacosine-7,20-dione (7e). White waxy solid; yield 60%. Rf = 0.49, hexane/EtOAc 3:1. 1H NMR (500 MHz, CDCl3): δ = 7.42–7.20 (m, 4H), 7.03–6.85 (m, 4H), 5.47–5.27 (m, 4H), 5.19 (s, 4H), 4.22–4.10 (m, 4H), 3.96 (t, J = 4.6 Hz, 4H), 2.33 (t, J = 7.2 Hz, 4H), 2.18–1.87 (m, 8H), 1.77–1.59 (m, 4H). 13C NMR (126 MHz, CDCl3): δ = 173.5, 157.1, 130.5, 130.3, 129.8, 129.0, 124.8, 120.8, 111.9, 70.1, 68.3, 61.8, 33.6, 27.4, 26.4, 24.8. ESI-MS: calcd. for C32H41O6 + H+ [M + H]+ 537.2847; found 537.2858
- (11Z,15Z)-8,9,10,13,14,17,18,19,28,29,31,32,34,35-tetradecahydro-5H,22H-dibenzo[e1,k][1,4,7,10,14,29]hexaoxacyclodotriacontine-7,20-dione (7f). White waxy solid; yield 67%. Rf = 0.38, hexane/EtOAc 3:1. 1H NMR (400 MHz, CDCl3): δ = 7.31 (dd, J = 16.2, 6.8 Hz, 4H), 7.01–6.87 (m, 4H), 5.45–5.29 (m, 4H), 5.19 (d, J = 6.1 Hz, 4H), 4.17 (t, J = 4.6 Hz, 4H), 3.89 (t, J = 4.7 Hz, 4H), 3.77 (s, 4H), 2.40–2.28 (m, 4H), 2.15–1.96 (m, 8H), 1.77–1.63 (m, 4H). 13C NMR (101 MHz, CDCl3)): δ = 173.5, 157.0, 130.4, 130.2, 129.7, 129.0, 124.6, 120.7, 111.7, 71.1, 69.8, 68.1, 61.8, 33.6, 27.3, 26.5, 24.9. ESI-MS: calcd. for C34H44O8 + Na+ [M + Na]+ 603.2928; found 603.2943.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makarieva, T.N.; Santalova, E.A.; Gorshkova, I.A.; Dmitrenok, A.S.; Guzii, A.G.; Gorbach, V.I.; Svetashev, V.I.; Stonik, V.A. A new cytotoxic fatty acid (5Z,9Z)-22-methyl-5,9-tetracosadienoic acid and the sterols from the far Eastern sponge Geodinella robusta. Lipids 2002, 37, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.M.; Sree, A.; Baliarsingh, S. Antibacterial study and fatty acid analysis of lipids of the sponge Myrmekioderma granulata. Chem. Nat. Compd. 2009, 45, 621–624. [Google Scholar] [CrossRef]
- Carballeira, N.M. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 2008, 47, 50–61. [Google Scholar] [CrossRef] [PubMed]
- D’yakonov, V.A.; Dzhemileva, L.U.; Makarov, A.A.; Makarova, E.K.; Khusnutdinova, E.K.; Dzhemilev, U.M. The facile synthesis of the 5Z,9Z-dienoic acids and their topoisomerase I inhibitory activity. Chem. Commun. 2013, 49, 8401–8403. [Google Scholar] [CrossRef] [PubMed]
- D’yakonov, V.A.; Tuktarova, R.A.; Dzhemileva, L.U.; Ishmukhametova, S.R.; Dzhemilev, U.M. Synthesis and Anticancer Activity of Hybrid Molecules Based on Lithocholic and (5Z,9Z)-Tetradeca-5,9-dienedioic Acids Linked via Mono(di,tri,tetra)ethylene Glycol and α,ω-Diaminoalkane Units. Pharmaceuticals 2021, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Dzhemileva, L.U.; D’yakonov, V.A.; Islamov, I.I.; Yunusbaeva, M.M.; Dzhemilev, U.M. New 1Z,5Z-diene macrodiolides: Catalytic synthesis, anticancer activity, induction of mitochondrial apoptosis, and effect on the cell cycle. Bioorg. Chem. 2020, 99, 103832. [Google Scholar] [CrossRef] [PubMed]
- D’yakonov, V.A.; Islamov, I.I.; Dzhemileva, L.U.; Makarova, E.K.; Dzhemilev, U.M. Direct synthesis of polyaromatic cyclophanes containing bis-methylene-interrupted Z-double bonds and study of their antitumor activity in vitro. Int. J. Mol. Sci. 2021, 22, 8787. [Google Scholar] [CrossRef] [PubMed]
Comp. | Jurkat (CC50, µM) * | K562 (CC50, µM) * | Hek293 (CC50, µM) * | Fibrobl. (CC50, µM) * | Selectivity Index | CC50max/CC50min |
---|---|---|---|---|---|---|
6a | 0.21 ± 0.02 | 0.16 ± 0.03 | 1.91 ± 0.21 | 2.98 ± 0.31 | 0.21–2.98 | 14.19 |
6b | 0.17 ± 0.02 | 0.22 ± 0.02 | 1.86 ± 0.19 | 2.69 ± 0.26 | 0.17–2.69 | 15.82 |
6c | 0.67 ± 0.07 | 0.41 ± 0.04 | 2.84 ± 0.28 | 3.72 ± 0.36 | 0.41–3.72 | 9.07 |
6d | 2.12 ± 0.22 | 2.49 ± 0.24 | 9.07 ± 0.91 | 10.11 ± 1.01 | 2.02–10.11 | 5.00 |
6e | 2.49 ± 0.24 | 3.02 ± 0.31 | 9.51 ± 0.93 | 11.59 ± 1.19 | 2.44–11.59 | 4.75 |
6f | 2.81 ± 0.29 | 3.18 ± 0.30 | 9.28 ± 0.93 | 11.24 ± 1.26 | 2.74–11.24 | 4.10 |
Staurosporin | 1.72 ± 0.15 | 4.35 ± 0.85 | 8.16 ± 0.88 | 18.08 ± 2.12 | 1.72–18.08 | 10.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaisin, I.; Islamov, I.; Dzhemileva, L.U.; Dzhemilev, U. Synthesis of Aromatic Macrodiolides and Study of Their Antitumor Activity In Vitro. Chem. Proc. 2023, 14, 59. https://doi.org/10.3390/ecsoc-27-16102
Gaisin I, Islamov I, Dzhemileva LU, Dzhemilev U. Synthesis of Aromatic Macrodiolides and Study of Their Antitumor Activity In Vitro. Chemistry Proceedings. 2023; 14(1):59. https://doi.org/10.3390/ecsoc-27-16102
Chicago/Turabian StyleGaisin, Ilgam, Ilgiz Islamov, Lilya U. Dzhemileva, and Usein Dzhemilev. 2023. "Synthesis of Aromatic Macrodiolides and Study of Their Antitumor Activity In Vitro" Chemistry Proceedings 14, no. 1: 59. https://doi.org/10.3390/ecsoc-27-16102
APA StyleGaisin, I., Islamov, I., Dzhemileva, L. U., & Dzhemilev, U. (2023). Synthesis of Aromatic Macrodiolides and Study of Their Antitumor Activity In Vitro. Chemistry Proceedings, 14(1), 59. https://doi.org/10.3390/ecsoc-27-16102