Trisubstituted 1,3,5-Triazines and Their Effect on BACE1 †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Determination of Lipophilicity Using HPLC
2.3. Determination of BACE1 Inhibitory Activity
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verma, T.; Sinha, M.; Bansal, N. Heterocyclic compounds bearing triazine scaffold and their biological significance: A review. Anticancer Agents Med. Chem. 2020, 20, 4–28. [Google Scholar] [CrossRef]
- Kushwaha, N.; Sharma, C.S. The chemistry of triazine isomers: Structures, reactions, synthesis and applications. Mini Rev. Med. Chem. 2020, 20, 2104–2122. [Google Scholar] [CrossRef]
- Elmore, C.L.; Lange, A.H. The Triazine Herbicides; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Klementova, S.; Keltnerova, L. Triazine herbicides in the environment. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; IntechOpen: Rijeka, Croatia, 2015; Available online: https://www.intechopen.com/chapters/48620 (accessed on 28 September 2023).
- Yang, L.; Li, H.; Zhang, Y.; Jiao, N. Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. Environ. Int. 2019, 133, 105175. [Google Scholar] [CrossRef]
- Abass, K.; Pelkonen, O.; Rautio, A. Chloro-s-triazines-toxicokinetic, toxicodynamic, human exposure, and regulatory considerations. Curr. Drug Metab. 2021, 22, 645–656. [Google Scholar] [CrossRef]
- Wang, M.; Lv, J.; Deng, H.; Liu, Q.; Liang, S. Occurrence and removal of triazine herbicides during wastewater treatment processes and their environmental impact on aquatic life. Int. J. Environ. Res. Public Health 2022, 19, 4557. [Google Scholar] [CrossRef]
- Yao, T.; Sun, P.; Zhao, W. Triazine herbicides risk management strategies on environmental and human health aspects using in-silico methods. Int. J. Mol. Sci. 2023, 24, 5691. [Google Scholar] [CrossRef] [PubMed]
- Khatib, I.; Horyn, O.; Bodnar, O.; Lushchak, O.; Rychter, P.; Falfushynska, H. Molecular and biochemical evidence of the toxic effects of terbuthylazine and malathion in zebrafish. Animals 2023, 13, 1029. [Google Scholar] [CrossRef] [PubMed]
- Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem. 2017, 136, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Singla, P.; Luxami, V.; Paul, K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem. 2015, 102, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mandal, M.K.; Masih, A.; Saha, A.; Ghosh, S.K.; Bhat, H.R.; Singh, U.P. 1,3,5-Triazine: A versatile pharmacophore with diverse biological activities. Arch. Pharm. 2021, 354, e2000363. [Google Scholar] [CrossRef]
- Maliszewski, D.; Drozdowska, D. Recent advances in the biological activity of s-triazine core compounds. Pharmaceuticals 2022, 15, 221. [Google Scholar] [CrossRef] [PubMed]
- Cesarini, S.; Vicenti, I.; Poggialini, F.; Secchi, M.; Giammarino, F.; Varasi, I.; Lodola, C.; Zazzi, M.; Dreassi, E.; Maga, G.; et al. Privileged scaffold decoration for the identification of the first trisubstituted triazine with anti-SARS-CoV-2 activity. Molecules 2022, 27, 8829. [Google Scholar] [CrossRef] [PubMed]
- Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Nadri, H.; Edraki, N.; Miri, R. Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg. Chem. 2018, 77, 223–235. [Google Scholar] [CrossRef]
- Yazdani, M.; Edraki, N.; Badri, R.; Khoshneviszadeh, M.; Iraji, A.; Firuzi, O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg. Chem. 2019, 84, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Prati, F.; De Simone, A.; Bisignano, P.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; et al. Multitarget drug discovery for Alzheimer’s disease: Triazinones as BACE-1 and GSK-3β inhibitors. Angew. Chem. Int. Ed. Engl. 2015, 54, 1578–1582. [Google Scholar] [CrossRef] [PubMed]
- Maliszewski, D.; Wrobel, A.; Kolesinska, B.; Fraczyk, J.; Drozdowska, D. 1,3,5-Triazine nitrogen mustards with different peptide group as innovative candidates for AChE and BACE1 inhibitors. Molecules 2021, 26, 3942. [Google Scholar] [CrossRef] [PubMed]
- Karimian, S.; Shekouhy, M.; Pirhadi, S.; Iraji, A.; Attarroshan, M.; Edraki, N.; Khoshneviszadeh, M. Synthesis and biological evaluation of benzimidazoles/1,3,5-triazine-2,4-diamine hybrid compounds: A new class of multifunctional Alzheimer targeting agents. New J. Chem. 2022, 46, 15567–15584. [Google Scholar] [CrossRef]
- Cole, S.L.; Vassar, R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener. 2007, 2, 22. [Google Scholar] [CrossRef]
- Yan, R. Physiological functions of the β-site amyloid precursor protein cleaving enzyme 1 and 2. Front. Mol. Neurosci. 2017, 10, 97. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Sun, X.; Chen, W.D.; Wang, Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol. 2015, 6, 221. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; et al. The β-secretase BACE1 in Alzheimer’s disease. Biol. Psychiatry 2021, 89, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Sathya, M.; Premkumar, P.; Karthick, C.; Moorthi, P.; Jayachandran, K.S.; Anusuyadevi, M. BACE1 in Alzheimer’s disease. Clin. Chim. Acta 2012, 414, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Yan, R. A close look at BACE1 inhibitors for Alzheimer’s disease treatment. CNS Drugs 2019, 33, 251–263. [Google Scholar] [CrossRef]
- Jampilek, J.; Kralova, K.; Novak, P.; Novak, M. Nanobiotechnology in neurodegenerative diseases. In Nanobiotechnology in Neurodegenerative Diseases; Rai, M., Yadav, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 65–138. [Google Scholar]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chetelat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S.; Kumar, J. Alzheimer’s disease: An update and insights into pathophysiology. Front. Aging. Neurosci. 2022, 14, 742408. [Google Scholar] [CrossRef]
- Madnani, R.S. Alzheimer’s disease: A mini-review for the clinician. Front. Neurol. 2023, 14, 1178588. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Vaz, M.; Silvestre, S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol. 2020, 887, 173554. [Google Scholar] [CrossRef]
- Peng, Y.; Jin, H.; Xue, Y.H.; Chen, Q.; Yao, S.Y.; Du, M.Q.; Liu, S. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Front. Aging Neurosci. 2023, 15, 1206572. [Google Scholar] [CrossRef] [PubMed]
- Havrankova, E.; Garaj, V.; Mascaretti, S.; Angeli, A.; Soldanova, Z.; Kemka, M.; Motycka, J.; Brazdova, M.; Csollei, J.; Jampilek, J.; et al. Novel 1,3,5-triazinyl aminobenzenesulfonamides incorporating aminoalcohol, aminochalcone and aminostilbene structural motifs as potent anti-vre agents, and carbonic anhydrases I, II, VII, IX, and XII inhibitors. Int. J. Mol. Sci. 2022, 23, 231. [Google Scholar] [CrossRef] [PubMed]
- Havrankova, E.; Csollei, J.; Pazdera, P. New approach for the one-pot synthesis of 1,3,5-triazine derivatives: Application of Cu(I) supported on a weakly acidic cation-exchanger resin in a comparative study. Molecules 2019, 24, 3586. [Google Scholar] [CrossRef] [PubMed]
- Havrankova, E.; Csollei, J.; Vullo, D.; Garaj, V.; Pazdera, P.; Supuran, C.T. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg. Chem. 2018, 77, 25–37. [Google Scholar] [CrossRef]
- Havrankova, E.; Calkovska, N.; Padrtova, T.; Csollei, J.; Opatrilova, R.; Pazdera, P. Antioxidative activity of 1,3,5-triazine analogues incorporating aminobenzene sulfonamide, aminoalcohol/phenol, piperazine, chalcone, or stilbene motifs. Molecules 2020, 25, 1787. [Google Scholar] [CrossRef] [PubMed]
- Garaj, V.; Puccetti, L.; Fasolis, G.; Winum, J.-Y.; Montero, J.L.; Scozzafava, A.; Vullo, D.; Innocenti, A.; Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties. J. Med. Chem. 2004, 14, 5427–5433. [Google Scholar] [CrossRef]
- β-Secretase (BACE1) Activity Detection Kit (Fluorescent). Technical Bulletin. Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/249/088/cs0010bul.pdf (accessed on 3 October 2023).
- Pliska, V.; Testa, B.; van der Waterbeemd, H. Lipophilicity in Drug Action and Toxicology; Wiley-VCH: Weinheim, Germany, 1996. [Google Scholar]
- Kerns, E.H.; Di, L. Drug-like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Molinspiration. Available online: https://www.molinspiration.com/services/psa.html (accessed on 5 October 2023).
- Prasanna, S.; Doerksen, R.J. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr. Med. Chem. 2009, 16, 21–41. [Google Scholar] [CrossRef]
- McDade, E.; Voytyuk, I.; Aisen, P.; Bateman, R.J.; Carrillo, M.C.; De Strooper, B.; Haass, C.; Reiman, E.M.; Sperling, R.; Tariot, P.N.; et al. The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat. Rev. Neurol. 2021, 17, 703–714. [Google Scholar] [CrossRef]
- Bazzari, F.H.; Bazzari, A.H. BACE1 inhibitors for Alzheimer’s disease: The past, present and any future? Molecules 2022, 27, 8823. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wang, S.L.; Nguyen, V.B. Microorganism-derived molecules as enzyme inhibitors to target Alzheimer’s diseases pathways. Pharmaceuticals 2023, 16, 580. [Google Scholar] [CrossRef]
- Schreiner, T.G.; Schreiner, O.D.; Adam, M.; Popescu, B.O. The roles of the amyloid beta monomers in physiological and pathological conditions. Biomedicines 2023, 11, 1411. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A. Conquering Alzheimer’s: A look at the therapies of the future. Nature 2023, 616, 26–28. [Google Scholar] [CrossRef] [PubMed]
No. | log k | tPSA 1 (Å2) | Reduction of BACE1 Activity (%) | |
---|---|---|---|---|
1 [35] | −0.3213 | 141.53 | 2.3 | |
2 [36] | −0.3807 | 141.53 | 0 | |
3 [36] | −0.2816 | 141.53 | 0 | |
4 [37] | 0.3490 | 142.05 | 0 | |
5 [37] | −0.1155 | 142.05 | 0 | |
6 [36] | −0.0666 | 142.05 | 0 | |
7 [37] | 0.4387 | 194.54 | 9.6 | |
8 [38] | 0.3597 | 170.63 | 0 | |
9 [38] | 0.3850 | 173.79 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majerova, P.; Gerhardtova, I.; Havrankova, E.; Jankech, T.; Kovac, A.; Jampilek, J. Trisubstituted 1,3,5-Triazines and Their Effect on BACE1. Chem. Proc. 2023, 14, 48. https://doi.org/10.3390/ecsoc-27-16111
Majerova P, Gerhardtova I, Havrankova E, Jankech T, Kovac A, Jampilek J. Trisubstituted 1,3,5-Triazines and Their Effect on BACE1. Chemistry Proceedings. 2023; 14(1):48. https://doi.org/10.3390/ecsoc-27-16111
Chicago/Turabian StyleMajerova, Petra, Ivana Gerhardtova, Eva Havrankova, Timotej Jankech, Andrej Kovac, and Josef Jampilek. 2023. "Trisubstituted 1,3,5-Triazines and Their Effect on BACE1" Chemistry Proceedings 14, no. 1: 48. https://doi.org/10.3390/ecsoc-27-16111
APA StyleMajerova, P., Gerhardtova, I., Havrankova, E., Jankech, T., Kovac, A., & Jampilek, J. (2023). Trisubstituted 1,3,5-Triazines and Their Effect on BACE1. Chemistry Proceedings, 14(1), 48. https://doi.org/10.3390/ecsoc-27-16111