Distal Functionalization via Transition Metal Catalysis †
Abstract
:Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMurray, L.; O’Hara, F.; Gaunt, M.J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 2011, 40, 1885–1898. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C−H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 2012, 51, 8960–9009. [Google Scholar] [CrossRef] [PubMed]
- Cernak, T.; Dykstra, K.D.; Tyagarajan, S.; Vachal, P.; Krska, S.W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016, 45, 546–576. [Google Scholar] [CrossRef]
- Shilov, A.E.; Shul’pin, G.B. Activation of C−H bonds by metal complexes. Chem. Rev. 1997, 97, 2879–2932. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.-S.; Ji, P.-J.; Zhou, B.-Y.; Cheng, J.-P. The essential role of bond energetics in C−H activation/functionalization. Chem. Rev. 2017, 117, 8622–8648. [Google Scholar] [CrossRef] [PubMed]
- Newhouse, T.; Baran, P.S. If C−H bonds could talk: Selective C−H bond oxidation. Angew. Chem. Int. Ed. 2011, 50, 3362–3374. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Engle, K.M.; Wang, D.-H.; Yu, J.-Q. Palladium(II)-catalyzed C−H activation/C−C cross-coupling reactions: Versatility and practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–5115. [Google Scholar] [CrossRef]
- Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 2010, 110, 1147–1169. [Google Scholar] [CrossRef]
- Li, H.; Li, B.-J.; Shi, Z.-J. Challenge and progress: Palladium-catalyzed sp3 C−H activation. Catal. Sci. Technol. 2011, 1, 191–206. [Google Scholar] [CrossRef]
- Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Towards mild metal-catalyzed C–H bond activation. Chem. Soc. Rev. 2011, 40, 4740–4761. [Google Scholar] [CrossRef]
- Neufeldt, S.R.; Sanford, M.S. Controlling site selectivity in palladium-catalyzed C–H bond functionalization. Acc. Chem. Res. 2012, 45, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Recent advances in directed C–H functionalizations using monodentate nitrogen-based directing groups. Org. Chem. Front. 2014, 1, 843–895. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front. 2015, 2, 1107–1295. [Google Scholar] [CrossRef]
- Gensch, T.; Hopkinson, M.N.; Glorius, F.; Wencel-Delord, J. Mild metal-catalyzed C–H activation: Examples and concepts. Chem. Soc. Rev. 2016, 45, 2900–2936. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wasa, M.; Chan, K.S.L.; Shao, Q.; Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 2017, 117, 8754–8786. [Google Scholar] [CrossRef]
- Curzons, A.D.; Constable, D.J.C.; Mortimer, D.N.; Cunningham, V.L. So you think your process is green, how do you know?-Using principles of sustainability to determine what is green-a corporate perspective. Green Chem. 2001, 3, 1–6. [Google Scholar] [CrossRef]
- Constable, D.J.C.; Curzons, A.D.; Cunningham, V.L. Metrics to ‘green’ chemistry-which are the best? Green Chem. 2002, 4, 521–527. [Google Scholar] [CrossRef]
- Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res. 2002, 35, 695–705. [Google Scholar] [CrossRef]
- Hartwig, J.F.; Larsen, M.A. Undirected, homogeneous C–H bond functionalization: Challenges and opportunities. ACS Cent. Sci. 2016, 2, 281–292. [Google Scholar] [CrossRef]
- Park, Y.J.; Park, J.-W.; Jun, C.-H. Metal-organic cooperative catalysis in C−H and C−C bond activation and its concurrent recovery. Acc. Chem. Res. 2008, 41, 222–234. [Google Scholar] [CrossRef]
- Kim, D.-S.; Park, W.-J.; Jun, C.-H. Metal-organic cooperative catalysis in C−H and C−C bond activation. Chem. Rev. 2017, 117, 8977–9015. [Google Scholar] [CrossRef] [PubMed]
- Gandeepan, P.; Ackermann, L. Transient directing groups for transformative C–H activation by synergistic metal catalysis. Chem 2017, 4, 199–222. [Google Scholar] [CrossRef]
- John-Campbell, S.S.; Bull, J.A. Transient imines as ‘next generation’ directing groups for the catalytic functionalisation of C–H bonds in a single operation. Org. Biomol. Chem. 2018, 16, 1419–1435. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Dong, G. sp3 C–H activation via exo-type directing groups. Chem. Sci. 2018, 9, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, T.; Pimparkar, S.; Maiti, D. Combining transition metals and transient directing groups for C–H functionalizations. RSC Adv. 2018, 8, 19456–19464. [Google Scholar] [CrossRef]
- Jun, C.-H.; Lee, H.; Hong, J.-B. Chelation-assisted intermolecular hydroacylation: Direct synthesis of ketone from aldehyde and 1-alkene. J. Org. Chem. 1997, 62, 1200–1201. [Google Scholar] [CrossRef]
- Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Functionalization of C(sp3)−H bonds using a transient directing group. Science 2016, 351, 252–256. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.; Liu, T.; Eastgate, M.D.; Yu, J.-Q. Pd-Catalyzed γ-C(sp3)−H arylation of free amines using a transient directing group. J. Am. Chem. Soc. 2016, 138, 14554–14557. [Google Scholar] [CrossRef]
- Xu, Y.; Young, M.C.; Wang, C.; Magness, D.; Dong, G.-B. Catalytic C(sp3)−H arylation of free primary amines with an exo directing group generated in situ. Angew. Chem. Int. Ed. 2016, 55, 9084–9087. [Google Scholar] [CrossRef]
- Yang, K.; Li, Q.; Liu, Y.-B.; Li, G.-G.; Ge, H.-B. Catalytic C–H arylation of aliphatic aldehydes enabled by a transient ligand. J. Am. Chem. Soc. 2016, 138, 12775–12778. [Google Scholar] [CrossRef]
- Liu, Y.-B.; Ge, H.-B. Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group. Nat. Chem. 2017, 9, 26–32. [Google Scholar] [CrossRef]
- Park, H.; Verma, P.; Hong, K.; Yu, J.-Q. Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp3)–H fluorination. Nat. Chem. 2018, 10, 755–762. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, H. Distal Functionalization via Transition Metal Catalysis. Chem. Proc. 2022, 12, 7. https://doi.org/10.3390/ecsoc-26-13690
Ge H. Distal Functionalization via Transition Metal Catalysis. Chemistry Proceedings. 2022; 12(1):7. https://doi.org/10.3390/ecsoc-26-13690
Chicago/Turabian StyleGe, Haibo. 2022. "Distal Functionalization via Transition Metal Catalysis" Chemistry Proceedings 12, no. 1: 7. https://doi.org/10.3390/ecsoc-26-13690
APA StyleGe, H. (2022). Distal Functionalization via Transition Metal Catalysis. Chemistry Proceedings, 12(1), 7. https://doi.org/10.3390/ecsoc-26-13690