Chemo-Selective Protection of Aldehydes Functional Group Catalyzed by MOFs †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaiseeda, K.; Chantharadet, L.; Chavasiri, W. Utilization of hexabromoacetone for protection of alcohols and aldehydes and deprotection of acetals, ketals, and oximes under UV irradiation. Res. Chem. Intermed. 2017, 44, 1305–1323. [Google Scholar] [CrossRef]
- Sajjadifar, S.; Nasri, P. N-Propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) as a green and reusable heterogeneous nanocatalyst for the chemoselective preparation and deprotection of acylals. Res. Chem. Intermed. 2017, 43, 6677–6689. [Google Scholar] [CrossRef]
- Kalla, R.M.N.; Kim, M.R.; Kim, Y.N.; Kim, I. Tungstosulfonic acid as an efficient solid acid catalyst for acylal synthesis for the protection of the aldehydic carbonyl group. New J. Chem. 2016, 40, 687–693. [Google Scholar] [CrossRef]
- Rezayati, S.; Ramazani, A. Metal-based Lewis acid catalysts for conversion of a variety of aldehydes with acetic anhydride to gem 1,1-diacetates. Res. Chem. Intermed. 2020, 46, 3757–3799. [Google Scholar] [CrossRef]
- Liu, W.; Guo, R.; Peng, G.; Yin, D. Sulfuric Acid Immobilized on Activated Carbon Aminated with Ethylenediamine: An Efficient Reusable Catalyst for the Synthesis of Acetals (Ketals). Nanomaterials 2022, 12, 1462. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, X.; Yang, X.; Alghamdi, A.A.; Alharthi, F.A.; Cheng, X.; Deng, Y. Sulfonic acid-functionalized core-shell Fe3O4@carbon microspheres as magnetically recyclable solid acid catalysts. Chin. Chem. Lett. 2021, 32, 2079–2085. [Google Scholar] [CrossRef]
- Azarifar, D.; Forghaniha, A. A Novel Chemoselective Reaction of Aldehydes with 2-Mercaptoethanol Catalyzed by SiO2-NaHSO4 under Solvent-free Condition. J. Chin. Chem. Soc. 2006, 53, 1189–1192. [Google Scholar] [CrossRef]
- Sowmiya, M.; Sharma, A.; Parsodkar, S.; Mishra, B.G.; Dubey, A. Nanosized sulfated SnO2 dispersed in the micropores of Al-pillared clay as an efficient catalyst for the synthesis of some biologically important molecules. Appl. Catal. A Gen. 2007, 333, 272–280. [Google Scholar] [CrossRef]
- Lv, S.; Li, D.; Ju, H.; Ma, Y.; Qiu, C.; Zhang, G. Synthesis of a phenol copolymer with horseradish peroxidase and the study of its structure-property relations. J. Appl. Polym. Sci. 2013, 128, 523–529. [Google Scholar] [CrossRef]
- Ferreira, G.; Carvalho, C.; Nakagaki, S. Studies of the Catalytic Activity of Iron (III) Porphyrins for the Protection of Carbonyl Groups in Homogeneous Media. Catalysts 2019, 9, 334. [Google Scholar] [CrossRef]
- Wei, Y.S.; Zhang, M.; Zou, R.; Xu, Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089–12174. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, S.N.; Zang, S.Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.D.; Jiang, H.L. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis. Acc. Chem. Res. 2019, 52, 356–366. [Google Scholar] [CrossRef]
- Choi, J.; Yoo, K.S.; Kim, D.; Kim, J.; Othman, M.R. Microporous Mo-UiO-66 Metal–Organic Framework Nanoparticles as Gas Adsorbents. ACS Appl. Nano Mater. 2021, 4, 4895–4901. [Google Scholar] [CrossRef]
- Almáši, M.; Sharma, A.; Zelenka, T. Anionic zinc(II) metal-organic framework post-synthetically modified by alkali-ion exchange: Synthesis, characterization and hydrogen adsorption properties. Inorg. Chim. Acta 2021, 526, 120505. [Google Scholar] [CrossRef]
- Haque, E.; Jun, J.W.; Jhung, S.H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 2011, 185, 507–511. [Google Scholar] [CrossRef]
- Wu, N.; Guo, H.; Wang, X.; Sun, L.; Zhang, T.; Peng, L.; Yang, W. A water-stable lanthanide-MOF as a highly sensitive and selective luminescence sensor for detection of Fe3+ and benzaldehyde. Colloids Surf. A Physicochem. Eng. Asp. 2021, 616, 126093. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.Y.; Luo, F. A new Zn-triazole MOF showing very long-lived luminescence up to 3 s. J. Solid State Chem. 2021, 301, 122369. [Google Scholar] [CrossRef]
- Yu, Y.; Pan, D.; Qiu, S.; Ren, L.; Huang, S.; Liu, R.; Wang, L.; Wang, H. Polyphenylene sulfide paper-based sensor modified by Eu-MOF for efficient detection of Fe3+. React. Funct. Polym. 2021, 165, 104954. [Google Scholar] [CrossRef]
- Ming, S.S.; Gowthaman, N.S.K.; Lim, H.N.; Arul, P.; Narayanamoorthi, E.; Ibrahim, I.; Jaafar, H.; John, S.A. Aluminium MOF fabricated electrochemical sensor for the ultra-sensitive detection of hydroquinone in water samples. J. Electroanal. Chem. 2021, 883, 115067. [Google Scholar] [CrossRef]
- Hasan, M.N.; Bera, A.; Maji, T.K.; Pal, S.K. Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorg. Chim. Acta 2021, 523, 120381. [Google Scholar] [CrossRef]
- Arabbaghi, E.K.; Mokhtari, J.; Naimi-Jamal, M.R.; Khosravi, A. Zn-MOF: An efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate. J. Porous Mater. 2021, 28, 641–649. [Google Scholar] [CrossRef]
- Du, R.; Wu, Y.; Yang, Y.; Zhai, T.; Zhou, T.; Shang, Q.; Zhu, L.; Shang, C.; Guo, Z. Porosity Engineering of MOF-Based Materials for Electrochemical Energy Storage. Adv. Energy Mater. 2021, 11, 2100154. [Google Scholar] [CrossRef]
- Huang, S.; Kou, X.; Shen, J.; Chen, G.; Ouyang, G. “Armor-Plating” Enzymes with Metal-Organic Frameworks (MOFs). Angew. Chem. Int. Ed. Engl. 2020, 59, 8786–8798. [Google Scholar] [CrossRef]
- Drout, R.J.; Robison, L.; Farha, O.K. Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coord. Chem. Rev. 2019, 381, 151–160. [Google Scholar] [CrossRef]
- Hao, M.; Qiu, M.; Yang, H.; Hu, B.; Wang, X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Total Env. 2021, 760, 143333. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Santiago-Portillo, A.; Asiri, A.M.; Garcia, H. Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem 2019, 11, 899–923. [Google Scholar] [CrossRef]
Entry | Catalyst | Room Temperature/Microwave | Time (h/min) | Yield (%) b |
---|---|---|---|---|
1 | Ni2(BDC)2(DABCO) | R.T | 24 h | 100 |
MW | 19 min | 93 | ||
2 | Cu2(BDC)2(DABCO) | R.T | 33 h | 94 |
MW | 20 min | 90 | ||
3 | Co2(BDC)2(DABCO) | R.T | 30 h | 97 |
MW | 25 min | 92 | ||
4 | Zn2(BDC)2(DABCO) | R.T | 10 h | 100 |
MW | 13 min | 100 |
Entry | Solvent | Condition | Time (h) | Yield (%) b |
1 | EtOH | r.t | 16.5 | 54 |
2 | n-Hexane | r.t | 22 | 73 |
3 | EtOAc | r.t | 20 | 57 |
4 | CH3CN | r.t | 18 | 52 |
5 | Solvent-free | r.t | 6 | 100 |
6 | Solvent-free | ball-milling, r.t | 3 | 93 |
7 | Solvent-free | MW | 7 min | 100 |
Entry | Substrate | Product | Time (min) | Yield (%) b |
---|---|---|---|---|
1 | 7 | 92 | ||
2 | 6 | 96 | ||
3 | 7 | 94 | ||
4 | 10 | 91 | ||
5 | 8 | 91 | ||
6 | 9 | 85 | ||
7 | 8 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdian, S.; Panahi, L.; Naimi-Jamal, M.R. Chemo-Selective Protection of Aldehydes Functional Group Catalyzed by MOFs. Chem. Proc. 2022, 12, 68. https://doi.org/10.3390/ecsoc-26-13645
Mahdian S, Panahi L, Naimi-Jamal MR. Chemo-Selective Protection of Aldehydes Functional Group Catalyzed by MOFs. Chemistry Proceedings. 2022; 12(1):68. https://doi.org/10.3390/ecsoc-26-13645
Chicago/Turabian StyleMahdian, Sakineh, Leila Panahi, and Mohammad Reza Naimi-Jamal. 2022. "Chemo-Selective Protection of Aldehydes Functional Group Catalyzed by MOFs" Chemistry Proceedings 12, no. 1: 68. https://doi.org/10.3390/ecsoc-26-13645
APA StyleMahdian, S., Panahi, L., & Naimi-Jamal, M. R. (2022). Chemo-Selective Protection of Aldehydes Functional Group Catalyzed by MOFs. Chemistry Proceedings, 12(1), 68. https://doi.org/10.3390/ecsoc-26-13645