New Photochemical Properties of Azidoaniline and Ciprofloxacin †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- William, C.; Navarro, M.; Biot, C. Medicinal Potential of Ciprofloxacin and Its Derivatives. Future Med. Chem. 2013, 5, 81–96. [Google Scholar]
- Zhang, R.; Jones, M.M.; Moussa, H.; Keskar, M.; Huo, N.; Zhang, Z.; Visser, M.B.; Sabatini, C.; Swihart, M.T.; Cheng, C. Polymer–Antibiotic Conjugates as Antibacterial Additives in Dental Resins. Biomater. Sci. 2019, 7, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Bardakova Kseniia, N.; Faletrov, Y.V.; Epifanov, E.O.; Minaev, N.V.; Kaplin, V.S.; Piskun, Y.A.; Koteneva, P.I. A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds. Polymers 2021, 13, 3385. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Huang, H.; Kang, X.; Yang, L.; Xi, Z.; Sun, H.; Pluth, M.D.; Yi, L. NBD-Based Synthetic Probes for Sensing Small Molecules and Proteins: Design, Sensing Mechanisms and Biological Applications. Chem. Soc. Rev. 2021, 50, 7335–7882. [Google Scholar] [CrossRef] [PubMed]
- Faletrov Yaroslav, V.; Karpushenkova, V.S.; Zavalinich, V.A.; Yakovets, P.S.; Shkredava, A.D.; Shkumatov, V.M. Interaction of Nitrobenzoxadiazole Derivatives of Piperazine and Aniline with Bovine Serum Albumine in Silico and in Vitro. J. Belarusian State Univ. Chem. 2021, 2, 25–35. [Google Scholar] [CrossRef]
- Faletrov, Y.V.; Pozniak, H.I.; Yakovets, P.S.; Frolova, N.S.; Shkumatov, V.M. New lipophilic conjugates of fluorescent NBD-piperazine: Synthesis, in silico interactions with lipid bilayer and cytochromes P450. Proc. Natl. Acad. Sci. Belarus Chem. Ser. 2022, 58, 62–67. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faletrov Yaroslav, V.; Staravoitava, V.A.; Dudko, A.R.; Shkumatov, V.M. Application of Docking-Based Inverse High Throughput Virtual Screening to Found Phytochemical Covalent Inhibitors of SARS-CoV-2 Main Protease, NSP12 and NSP16. 2022; preprint. in review. [Google Scholar]
- Soldevila, S.; Cuquerella, M.C.; Lhiaubet-Vallet, V.; Edge, R.; Bosca, F. Seeking the mechanism responsible for fluoroquinolone photomutagenicity: A pulse radiolysis, steady-state, and laser flash photolysis study. Free Radic. Biol. Med. 2014, 67, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos Tibiriçá, G.; Henriques, D.M.; König, A.; Martins, A.F.; Kümmerer, И.K. Photo-Degradation of the Antimicrobial Ciprofloxacin at High PH: Identification and Biodegradability Assessment of the Primary by-Products. Chemosphere 2009, 76, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Ankita, I.; Hommelsheim, R.; Cone, G.W.; Frings, M.; Petroff, J.T.; Bolm, C.; McCulla, R.D. Photochemistry of N -Phenyl Dibenzothiophene Sulfoximine. Photochem. Photobiol. 2021, 97, 1322–1334. [Google Scholar]
- Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Hao, X.; Jing, L.; Wu, G.; Kang, D.; Liu, X.; Zhan, P. Recent applications of click chemistry in drug discovery. Expert Opin. Drug Discov. 2019, 14, 779–789. [Google Scholar] [CrossRef]
Reactant | Product | R = H | R = NBD |
---|---|---|---|
1 | 2, N2 | −0.015322 | −0.00332 |
2 | 3 | −0.201323 | −0.232164 |
4 | −0.187801 | −0.210173 | |
2, hexyne-1 | 5 | −0.065421 | −0.078967 |
2 | 6 | −0.647449 | −0.837335 |
6, Tyr | 7, Tyr (C-phenol O bond) | 39.149172 | 39.28373 |
6, Lys | 7, Lys (C-amine N) | 0.564235 | 0.836605 |
6, Ser | 7, Ser (C-alkyl O) | 0.54942 | 0.824268 |
6, Cys | 7, Cys (C-thiol S bond) | 0.558844 | 0.73701 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpushenkova, V.S.; Glinskaya, L.I.; Faletrov, Y.V.; Bardakova, K.N.; Piskun, Y.A.; Kostjuk, S.V.; Shkumatov, V.M. New Photochemical Properties of Azidoaniline and Ciprofloxacin. Chem. Proc. 2022, 12, 66. https://doi.org/10.3390/ecsoc-26-13571
Karpushenkova VS, Glinskaya LI, Faletrov YV, Bardakova KN, Piskun YA, Kostjuk SV, Shkumatov VM. New Photochemical Properties of Azidoaniline and Ciprofloxacin. Chemistry Proceedings. 2022; 12(1):66. https://doi.org/10.3390/ecsoc-26-13571
Chicago/Turabian StyleKarpushenkova, Veronika S., Liliya I. Glinskaya, Yaroslav V. Faletrov, Kseniia N. Bardakova, Yuliya A. Piskun, Sergei V. Kostjuk, and Vladimir M. Shkumatov. 2022. "New Photochemical Properties of Azidoaniline and Ciprofloxacin" Chemistry Proceedings 12, no. 1: 66. https://doi.org/10.3390/ecsoc-26-13571
APA StyleKarpushenkova, V. S., Glinskaya, L. I., Faletrov, Y. V., Bardakova, K. N., Piskun, Y. A., Kostjuk, S. V., & Shkumatov, V. M. (2022). New Photochemical Properties of Azidoaniline and Ciprofloxacin. Chemistry Proceedings, 12(1), 66. https://doi.org/10.3390/ecsoc-26-13571