Grassland Reseeding—Improving Grassland Productivity and Reducing Excess Soil Surface Nutrient Accumulations †
Abstract
:1. Introduction
1.1. Reducing Soil-Nutrient Accumulations
1.2. Grassland Reseeding and Tillage
2. Methods
2.1. Study Catchment
2.2. Soil Sampling and GIS-Based Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonald, N.; Wall, D.; Mellander, P.; Buckley, C.; Shore, M.; Shortle, G.; Leach, S.; Burgess, E.; O’Connell, T.; Jordan, P. Field scale phosphorus balances and legacy soil pressures in mixed-land use catchments. Agric. Ecosyst. Environ. 2019, 274, 14–23. [Google Scholar] [CrossRef]
- Baker, D.B.; Johnson, L.T.; Confesor, R.B.; Crumrine, J.P. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin. J. Environ. Qual. 2017, 46, 1287–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.T.; Zhang, T.Q.; Hu, Q.C.; Tan, C.S.; Halloran, I.P.O.; Drury, C.F.; Reid, D.K.; Ma, B.L.; Ball-Coelho, B.; Lauzon, J.D.; et al. Estimating Dissolved Reactive Phosphorus Concentration in Surface Runoff Water from Major Ontario Soils. J. Environ. Qual. 2010, 39, 1771–1781. [Google Scholar] [CrossRef] [PubMed]
- Zia, H.; Harris, N.R.; Merrett, G.; Rivers, M.; Coles, N. The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks. Comput. Electron. Agric. 2013, 96, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Hayes, E.; Higgins, S.; Geris, J.; Nicholl, G.; Mullan, D. The importance of soil phosphorus sub-field scale sampling for understanding and managing surface runoff-based phosphorus losses. CATENA, 2022; in review. [Google Scholar]
- Taylor, M.D.; Drewry, J.J.; Curran-Cournane, F.; Pearson, L.; McDowell, R.W.; Lynch, B. Soil Quality Targets for Olsen P for the Protection of Environmental Values; Massey University: Massey, New Zealand, 2006. [Google Scholar]
- Schulte, R.; Melland, A.; Fenton, O.; Herlihy, M.; Richards, K.; Jordan, P. Modelling soil phosphorus decline: Expectations of Water Framework Directive policies. Environ. Sci. Policy 2010, 13, 472–484. [Google Scholar] [CrossRef]
- Bailey, J.S. Assessing the effectiveness of manure export plus intensive silage cropping for lowering the Olsen-P status of P-enriched grassland. Soil Use Manag. 2015, 31, 438–439. [Google Scholar] [CrossRef]
- Wall, D.P.; Jordan, P.; Melland, A.R.; Mellander, P.-E.; Mechan, S.; Shortle, G. Forecasting the decline of excess soil phosphorus in agricultural catchments. Soil Use Manag. 2013, 29, 147–154. [Google Scholar] [CrossRef]
- Dodd, R.J.; Mcdowell, R.W.; Condron, L.M. Predicting the changes in environmentally and agronomically significant phosphorus forms following the cessation of phosphorus fertilizer applications to grassland. Soil Use Manag. 2012, 28, 135–147. [Google Scholar] [CrossRef]
- Sharpley, A.N. Soil Mixing to Decrease Surface Stratification of Phosphorus in Manured Soils. J. Environ. Qual. 2003, 32, 1375–1384. [Google Scholar] [CrossRef]
- Watkins, M.; Castlehouse, H.; Hannah, M.; Nash, D. Nitrogen and Phosphorus Changes in Soil and Soil Water after Cultivation. Appl. Environ. Soil Sci. 2012, 2012, 157068. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Sharpley, A.N.; Withers, P.J.A.; Bergström, L.; Johnson, L.T.; Doody, D.G. Implementing agricultural phosphorus science and management to combat eutrophication. AMBIO 2015, 44, 297–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuttle, S.; Scholefield, D. Management options to limit nitrate leaching from grassland. J. Contam. Hydrol. 1995, 20, 299–312. [Google Scholar] [CrossRef]
- Scholefield, D.; Tyson, K.C.; Garwood, E.A.; Armstrong, A.C.; Hawkins, J.; Stone, A.C. Nitrate leaching from grazed grassland lysimeters: Effects of fertilizer input, field drainage, age of sward and patterns of weather. Eur. J. Soil Sci. 1993, 44, 601–613. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Harris, P.; Sint, H.; Murray, P.J.; Lee, M.R.; Wu, L. Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process-based model. Sci. Total Environ. 2017, 603–604, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Bastola, S.; Murphy, C.; Sweeney, J. The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Adv. Water Resour. 2011, 34, 562–576. [Google Scholar] [CrossRef]
- Cassidy, R.; Thomas, I.A.; Higgins, A.; Bailey, J.S.; Jordan, P. A carrying capacity framework for soil phosphorus and hydrological sensitivity from farm to catchment scales. Sci. Total Environ. 2019, 687, 277–286. [Google Scholar] [CrossRef]
- McCormick, S.; Jordan, C.; Bailey, J.S. Within and between-field spatial variation in soil phosphorus in permanent grassland. Precis. Agric. 2008, 10, 262–276. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, K.; Bailey, J.; Jordan, C.; Higgins, A. Temporal changes in the spatial distributions of some soil properties on a temperate grassland site. Soil Use Manag. 2006, 18, 353–362. [Google Scholar] [CrossRef]
- MAFF (Ministry of Agriculture, Fisheries and Food). The Analysis of Agricultural Materials, 3rd ed.; Reference Book 427; Her Majesty’s Stationary Office: London, UK, 1986. [Google Scholar]
- Islam, M.M.; Bhuijan, N.I. Evaluation of various extractants for available sulphur in wetland rice (Oryza sativa) soils of Bangladesh. Indian J. Agric. Sci. 1988, 58, 603–606. [Google Scholar]
- AHDB. Nutrient Management Guide (RB209) Section 3 Grass and Forage Crops; January 2019; Agriculture and Horti-Culture Development Board: Kenilworht, UK, 2019. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; Webster, R., Oliver, M.A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2007; p. 330. [Google Scholar]
- Thomas, C.L.; Darch, T.; Harris, P.; Beaumont, D.A.; Haefele, S.M. The Distribution of Soil Micro-Nutrients and the Effects on Herbage Micro-Nutrient Uptake and Yield in Three Different Pasture Systems. Agronomy 2021, 11, 1731. [Google Scholar] [CrossRef]
Sample Point ID | Soil P Content | Soil K Content | Soil Mg Content | Soil S Content |
---|---|---|---|---|
1 | 36.7% decrease | 2.9% decrease | 0.9% increase | 8.9% increase |
2 | 30.0% decrease | 7.7% decrease | 6.0% decrease | 4.9% decrease |
3 | 11.9% decrease | 32.3% decrease | 17.3% decrease | 9.1% decrease |
4 | 52.0% decrease | 37.5% decrease | 14.2% decrease | 18.9% decrease |
5 | 5.1% increase | 4.6% increase | 6.9% decrease | 0.8% decrease |
6 | 47.7% decrease | 24.1% decrease | 14.8% increase | 25.7% decrease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayes, E.; Higgins, S.; Geris, J.; Mullan, D. Grassland Reseeding—Improving Grassland Productivity and Reducing Excess Soil Surface Nutrient Accumulations. Chem. Proc. 2022, 10, 4. https://doi.org/10.3390/IOCAG2022-12182
Hayes E, Higgins S, Geris J, Mullan D. Grassland Reseeding—Improving Grassland Productivity and Reducing Excess Soil Surface Nutrient Accumulations. Chemistry Proceedings. 2022; 10(1):4. https://doi.org/10.3390/IOCAG2022-12182
Chicago/Turabian StyleHayes, Emma, Suzanne Higgins, Josie Geris, and Donal Mullan. 2022. "Grassland Reseeding—Improving Grassland Productivity and Reducing Excess Soil Surface Nutrient Accumulations" Chemistry Proceedings 10, no. 1: 4. https://doi.org/10.3390/IOCAG2022-12182
APA StyleHayes, E., Higgins, S., Geris, J., & Mullan, D. (2022). Grassland Reseeding—Improving Grassland Productivity and Reducing Excess Soil Surface Nutrient Accumulations. Chemistry Proceedings, 10(1), 4. https://doi.org/10.3390/IOCAG2022-12182