Distribution of ApoE Gene Polymorphism and Its Association with the Lipid Profile Among Type 2 Diabetes Mellitus Black South Africans
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participant
2.2. Blood Sample Collection
2.3. Biochemical Assessment
2.4. ApoE Genotyping
2.4.1. Genomic DNA Extraction
2.4.2. ApoE SNP Selection and PCR Amplification
2.4.3. MALDI-TOF SNPs Profiling
2.5. Data Analysis
3. Results
3.1. Overview of Sociodemographic and Clinical Characteristics of the Study Participants
3.2. Distribution of Genotypes and Allele Frequency Among the Study Participants
3.3. The Relationship Between the ApoE Alleles and Glycated Haemoglobin and Lipid Profiles Amongst Study Participants
3.4. The Distribution of Glycaemic Control Status Among Participants with T2DM Stratified by ApoE Allele (E2, E3, E4)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| T2DM | Type 2 Diabetes Mellitus |
| HbA1c | Glycated Haemoglobin |
| ApoE | Apolipoprotein E |
| SNPs | Single Nucleotide Polymorphisms |
| ACVD | Atherosclerotic Cardiovascular Disease |
| HDL-C | High-Density Lipoprotein Cholesterol |
| LDL-C | Low-Density Lipoprotein Cholesterol |
| DGMAH | Dr George Mukhari Academic Hospital |
| CI | Confidence Interval |
| ARV | Antiretroviral |
| NO | Plasma Nitric Oxide |
| PCR | Polymerase Chain Reaction |
| DNA | Deoxyribonucleic Acid |
| ANOVA | One-Way Analysis of Variance |
| hs-CRP | High-Sensitivity C-Reactive Protein |
| MALDI-TOF | Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight |
| VLDL | Very Low-Density Lipoprotein |
| TG | Triglycerides |
| TC | Total Cholesterol |
| HWE | Hardy–Weinberg equilibrium |
References
- Goedecke, J.H.; Mendham, A.E. Pathophysiology of type 2 diabetes in sub-Saharan Africans. Diabetologia 2022, 65, 1967–1980. [Google Scholar] [CrossRef]
- Pheiffer, C.; Pillay-van Wyk, V.; Turawa, E.; Levitt, N.; Kengne, A.P.; Bradshaw, D. Prevalence of Type 2 Diabetes in South Africa: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5868. [Google Scholar] [CrossRef] [PubMed]
- Dubsky, M.; Veleba, J.; Sojakova, D.; Marhefkova, N.; Fejfarova, V.; Jude, E.B. Endothelial Dysfunction in Diabetes Mellitus: New Insights. Int. J. Mol. Sci. 2023, 24, 10705. [Google Scholar] [CrossRef] [PubMed]
- Martín-Timón, I. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014, 5, 444. [Google Scholar] [CrossRef]
- Aceves, D.; Ruiz, B.; Nuno, P.; Roman, S.; Zepeda, E.; Panduro, A. Heterogeneity of Apolipoprotein E Polymorphism in Different Mexican Populations. Hum. Biol. 2006, 78, 65–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, H.-Q.; Peng, W.-J.; Zhang, B.-B.; Liu, M. Meta-analysis for the Association of Apolipoprotein E ε2/ε3/ε4 Polymorphism with Coronary Heart Disease. Chin. Med. J. 2015, 128, 1391–1398. [Google Scholar] [CrossRef]
- Aguilar-Navarro, S.G.; Gonzalez-Aparicio, I.I.; Avila-Funes, J.A.; Juárez-Cedillo, T.; Tusié-Luna, T.; Mimenza-Alvarado, A.J. Association Between ApoE ε4 Carrier Status and Cardiovascular Risk Factors on Mild Cognitive Impairment Among Mexican Older Adults. Brain Sci. 2021, 11, 68. [Google Scholar] [CrossRef]
- Egert, S.; Rimbach, G.; Huebbe, P. ApoE genotype: From geographic distribution to function and responsiveness to dietary factors. Proc. Nutr. Soc. 2012, 71, 410–424. [Google Scholar] [CrossRef]
- Gan, C.; Zhang, Y.; Zhang, X.; Huang, Q.; Guo, X. Association of Apolipoprotein E Gene Polymorphism with Type 2 Diabetic Nephropathy in the Southern Chinese Population. Int. J. Gen. Med. 2023, 16, 5549–5558. [Google Scholar] [CrossRef]
- Han, W.; Xiong, N.; Zhong, R.; Pan, Z. E2/E3 and E3/E4 Genotypes of the Apolipoprotein E are Associated with Higher Risk of Diabetes Mellitus in Patients with Hypertension. Int. J. Gen. Med. 2023, 16, 5579–5586. [Google Scholar] [CrossRef]
- Topriceanu, C.-C.; Shah, M.; Webber, M.; Chan, F.; Shiwani, H.; Richards, M.; Schott, J.; Chaturvedi, N.; Moon, J.C.; Hughes, A.D.; et al. APOE ε4 carriage associates with improved myocardial performance from adolescence to older age. BMC Cardiovasc. Disord. 2024, 24, 172. [Google Scholar] [CrossRef]
- Abrego-Guandique, D.M.; Saraceno, G.F.; Cannataro, R.; Manzzo de Burnside, M.; Caroleo, M.C.; Cione, E. Apolipoprotein E and Alzheimer’s Disease in Italian Population: Systematic Review and Meta-Analysis. Brain Sci. 2024, 14, 908. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus—An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.W.; Shi, J.K.; Li, Y.; Yang, Y.; Ren, S.P. Association Between ApoE Polymorphism and Type 2 Diabetes: A Meta-Analysis of 59 Studies. Biomed. Environ. Sci. 2019, 32, 823–838. [Google Scholar] [CrossRef]
- Nemukula, M.; Mkhwanazi, S.; Mapheto, T.J.; Malaisamy, A.K.; Bhavesh, N.S.; Majane, O.H.; Gololo, S.S. The Magnitude of Dyslipidemia and Factors Associated with Elevated LDL-C Among Black South Africans with Type 2 Diabetes Mellitus at a Tertiary Hospital. Obesities 2025, 5, 70. [Google Scholar] [CrossRef]
- Oruganti, H.; Sridevi, C.; Geeta Priyadarsini, A.; Kumar, S.; Deb, T. Lipoprotein(a), Remnant Cholesterol and Non-HDL-C in Women—Is it Different. Indian J. Cardiovasc. Dis. Women 2025, 10, 287–293. [Google Scholar] [CrossRef]
- Nemukula, M.; Mogale, M.A.; Mkhondo, H.B.; Bekker, L. Association of Carboxyhemoglobin Levels with Peripheral Arterial Disease in Chronic Smokers Managed at Dr. George Mukhari Academic Hospital. Int. J. Environ. Res. Public Health 2020, 17, 5581. [Google Scholar] [CrossRef] [PubMed]
- Pirraglia, E.; Glodzik, L.; Shao, Y. Lower mortality risk in APOE4 carriers with normal cognitive ageing. Sci. Rep. 2023, 13, 15089. [Google Scholar] [CrossRef]
- Harerimana, N.V.; Goate, A.M.; Bowles, K.R. The influence of 17q21.31 and APOE genetic ancestry on neurodegenerative disease risk. Front. Aging Neurosci. 2022, 14, 1021918. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Tang, Y.; Zhang, S.; Zhuang, Z.; Ni, Q. Rising tide: The growing global burden and inequalities of early-onset type 2 diabetes among youths aged 15–34 years (1990–2021). Diabetol. Metab. Syndr. 2025, 17, 103. [Google Scholar] [CrossRef] [PubMed]
- Asamoah, E.A.; Obirikorang, C.; Acheampong, E.; Annani-Akollor, M.E.; Laing, E.F.; Owiredu, E.-W.; Anto, E.O. Heritability and Genetics of Type 2 Diabetes Mellitus in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2020, 2020, 3198671. [Google Scholar] [CrossRef]
- Soremekun, O.; Karhunen, V.; He, Y.; Rajasundaram, S.; Liu, B.; Gkatzionis, A.; Soremekun, C.; Udosen, B.; Musa, H.; Silva, S.; et al. Lipid traits and type 2 diabetes risk in African ancestry individuals: A Mendelian Randomization study. EBioMedicine 2022, 78, 103953. [Google Scholar] [CrossRef]
- Van Giau, V.; Bagyinszky, E.; An, S.S.; Kim, S. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr. Dis. Treat. 2015, 11, 1723–1737. [Google Scholar] [CrossRef] [PubMed]
- Urrunaga, N.; Montoya-Medina, J.E.; Miranda, J.J.; Moscoso-Porras, M.; Cárdenas, M.K.; Diez-Canseco, F.; Gilman, R.H.; Bernabe-Ortiz, A. Attitudes, health lifestyle behaviors and cardiometabolic risk factors among relatives of individuals with type 2 diabetes mellitus. Prim. Care Diabetes 2021, 15, 101–105. [Google Scholar] [CrossRef]
- Jareebi, M.A.; Gosadi, I.M. Interplay of Modifiable and Non-Modifiable Risk Factors for Diabetes Mellitus in Saudi Adults. Diagnostics 2025, 15, 2451. [Google Scholar] [CrossRef]
- Issaka, A.; Cameron, A.J.; Paradies, Y.; Bosu, W.K.; Houehanou, Y.C.N.; Kiwallo, J.B.; Wesseh, C.S.; Houinato, D.S.; Nazoum, D.J.P.; Stevenson, C. Effect of age and sex on the associations between potential modifiable risk factors and both type 2 diabetes and impaired fasting glycaemia among West African adults. BMC Public Health 2022, 22, 1211. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, P.K.; Lee, H.; Steinhauser, M.L. Aging Is a Powerful Risk Factor for Type 2 Diabetes Mellitus Independent of Body Mass Index. Gerontology 2020, 66, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Leutner, M.; Harreiter, J. Sex differences in type 2 diabetes. Diabetologia 2023, 66, 986–1002, Correction in Diabetologia 2023, 66, 1165. https://doi.org/10.1007/s00125-023-05913-8. [Google Scholar] [CrossRef]
- Młynarska, E.; Czarnik, W.; Dzieża, N.; Jędraszak, W.; Majchrowicz, G.; Prusinowski, F.; Stabrawa, M.; Rysz, J.; Franczyk, B. Type 2 Diabetes Mellitus: New Pathogenetic Mechanisms, Treatment and the Most Important Complications. Int. J. Mol. Sci. 2025, 26, 1094. [Google Scholar] [CrossRef]
- Rata Mohan, D.S.; Jawahir, S.; Manual, A.; Abdul Mutalib, N.E.; Mohd Noh, S.N.; Ab Rahim, I.; Ab Hamid, J.; Amer Nordin, A. Gender differences in health-seeking behaviour: Insights from the National Health and Morbidity Survey 2019. BMC Health Serv. Res. 2025, 25, 900. [Google Scholar] [CrossRef]
- Otufowora, A.; Liu, Y.; Young, H.; Egan, K.L.; Varma, D.S.; Striley, C.W.; Cottler, L.B. Sex Differences in Willingness to Participate in Research Based on Study Risk Level Among a Community Sample of African Americans in North Central Florida. J. Immigr. Minor. Health 2021, 23, 19–25. [Google Scholar] [CrossRef]
- Seo, W.; Jung, S.Y.; Lee, K.; Bae, W.K.; Han, J.S.; Lee, H.; Kim, J.S.; Koo, H.Y.; Lee, S.Y.; Lee, K. Effect of smoking cessation on new-onset diabetes mellitus in dyslipidemic individuals: A population-based cohort study. Tob. Induc. Dis. 2025, 23, 1–13. [Google Scholar] [CrossRef]
- Walicka, M.; Krysiński, A.; La Rosa, G.R.M.; Sun, A.; Campagna, D.; Di Ciaula, A.; Dugal, T.; Kengne, A.; Le Dinh, P.; Misra, A.; et al. Influence of quitting smoking on diabetes-related complications: A scoping review with a systematic search strategy. Diabetes Metab. Syndr. Clin. Res. Rev. 2024, 18, 103044. [Google Scholar] [CrossRef]
- Paz-Graniel, I.; Kose, J.; Duquenne, P.; Babio, N.; Salas-Salvadó, J.; Hercberg, S.; Galan, P.; Touvier, M.; Fezeu, L.K.; Andreeva, V.A. Alcohol, Smoking, and Their Synergy as Risk Factors for Incident Type 2 Diabetes. Am. J. Prev. Med. 2025, 69, 108011. [Google Scholar] [CrossRef]
- Driva, S.; Korkontzelou, A.; Tonstad, S.; Tentolouris, N.; Litsiou, E.; Vasileiou, V.; Vassiliou, A.G.; Saltagianni, V.; Katsaounou, P. Metabolic Changes Following Smoking Cessation in Patients with Type 2 Diabetes Mellitus. Biomedicines 2024, 12, 1882. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Signal Transduct. Target. Ther. 2024, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Obsa, M.S.; Ataro, G.; Awoke, N.; Jemal, B.; Tilahun, T.; Ayalew, N.; Woldegeorgis, B.Z.; Azeze, G.A.; Haji, Y. Determinants of Dyslipidemia in Africa: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 8, 778891. [Google Scholar] [CrossRef]
- Oguejiofor, O.; Onwukwe, C.; Odenigbo, C. Dyslipidemia in Nigeria: Prevalence and pattern. Ann. Afr. Med. 2012, 11, 197. [Google Scholar] [CrossRef]
- Borén, J.; Öörni, K.; Catapano, A.L. The link between diabetes and cardiovascular disease. Atherosclerosis 2024, 394, 117607. [Google Scholar] [CrossRef]
- Khalil, Y.A.; Rabès, J.-P.; Boileau, C.; Varret, M. APOE gene variants in primary dyslipidemia. Atherosclerosis 2021, 328, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Régy, M.; Dugravot, A.; Sabia, S.; Helmer, C.; Tzourio, C.; Hanseeuw, B.; Singh-Manoux, A.; Dumurgier, J. The role of dementia in the association between APOE4 and all-cause mortality: Pooled analyses of two population-based cohort studies. Lancet Healthy Longev. 2024, 5, e422–e430. [Google Scholar] [CrossRef]
- Rajič Bumber, J.; Rački, V.; Mežnarić, S.; Pelčić, G.; Mršić-Pelčić, J. Clinical Significance of APOE4 Genotyping: Potential for Personalized Therapy and Early Diagnosis of Alzheimer’s Disease. J. Clin. Med. 2025, 14, 6047. [Google Scholar] [CrossRef]
- Poblano, J.; Castillo-Tobías, I.; Berlanga, L.; Tamayo-Ordoñez, M.C.; del Carmen Rodríguez-Salazar, M.; Silva-Belmares, S.Y.; Aguayo-Morales, H.; Cobos-Puc, L.E. Drugs targeting APOE4 that regulate beta-amyloid aggregation in the brain: Therapeutic potential for Alzheimer’s disease. Basic Clin. Pharmacol. Toxicol. 2024, 135, 237–249. [Google Scholar] [CrossRef]
- Bressa, C.; González-Soltero, R.; Tabone, M.; Clemente-Velasco, S.; Gálvez, B.G.; Larrosa, M. Exploring the relationship between APOEε4 allele and gut microbiota composition and function in healthy adults. AMB Express 2025, 15, 77. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, R.O.; Yaria, J.; Ojagbemi, A.; Guerchet, M.; Okubadejo, N.; Njamnshi, A.K.; Sarfo, F.S.; Akpalu, A.; Ogbole, G.; Ayantayo, T.; et al. Dementia in Africa: Current evidence, knowledge gaps, and future directions. Alzheimer’s Dement. 2022, 18, 790–809. [Google Scholar] [CrossRef] [PubMed]
- Soo, C.C.; Farrell, M.T.; Tollman, S.; Berkman, L.; Nebel, A.; Ramsay, M. Apolipoprotein E Genetic Variation and Its Association with Cognitive Function in Rural-Dwelling Older South Africans. Front. Genet. 2021, 12, 689756, Correction in Front. Genet. 2022, 13, 795349. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Gao, Y.; Li, W.; Shi, B. Association of ApoE Gene Polymorphisms with Cardio-cerebrovascular Complications in Type 2 Diabetes Mellitus in the Chinese Population. Res. Sq. 2020, preprint. Available online: https://www.researchsquare.com/article/rs-38669/v3 (accessed on 23 November 2025). [CrossRef]
- Santos-Ferreira, C.; Baptista, R.; Oliveira-Santos, M.; Costa, R.; Pereira Moura, J.; Gonçalves, L. Apolipoprotein E2 Genotype Is Associated with a 2-Fold Increase in the Incidence of Type 2 Diabetes Mellitus: Results from a Long-Term Observational Study. J. Lipids 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Lozano, S.; Padilla, V.; Avila, M.L.; Gil, M.; Maestre, G.; Wang, K.; Xu, C. APOE Gene Associated with Cholesterol-Related Traits in the Hispanic Population. Genes 2021, 12, 1768. [Google Scholar] [CrossRef]
- Chaudhary, R.; Likidlilid, A.; Peerapatdit, T.; Tresukosol, D.; Srisuma, S.; Ratanamaneechat, S.; Sriratanasathavorn, C. Apolipoprotein E gene polymorphism: Effects on plasma lipids and risk of type 2 diabetes and coronary artery disease. Cardiovasc. Diabetol. 2012, 11, 36. [Google Scholar] [CrossRef]
- Lwere, K.; Muwonge, H.; Sendagire, H.; Sajatovic, M.; Gumukiriza-Onoria, J.L.; Buwembo, D.; Buwembo, W.; Nassanga, R.; Nakimbugwe, R.; Nazziwa, A.; et al. Apolipoprotein E (APOE) and Alzheimer’s disease risk in a Ugandan population: A pilot case-control study. Medicine 2025, 104, e42407. [Google Scholar] [CrossRef]
- Donkor, D.M.; Marfo, E.; Bockarie, A.; Tettevi, E.J.; Antwi, M.H.; Dogah, J.; Osei, G.N.; Simpong, D.L. Genetic and environmental risk factors for dementia in African adults: A systematic review. Alzheimer’s Dement. 2025, 21, e70220. [Google Scholar] [CrossRef]
- Luciani, L.; Pedrelli, M.; Parini, P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024, 394, 117545. [Google Scholar] [CrossRef] [PubMed]
- Anthopoulos, P.G.; Hamodrakas, S.J.; Bagos, P.G. Apolipoprotein E polymorphisms and type 2 diabetes: A meta-analysis of 30 studies including 5423 cases and 8197 controls. Mol. Genet. Metab. 2010, 100, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Aldaco, K.; Roman, S.; Torres-Reyes, L.A.; Panduro, A. Association of Apolipoprotein e2 Allele with Insulin Resistance and Risk of Type 2 Diabetes Mellitus Among an Admixed Population of Mexico. Diabetes Metab. Syndr. Obes. 2020, 13, 3527–3534. [Google Scholar] [CrossRef]
- El-Lebedy, D.; Raslan, H.M.; Mohammed, A.M. Apolipoprotein E gene polymorphism and risk of type 2 diabetes and cardiovascular disease. Cardiovasc. Diabetol. 2016, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wen, S.; Huan, L.; Xiong, L.; Zhong, B.; Wang, P. Association of ApoE gene polymorphisms with serum lipid levels and the risk of type 2 diabetes mellitus in the Chinese Han population of central China. PeerJ 2023, 11, e15226. [Google Scholar] [CrossRef]


| Primers | RS429358 | RS7412 |
|---|---|---|
| Forward | ACGTTGGATGGCTGGGCGCGGACATGGG | ACGTTGGATGTCCTCCGCGATGCCGATGA |
| Reverse | ACGTTGGATGGAGCATGGCCTGCACCTCG | ACGTTGGATGGCCCCGGCCTGGTACACTG |
| Extension | GCGGACATGGAGGACGTG | CCGATGACCTGCAGAAG |
| Variable | Controls (n = 42) | T2DM (n = 65) | p-Value |
|---|---|---|---|
| Age (years) | 36.10 ± 13.66 | 60.17 ± 13.59 | <0.001 |
| Gender | |||
| Male n (%) | 12 (28.57) | 17 (26.15) | 0.78 |
| Female n (%) | 30 (71.43) | 48 (73.85) | |
| Smoking (%) | 18 (42.86) | 13 (20.00) | 0.01 |
| Alcohol consumption (%) | 36 (85.71) | 12 (18.46) | <0.001 |
| Family history (%) | 24 (57.14) | 44 (67.69) | 0.27 |
| Physical inactivity (%) | 14 (33.33) | 37 (56.92) | 0.02 |
| Duration of diabetes | - | 12.42 ± 8.87 | - |
| Glycaemic Control | |||
| ≤7 HbA1c n (%) | 17 (26.20) | - | |
| ≥7 HbA1c n (%) | 48 (73.80) | ||
| Dyslipidaemia n (%) | 32 (76.2) | 52 (80.0) | 0.64 |
| HbA1c (%) | 5.08 ± 0.39 | 9.03 ± 2.46 | <0.001 |
| TC (mmol/L) | 3.76 ± 1.03 | 3.81 ± 1.19 | 0.82 |
| TG (mmol/L) | 1.45 ± 0.76 | 1.66 ± 0.94 | 0.23 |
| HDL-C (mmol/L) | 1.37 ± 0.27 | 1.26 ± 0.38 | 0.11 |
| LDL-C (mmol/L) | 2.64 ± 0.98 | 2.41 ± 0.96 | 0.23 |
| Non-HDL-C (mmol/L) | 2.39 ± 1.08 | 2.56 ± 1.16 | 0.47 |
| ApoB-100 (mmol/L) | 2.14 ± 0.73 | 2.01 ± 0.72 | 0.37 |
| VLDL-C (mmol/L) | 0.66 ± 0.35 | 0.75 ± 0.43 | 0.23 |
| Nitric Oxide (µmol/L) | 30.64 ± 8.52 | 21.97 ± 9.25 | <0.001 |
| hs-CRP | 0.91 ± 0.21 | 1.34 ± 0.51 | <0.001 |
| Variables | Control (n = 42) | T2DM (n = 64) | χ2 | p-Value |
|---|---|---|---|---|
| Genotype, n (%) | ||||
| E2/E2 | 2 (4.76%) | 2 (3.12%) | 0.187 | 0.665 |
| E2/E3 | 2 (4.76%) | 9 (14.06%) | 2.359 | 0.125 |
| E2/E4 | 8 (19.05%) | 7 (10.94%) | 1.373 | 0.241 |
| E3/E3 | 14 (33.33%) | 23 (35.94%) | 0.076 | 0.783 |
| E3/E4 | 14 (33.33%) | 16 (25.00%) | 0.868 | 0.352 |
| E4/E4 | 2 (4.76%) | 7 (10.94%) | 1.245 | 0.265 |
| Allele, n (%) | ||||
| E2 | 14 (16.67%) | 20 (15.62%) | 0.041 | 0.84 |
| E3 | 44 (52.38%) | 71 (55.47%) | 0.195 | 0.659 |
| E4 | 26 (30.95%) | 37 (28.91%) | 0.102 | 0.75 |
| HWE | χ2 (3) = 9.137 | 0.0275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mkhwanazi, S.; Mapheto, T.J.; Mkhondo, H.B.; Majane, O.H.; Gololo, S.S.; Nemukula, M. Distribution of ApoE Gene Polymorphism and Its Association with the Lipid Profile Among Type 2 Diabetes Mellitus Black South Africans. Diabetology 2026, 7, 8. https://doi.org/10.3390/diabetology7010008
Mkhwanazi S, Mapheto TJ, Mkhondo HB, Majane OH, Gololo SS, Nemukula M. Distribution of ApoE Gene Polymorphism and Its Association with the Lipid Profile Among Type 2 Diabetes Mellitus Black South Africans. Diabetology. 2026; 7(1):8. https://doi.org/10.3390/diabetology7010008
Chicago/Turabian StyleMkhwanazi, Siphesihle, Tumelo Jessica Mapheto, Honey Bridget Mkhondo, Olebogeng Harold Majane, Sechene Stanley Gololo, and Mashudu Nemukula. 2026. "Distribution of ApoE Gene Polymorphism and Its Association with the Lipid Profile Among Type 2 Diabetes Mellitus Black South Africans" Diabetology 7, no. 1: 8. https://doi.org/10.3390/diabetology7010008
APA StyleMkhwanazi, S., Mapheto, T. J., Mkhondo, H. B., Majane, O. H., Gololo, S. S., & Nemukula, M. (2026). Distribution of ApoE Gene Polymorphism and Its Association with the Lipid Profile Among Type 2 Diabetes Mellitus Black South Africans. Diabetology, 7(1), 8. https://doi.org/10.3390/diabetology7010008

