Camel Milk-Based Fermented Product “Inullact-Fito” Ameliorates Metabolic and Immunological Disturbances in Alloxan-Induced Diabetes
Abstract
1. Introduction
- Achieving a new qualitative level in the production and use of probiotics, symbiotics, and prebiotics;
- Developing biotechnologies and nanotechnologies for FNPs;
2. Materials and Methods
2.1. Materials
2.1.1. Preparation and Ingredients for “Inullact-Fito”
2.1.2. Design of Study Groups
- -
- Group 1—intact animals (n = 8);
- -
- Group 2—control pathology: a model of diabetes without treatment (n = 14);
- -
- Group 3—animals with diabetes that received Inullact-Fito at an experimental therapeutic dose of 500 mg/kg once per day throughout the experiment (n = 12);
- -
- Group 4—animals receiving metformin at a dose of 100 mg/kg (n = 12).
2.2. Methods
2.2.1. Diabetes Model Induction and Laboratory Analysis Techniques
2.2.2. Assessment of T-Cell Subpopulations and Immunoglobulin Levels in Alloxan-Induced Diabetes
2.2.3. Histostructure Visualization
2.3. Statistical Analysis
3. Results
3.1. Effects of Inullact-Fito on Biochemical Parameters in Alloxan-Induced Diabetes
3.2. Lipid Peroxidation and Antioxidant Activity
3.3. Immunological Parameters
3.4. Histological Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LPO | lipid peroxidation |
| DM | diabetes mellitus |
| ISO/AOAC | International Organization for Standardization/Association of Official Analytical Chemists |
| 3R | replacement, reduction, refinement |
| MDA | malondialdehyde |
| GHz | gigahertz |
| ALT | alanine aminotransferase |
| AST | aspartate aminotransferase |
| FNPs | functional nanomaterials and polymers |
| mmol/L | millimoles per liter |
| mE/L | milli-enzyme units per liter |
| μIU/mL | micro–international units per milliliter |
| nmol/g | nanomoles per gram of tissue |
| mcat/L | microkatal per liter |
| IgM | immunoglobulin M |
| IgG | immunoglobulin G |
| CD4+ | T-helper lymphocytes |
| CD8+ | cytotoxic/suppressor T lymphocytes |
| ×109/L | cells per liter |
| GABA | gamma-aminobutyric acid |
| ELISA | enzyme-linked immunosorbent assay |
| TBARS | thiobarbituric acid reactive substances |
| ANOVA | analysis of variance |
References
- Abdelazez, A.; Alshehry, G.; Algarni, E.; Al Jumayi, H.; Abdel-Motaal, H.; Meng, X.-C. Postbiotic Gamma-Aminobutyric Acid and Camel Milk Intervention as Innovative Trends Against Hyperglycemia and Hyperlipidemia in Streptozotocin-Induced C57BL/6J Diabetic Mice. Front. Microbiol. 2022, 13, 943930. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Al-Awar, A.; Kupai, K.; Veszelka, M.; Szűcs, G.; Attieh, Z.; Murlasits, Z.; Török, S.; Pósa, A.; Varga, C. Experimental Diabetes Mellitus in Different Animal Models. J. Diabetes Res. 2016, 2016, 9051426. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Lifestyle management: Standards of medical care in Diabetesd 2018. Diabetes Care 2018, 41, S38–S50. [Google Scholar] [CrossRef]
- Arain, M.A.; Rasheed, S.; Jaweria, A.; Khaskheli, G.B.; Barham, G.S.; Ahmed, S. A Review on Processing Opportunities for the Development of Camel Dairy Products. Food Sci. Anim. Resour. 2023, 43, 383–401. [Google Scholar] [CrossRef]
- Arihara, K. Strategies for designing novel functional meat products. Meat Sci. 2006, 74, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.T.; Huang, C.C.; Liu, I.M.; Tzeng, T.F.; Chih, J. Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes 2006, 55, 819–825. [Google Scholar] [CrossRef]
- Colombo, M.; Nero, L.A.; Todorov, S.D. Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. Braz. J. Microbiol. 2020, 51, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Elsner, M.; Gurgul-Convey, E.; Lenzen, S. Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells. Free Radic. Biol. Med. 2006, 41, 825–834. [Google Scholar] [CrossRef]
- Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Adeosun, A.M.; Akinloye, O.A. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 2017, 53, 365–374. [Google Scholar] [CrossRef]
- International, A. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- ISO-6887-1-REVISE; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination (Second Edition). International Organization for Standardization: London, UK, 2017.
- ISO-16140-3-2021; Protocol for the Verification of Reference Methods and Validated Alternative Methods in a Single Laboratory (First Edition). International Organization for Standardization: London, UK, 2021.
- Klyuchnikova, D.; Ismailova, A.; Kuznetsova, A.; Tarasova, A. Functional dairy products enriched with non-traditional plant components. Int. Res. J. 2016, 6, 72–74. (In Russian) [Google Scholar] [CrossRef]
- Linares, D.M.; Gómez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Front. Microbiol. 2017, 8, 846. [Google Scholar] [CrossRef] [PubMed]
- Lisitsyn, A.B.; Chernukha, I.M.; Lunina, O.I. Modern trends in the development of the functional food industry in russia and abroad. Theory Pract. Meat Process. 2018, 3, 29–45. (In Russian) [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Zeng, Z.; Liu, M.; Wang, M. The antidiabetic effects of cysteinyl metformin, a newly synthesized agent, in alloxan- and streptozocin-induced diabetic rats. Chem. Biol. Interact. 2008, 173, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Lovic, D.; Piperidou, A.; Zografou, I.; Grassos, H.; Pittaras, A.; Manolis, A. The Growing Epidemic of Diabetes Mellitus. Curr. Vasc. Pharmacol. 2020, 18, 104–109. [Google Scholar] [CrossRef]
- Mahala, N.; Mittal, A.; Lal, M.; Dubey, U.S. Isolation and characterization of bioactive lactoferrin from camel milk by novel pH-dependent method for large scale production. Biotechnol. Rep. 2022, 36, e00765. [Google Scholar] [CrossRef]
- Mansour, A.A.; Nassan, M.A.; Saleh, O.M.; Soliman, M.M. Protective Effect of Camel Milk As Anti-Diabetic Supplement: Biochemical, Molecular and Immunohistochemical Study. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 108–119. [Google Scholar] [CrossRef]
- Maraschin, J. Classification of Diabetes. Adv. Exp. Med. Biol. 2013, 771, 36–40. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019, 11, 1189. [Google Scholar] [CrossRef]
- Nakamura, U.; Iwase, M.; Uchizono, Y.; Sonoki, K.; Sasaki, N.; Imoto, H.; Goto, D.; Iida, M. Rapid intracellular acidification and cell death by H2O2 and alloxan in pancreatic β cells. Free Radic. Biol. Med. 2006, 40, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Nuskabayeva, G.; Saruarov, Y.; Sadykova, K.; Zhunissova, M.; Nurdinov, N.; Babayeva, K.; Li, M.; Zhailkhan, A.; Kabibulatova, A.; Sarria-Santamera, A. Identifying Cardio-Metabolic Subtypes of Prediabetes Using Latent Class Analysis. Med. Sci. 2025, 13, 243. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J. Diabetes Res. 2020, 2020, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Qamar, F.; Sultana, S.; Sharma, M. Animal models for induction of diabetes and its complications. Diabetes Metab. Disord. 2023, 22, 1021–1028. [Google Scholar] [CrossRef]
- Queiroz, L.; Assis, J.; Guimarães, J.; Sousa, E.; Milhomem, A.; Sunahara, K.; Sá-Nunes, A.; Martins, J. Lymphocytes: The Effects of Alloxan and Streptozotocin on Immune Cells in Type 1 Induced Diabetes. Mediat. Inflamm. 2021, 2021, 9940009. [Google Scholar] [CrossRef]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Shi, G.; Li, Z.; Zheng, J.; Chen, J.; Han, X.; Wu, J.; Li, G.; Chang, Q.; Li, Y.; Yu, J. Diabetes associated with male reproductive system damages: Onset of presentation, pathophysiological mechanisms and drug intervention. Biomed. Pharmacother. 2017, 90, 562–574. [Google Scholar] [CrossRef]
- Shori, A.B. Camel milk and its fermented products as a source of potential probiotic strains and novel food cultures: A mini review. Pharma Nutr. 2017, 5, 84–88. [Google Scholar] [CrossRef]
- Song, M.K. Diabetes Mellitus and the Importance of Self-care. J. Cardiovasc. Nurs. 2010, 25, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.; Hu, F. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Zhumabayev, U.A.; Kydyralieva, M.; Ospanova, E.; Naimanbayeva, R.; Duysembayeva, B. Specialized food product for diabetic diet “Inullact-Fito”. Food Sci. Technol. 2022, 42, e07621. [Google Scholar] [CrossRef]


| Indicators | Animal Groups (n = 46) | |||
|---|---|---|---|---|
| Intact Control | Control Pathology | “Inullact-Fito” | Metformin | |
| 7th day | ||||
| Glucose, mM/L | 6.01 ± 0.33 | 9.63 ± 0.10 | 6.81 ± 0.58 * | 7.52 ± 0.09 * |
| Insulin, μIU/mL | 2.94 ± 0.18 | 0.89 ± 0.20 | 1.35 ± 0.25 * | 1.10 ± 0.10 * |
| ALT, mE/L | 131.3 ± 42.5 | 191.1 ± 79.2 | 162.4 ± 12.6 * | 170.0 ± 30.2 * |
| AST, mE/L | 618.5 ± 179.0 | 1076.6 ± 446.5 | 915.1 ± 102.3 * | 936.6 ± 93.2 * |
| Cholesterol, mM/L | 0.63 ± 0.03 | 2.73 ± 0.14 | 1.43 ± 0.16 * | 1.45 ± 0.06 * |
| Urea, mM/L | 4.43 ± 0.07 | 12.63 ± 1.09 | 7.91 ± 0.65 * | 6.92 ± 0.68 * |
| Creatinine, mM/L | 73.15 ± 1.22 | 173.27 ± 9.50 | 129.02 ± 5.20 * | 113.17 ± 7.45 * |
| 14th day | ||||
| Glucose, mM/L | 6.01 ± 0.33 | 12.40 ± 0.14 | 8.06 ± 0.08 * | 9.92 ± 0.09 * |
| Insulin, μIU/mL | 2.94 ± 0.18 | 0.68 ± 0.28 | 1.70 ± 0.35 * | 1.35 ± 0.15 * |
| ALT, mE/L | 131.3 ± 42.5 | 175.2 ± 69.6 | 142.9 ± 11.2 * | 154.7 ± 29.3 * |
| AST, mE/L | 618.5 ± 179.0 | 966.0 ± 444.6 | 814.4 ± 98.6 * | 852.3 ± 86.1 * |
| Cholesterol, mM/L | 0.63 ± 0.03 | 2.36 ± 0.25 | 1.38 ± 0.11 * | 1.30 ± 0.2 * |
| Urea, mM/L | 4.43 ± 0.07 | 10.65 ± 1.7 | 5.42 ± 0.7 * | 4.53 ± 0.36 * |
| Creatinine, mM/L | 73.15 ± 1.22 | 149.35 ± 7.60 | 86.36 ± 4.83 * | 92.6 ± 5.3 * |
| 28th day | ||||
| Glucose, mM/L | 6.48 ± 0.64 | 21.9 ± 0.22 | 9.85 ± 0.10 * | 13.9 ± 0.14 * |
| Insulin, μIU/mL | 2.96 ± 0.16 | 0.48 ± 0.08 | 2.01 ± 0.10 * | 1.60 ± 0.40 * |
| ALT, mE/L | 131.3 ± 42.5 | 171.3 ± 100.3 | 132.8 ± 9.6 * | 143.8 ± 22.9 * |
| AST, mE/L | 618.5 ± 179.0 | 778.6 ± 375.9 | 757.3 ± 80.6 * | 770.1 ± 92.3 * |
| Cholesterol, mM/L | 0.63 ± 0.03 | 1.99 ± 0.67 | 1.13 ± 0.08 * | 1.15 ± 0.13 * |
| Urea, mM/L | 4.43 ± 0.07 | 8.90 ± 0.53 | 3.18 ± 0.18 * | 3.56 ± 0.15 * |
| Creatinine, mM/L | 73.15 ± 1.22 | 130.16 ± 8.50 | 77.60 ± 4.12 * | 83.80 ± 4.50 * |
| Indicators | Animal Groups (n = 46) | |||
|---|---|---|---|---|
| Intact Control | Control Pathology | “Inullact-Fito” | Metformin | |
| 7th day | ||||
| MDA in blood serum, μmol/mL | 2.35 ± 0.10 | 6.72 ± 0.33 | 4.52 ± 0.52 * | 5.72 ± 0.48 * |
| MDA in the pancreas, nmol/g | 5.53 ± 0.60 | 8.62 ± 0.80 | 6.00 ± 0.60 * | 7.20 ± 0.20 * |
| Catalase, mcat/L | 21.32 ± 2.01 | 14.00 ± 1.32 | 18.2 ± 1.81 * | 16.52 ± 1.63 * |
| 14th day | ||||
| MDA in blood serum, μmol/mL | 3.27 ± 0.15 | 10.28 ± 0.11 | 3.95 ± 0.55 * | 4.92 ± 0.65 * |
| MDA in the pancreas, nmol/g | 5.53 ± 0.60 | 9.85 ± 0.10 | 8.00 ± 0.80 * | 8.85 ± 0.90 * |
| Catalase, mcat/L | 21.32 ± 2.01 | 12.01 ± 0.80 | 18.62 ± 1.81 * | 15.41 ± 1.54 * |
| 28th day | ||||
| MDA in blood serum, μmol/mL | 3.85 ± 0.40 | 15.4 ± 0.16 | 4.86 ± 0.50 * | 7.47 ± 0.75 * |
| MDA in the pancreas, nmol/g | 5.55 ± 0.60 | 8.90 ± 0.90 | 6.02 ± 0.60 * | 7.80 ± 0.80 * |
| Catalase, mcat/L | 21.35 ± 2.01 | 9.6 ± 0.85 | 17.08 ± 0.2 * | 13.2 ± 0.13 * |
| Experiment Day | Group of Animals | CD4+, ×09/L | CD8+, ×109/L | IgM, g/L | IgG, g/L |
|---|---|---|---|---|---|
| 7th day | Intact | 1.71 ± 0.21 | 1.02 ± 0.20 | 0.50 ± 0.01 | 10.05 ± 0.11 |
| Control (Alloxan) | 2.29 ± 0.23 * | 0.69 ± 0.71 * | 0.72 ± 0.08 * | 12.51 ± 0.13 * | |
| Alloxan + Metformin | 2.06 ± 0.22 * | 0.76 ± 0.07 * | 0.68 ± 0.07 * | 11.75 ± 0.12 * | |
| Alloxan + “Inullact-Fito” | 1.95 ± 0.17 * | 0.79 ± 0.08 * | 0.64 ± 0.06 * | 10.37 ± 0.20 * | |
| 14th day | Intact | 1.71 ± 0.21 | 1.02 ± 0.20 | 0.50 ± 0.01 | 10.05 ± 0.11 |
| Control (Alloxan) | 2.13 ± 0.20 * | 0.76 ± 0.65 * | 0.95 ± 0.01 * | 12.06 ± 0.12 * | |
| Alloxan + Metformin | 1.81 ± 0.19 * | 0.84 ± 0.08 * | 0.71 ± 0.07 * | 10.85 ± 0.11 * | |
| Alloxan + “Inullact-Fito” | 1.74 ± 0.16 * | 0.87 ± 0.10 * | 0.61 ± 0.06 * | 10.25 ± 0.12 * | |
| 28th day | Intact | 1.71 ± 0.21 | 1.02 ± 0.20 | 0.50 ± 0.01 | 10.05 ± 0.11 |
| Control (Alloxan) | 2.04 ± 0.19 * | 0.81 ± 0.08 * | 1.10 ± 0.01 * | 12.06 ± 0.12 * | |
| Alloxan + Metformin | 1.73 ± 0.17 * | 0.97 ± 0.92 * | 0.77 ± 0.08 * | 10.80 ± 0.11 * | |
| Alloxan + “Inullact-Fito” | 1.53 ± 0.16 * | 1.05 ± 0.12 * | 0.57 ± 0.05 * | 9.85 ± 0.25 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhumabayev, U.; Nurdinov, N.; Ishigov, I.; Pernebekova, R.; Saruarov, Y.; Baizakova, B.; Skenderova, A.; Ashimbekova, B.; Tasenova, P.; Tastemirova, A.; et al. Camel Milk-Based Fermented Product “Inullact-Fito” Ameliorates Metabolic and Immunological Disturbances in Alloxan-Induced Diabetes. Diabetology 2026, 7, 20. https://doi.org/10.3390/diabetology7010020
Zhumabayev U, Nurdinov N, Ishigov I, Pernebekova R, Saruarov Y, Baizakova B, Skenderova A, Ashimbekova B, Tasenova P, Tastemirova A, et al. Camel Milk-Based Fermented Product “Inullact-Fito” Ameliorates Metabolic and Immunological Disturbances in Alloxan-Induced Diabetes. Diabetology. 2026; 7(1):20. https://doi.org/10.3390/diabetology7010020
Chicago/Turabian StyleZhumabayev, Ualikhan, Nursultan Nurdinov, Ibragim Ishigov, Rakhat Pernebekova, Yerbolat Saruarov, Bakhyt Baizakova, Akbota Skenderova, Bagdat Ashimbekova, Perizat Tasenova, Arailym Tastemirova, and et al. 2026. "Camel Milk-Based Fermented Product “Inullact-Fito” Ameliorates Metabolic and Immunological Disturbances in Alloxan-Induced Diabetes" Diabetology 7, no. 1: 20. https://doi.org/10.3390/diabetology7010020
APA StyleZhumabayev, U., Nurdinov, N., Ishigov, I., Pernebekova, R., Saruarov, Y., Baizakova, B., Skenderova, A., Ashimbekova, B., Tasenova, P., Tastemirova, A., Baimyrza, K., & Kozhambekova, E. (2026). Camel Milk-Based Fermented Product “Inullact-Fito” Ameliorates Metabolic and Immunological Disturbances in Alloxan-Induced Diabetes. Diabetology, 7(1), 20. https://doi.org/10.3390/diabetology7010020

