Inflammatory Markers Among African American Adolescents with Type 2 Diabetes Mellitus and Obesity: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Inclusion/Exclusion Criteria
2.3. Recruitment Protocol
2.4. Data Collection
2.5. Statistical Analysis
2.6. Outcomes and Variables
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| T2D | Type 2 diabetes |
| CRP | C-reactive protein |
| TNF-α | Tumor-necrosis factor-α |
| IL-6 | Interleukin-6 |
References
- American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Divers, J.; Isom, S.; Saydah, S.; Imperatore, G.; Pihoker, C.; Marcovina, S.M.; Mayer-Davis, E.J.; Hamman, R.F.; Dolan, L.; et al. Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001-2017. JAMA 2021, 326, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef]
- Lucas, R.; Parikh, S.J.; Sridhar, S.; Guo, D.-H.; Bhagatwala, J.; Dong, Y.; Caldwell, R.; Mellor, A.; Caldwell, W.; Zhu, H.; et al. Cytokine profiling of young overweight and obese female African American adults with prediabetes. Cytokine 2013, 64, 310–315. [Google Scholar] [CrossRef]
- Reinehr, T.; Karges, B.; Meissner, T.; Wiegand, S.; Stoffel-Wagner, B.; Holl, R.W.; Woelfle, J. Inflammatory Markers in Obese Adolescents with Type 2 Diabetes and Their Relationship to Hepatokines and Adipokines. J. Pediatr. 2016, 173, 131–135. [Google Scholar] [CrossRef]
- Wang, X.; Bao, W.; Liu, J.; OuYang, Y.Y.; Wang, D.; Rong, S.; Xiao, X.; Shan, Z.L.; Zhang, Y.; Yao, P.; et al. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2013, 36, 166–175. [Google Scholar] [CrossRef]
- Abell, S.K.; De Courten, B.; Boyle, J.A.; Teede, H.J. Inflammatory and Other Biomarkers: Role in Pathophysiology and Prediction of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2015, 16, 13442–13473. [Google Scholar] [CrossRef]
- Rehman, K.; Akash, M.S.H.; Liaqat, A.; Kamal, S.; Qadir, M.I.; Rasul, A. Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus. Crit. Rev. Eukaryot. Gene Expr. 2017, 27, 229–236. [Google Scholar] [CrossRef]
- Pestel, J.; Blangero, F.; Watson, J.; Pirola, L.; Eljaafari, A. Adipokines in obesity and metabolic-related-diseases. Biochimie 2023, 212, 48–59. [Google Scholar] [CrossRef]
- Akbari, M.; Hassan-Zadeh, V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology 2018, 26, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Smitka, K.; Maresova, D. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment. Prague Med. Rep. 2015, 116, 87–111. [Google Scholar] [CrossRef]
- Gungor, N.; Thompson, T.; Sutton-Tyrrell, K.; Janosky, J.; Arslanian, S. Early signs of cardiovascular disease in youth with obesity and type 2 diabetes. Diabetes Care 2005, 28, 1219–1221. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.L.; Kratz, M.; Ralston, M.M.; Reinehr, T. Changes in adipose-derived inflammatory cytokines and chemokines after successful lifestyle intervention in obese children. Metabolism 2011, 60, 445–452. [Google Scholar] [CrossRef]
- Su, S.C.; Pei, D.; Hsieh, C.-H.; Hsiao, F.-C.; Wu, C.-Z.; Hung, Y.-J. Circulating pro-inflammatory cytokines and adiponectin in young men with type 2 diabetes. Acta Diabetol. 2011, 48, 113–119. [Google Scholar] [CrossRef]
- Nadeau, K.J.; Zeitler, P.S.; Bauer, T.A.; Brown, M.S.; Dorosz, J.L.; Draznin, B.; Reusch, J.E.B.; Regensteiner, J.G. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J. Clin. Endocrinol. Metab. 2009, 94, 3687–3695. [Google Scholar] [CrossRef]
- Tanti, J.F.; Jager, J. Cellular mechanisms of insulin resistance: Role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr. Opin. Pharmacol. 2009, 9, 753–762. [Google Scholar] [CrossRef]
- Hundal, R.S.; Krssak, M.; Dufour, S.; Laurent, D.; Lebon, V.; Chandramouli, V.; Inzucchi, S.E.; Schumann, W.C.; Petersen, K.F.; Landau, B.R.; et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000, 49, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Goodman, A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N. Engl. J. Med. 1995, 333, 541–549. [Google Scholar] [CrossRef]
- Jackson, R.A.; Hawa, M.I.; Jaspan, J.B.; Sim, B.M.; DiSilvio, L.; Featherbe, D.; Kurtz, A.B. Mechanism of metformin action in non-insulin-dependent diabetes. Diabetes 1987, 36, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Gin, H.; Messerchmitt, C.; Brottier, E.; Aubertin, J. Metformin improved insulin resistance in type I, insulin-dependent, diabetic patients. Metabolism 1985, 34, 923–925. [Google Scholar] [CrossRef]
- Hother-Nielsen, O.; Schmitz, O.; Andersen, P.H.; Beck-Nielsen, H.; Pedersen, O. Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol. 1989, 120, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Saisho, Y. Metformin and Inflammation: Its Potential Beyond Glucose-lowering Effect. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Hatunic, M.; Finucane, F.; Burns, N.; Gasparro, D.; Nolan, J.J. Vascular inflammatory markers in early-onset obese and type 2 diabetes subjects before and after three months’ aerobic exercise training. Diab Vasc. Dis. Res. 2007, 4, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Karbalaee-Hasani, A.; Khadive, T.; Eskandari, M.; Shahidi, S.; Mosavi, M.; Nejadebrahimi, Z.; Khalkhali, L.; Sangdari, A.; Mohammadi, D.; Soltani, A.; et al. Effect of Metformin on Circulating Levels of Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann. Pharmacother. 2021, 55, 1096–1109. [Google Scholar] [CrossRef]
- Syed, S.U.; Cortez, J.I.; Wilson, S.J. Depression, Inflammation, and the Moderating Role of Metformin: Results From the Midlife in the United States Study and Sacramento Area Latino Study on Aging. Psychosom. Med. 2024, 86, 473–483. [Google Scholar] [CrossRef]
- Goldberg, R.B.; Temprosa, M.G.; Mather, K.J.; Orchard, T.J.; Kitabchi, A.E.; Watson, K.E.; for the Diabetes Prevention Program Research Group. Lifestyle and metformin interventions have a durable effect to lower CRP and tPA levels in the diabetes prevention program except in those who develop diabetes. Diabetes Care 2014, 37, 2253–2260. [Google Scholar] [CrossRef]
- Cameron, A.R.; Morrison, V.L.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.D.; Balfour, D.J.; Savinko, T.; Wong, A.K.; et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ. Res. 2016, 119, 652–665. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Nemati, M.; Zandvakili, R.; Jafarzadeh, A. Modulation of M1 and M2 macrophage polarization by metformin: Implications for inflammatory diseases and malignant tumors. Int. Immunopharmacol. 2025, 151, 114345. [Google Scholar] [CrossRef]
- MacEachern, T.; John-Baptiste, A.; Christie, A. The prevalence of Black/African American individuals in concussion literature: A systematic review and meta-analysis. Front. Public. Health 2024, 12, 1430428. [Google Scholar] [CrossRef]
- Ahmed, R.; de Souza, R.J.; Li, V.; Banfield, L.; Anand, S.S. Twenty years of participation of racialised groups in type 2 diabetes randomised clinical trials: A meta-epidemiological review. Diabetologia 2024, 67, 443–458. [Google Scholar] [CrossRef]
- Foster, C.A.; Barker-Kamps, M.; Goering, M.; Patki, A.; Tiwari, H.K.; Mrug, S. Epigenetic age acceleration correlates with BMI in young adults. Aging 2023, 15, 513–523. [Google Scholar] [CrossRef]
- Sunil, B.; Ashraf, A.P. Dyslipidemia in Pediatric Type 2 Diabetes Mellitus. Curr. Diab Rep. 2020, 20, 53. [Google Scholar] [CrossRef]
- Kim, G.; DeSalvo, D.; Guffey, D.; Minard, C.G.; Cephus, C.; Moodie, D.; Lyons, S. Dyslipidemia in adolescents and young adults with type 1 and type 2 diabetes: A retrospective analysis. Int. J. Pediatr. Endocrinol. 2020, 2020, 11. [Google Scholar] [CrossRef]
- Jung, M.K.; Yoo, E.G. Hypertriglyceridemia in Obese Children and Adolescents. J. Obes. Metab. Syndr. 2018, 27, 143–149. [Google Scholar] [CrossRef]
- Reinehr, T. Inflammatory markers in children and adolescents with type 2 diabetes mellitus. Clin. Chim. Acta 2019, 496, 100–107. [Google Scholar] [CrossRef]
- Marcelino Rodriguez, I.; García, J.O.; Sánchez, J.J.A.; González, D.A.; Coello, S.D.; Díaz, B.B.; Gannar, F.; Pérez, M.d.C.R.; Elosua, R.; de León, A.C. Lipid and inflammatory biomarker profiles in early insulin resistance. Acta Diabetol. 2016, 53, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Muscari, A.; Antonelli, S.; Bianchi, G.; Cavrini, G.; Dapporto, S.; Ligabue, A.; Ludovico, C.; Magalotti, D.; Poggiopollini, G.; Zoli, M.; et al. Serum C3 is a stronger inflammatory marker of insulin resistance than C-reactive protein, leukocyte count, and erythrocyte sedimentation rate: Comparison study in an elderly population. Diabetes Care 2007, 30, 2362–2368. [Google Scholar] [CrossRef]
- Natali, A.; Toschi, E.; Baldeweg, S.; Ciociaro, D.; Favilla, S.; Saccà, L.; Ferrannini, E. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes 2006, 55, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wildman, R.P.; Hamm, L.L.; Muntner, P.; Reynolds, K.; Whelton, P.K.; He, J. Association between inflammation and insulin resistance in U.S. nondiabetic adults: Results from the Third National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 2960–2965. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef]
- Pradhan, A.D.; Imhof, A.; Berg, G.; Hutchinson, W.L.; Pepys, M.B.; Boeing, H.; Muche, R.; Brenner, H.; Koenig, W. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001, 286, 327–334. [Google Scholar] [CrossRef]
- Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-alpha and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine 2016, 86, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Cecerska-Heryc, E.; Engwert, W.; Michałów, J.; Marciniak, J.; Birger, R.; Serwin, N.; Heryć, R.; Polikowska, A.; Goszka, M.; Wojciuk, B.; et al. Oxidative stress markers and inflammation in type 1 and 2 diabetes are affected by BMI, treatment type, and complications. Sci. Rep. 2025, 15, 23605. [Google Scholar] [CrossRef]
- Cao, C.; Yuan, J.; Gilbert, E.R.; Cline, M.A.; Lam, F.; Li, K.C.; Dilger, R.N. Increased Circulating Interleukin Concentrations in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Obes. Rev. 2025, 26, e13971. [Google Scholar] [CrossRef]
- Pellegrini, V.; La Grotta, R.; Carreras, F.; Giuliani, A.; Sabbatinelli, J.; Olivieri, F.; Berra, C.C.; Ceriello, A.; Prattichizzo, F. Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells 2024, 13, 1662. [Google Scholar] [CrossRef]
- Kristofi, R.; Eriksson, J.W. Metformin as an anti-inflammatory agent: A short review. J. Endocrinol. 2021, 251, R11–R22. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Xiao, N.; Wang, M.; Kou, J.; Qi, L.; Huang, F.; Liu, B.; Liu, K. Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol. Res. 2014, 89, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.C.; Tang, S.-Q.; Liu, Y.-T.; Li, A.-M.; Zhan, M.; Yang, M.; Song, N.; Zhang, W.; Wu, X.-Q.; Peng, C.-H.; et al. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis. 2021, 12, 925. [Google Scholar] [CrossRef] [PubMed]
- Bakkar, N.Z.; Mougharbil, N.; Mroueh, A.; Kaplan, A.; Eid, A.H.; Fares, S.; Zouein, F.A.; El-Yazbi, A.F. Worsening baroreflex sensitivity on progression to type 2 diabetes: Localized vs. systemic inflammation and role of antidiabetic therapy. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E835–E851. [Google Scholar] [CrossRef]
- Bharath, L.P.; Nikolajczyk, B.S. The intersection of metformin and inflammation. Am. J. Physiol. Cell Physiol. 2021, 320, C873–C879. [Google Scholar] [CrossRef]
- Adeshirlarijaney, A.; Zou, J.; Tran, H.Q.; Chassaing, B.; Gewirtz, A.T. Amelioration of metabolic syndrome by metformin associates with reduced indices of low-grade inflammation independently of the gut microbiota. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E1121–E1130. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Nyambuya, T.M.; Mxinwa, V.; Mokgalaboni, K.; Ziqubu, K.; Cirilli, I.; Marcheggiani, F.; Louw, J.; et al. Adipokines as a therapeutic target by metformin to improve metabolic function: A systematic review of randomized controlled trials. Pharmacol. Res. 2021, 163, 105219. [Google Scholar] [CrossRef]
- Johansson, H.; Bellerba, F.; Macis, D.; Bertelsen, B.-E.; Guerrieri-Gonzaga, A.; Aristarco, V.; Viste, K.; Mellgren, G.; Di Cola, G.; Costantino, J.; et al. Effect of metformin and lifestyle intervention on adipokines and hormones in breast cancer survivors: A pooled analysis from two randomized controlled trials. Breast Cancer Res. Treat. 2024, 205, 49–59. [Google Scholar] [CrossRef]
- Jing, Y.; Wu, F.; Li, D.; Yang, L.; Li, Q.; Li, R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol. Cell Endocrinol. 2018, 461, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.D.; Everett, B.M.; Cook, N.R.; Rifai, N.; Ridker, P.M. Effects of initiating insulin and metformin on glycemic control and inflammatory biomarkers among patients with type 2 diabetes: The LANCET randomized trial. JAMA 2009, 302, 1186–1194. [Google Scholar] [CrossRef]
- Thomas, N.E.; Rowe, D.A.; Murtagh, E.M.; Stephens, J.W.; Williams, R. Associations between metabolic syndrome components and markers of inflammation in Welsh school children. Eur. J. Pediatr. 2018, 177, 409–417. [Google Scholar] [CrossRef]
- Lampropoulou, I.T.; Stangou, M.; Papagianni, A.; Didangelos, T.; Iliadis, F.; Efstratiadis, G. TNF-alpha and microalbuminuria in patients with type 2 diabetes mellitus. J. Diabetes Res. 2014, 2014, 394206. [Google Scholar] [CrossRef] [PubMed]
- Dolcini, J.; Landi, R.; Ponzio, E.; Picchini, L.; Luciani, A.; Formenti, L.; Baroni, S.S.; Gabrielli, A.; D’errico, M.M.; Barbadoro, P. Association between TNF-α, cortisol levels, and exposure to PM10 and PM2.5: A pilot study. Environ. Sci. Eur. 2024, 36, 141. [Google Scholar] [CrossRef]
| Total (n = 78) | Normal Weight (n = 15) | Obesity Only (n = 44) | T2D + Obesity (n = 19) | p-Value 1 | |
|---|---|---|---|---|---|
| Demographics | |||||
| Age (years) | 14.8 (1.8) | 14.8 (1.5) | 14.8 (1.9) | 14.7 (1.9) | 0.96 |
| Female, n (%) | 50 (64.1) | 9 (60.0) | 28 (63.6) | 13 (68.4) | 0.87 |
| Weight z-score | 2.3 (1.3) | −0.2 (0.9) | 2.8 (0.7) | 2.7 (0.5) | <0.01 |
| BMI z-score | 2.2 (1.0) | 0.0 (0.9) | 2.6 (0.3) | 2.4 (0.3) | <0.01 |
| Metabolic Markers | |||||
| ALT (U/L) | 21.5 (21.7) | 12.8 (4.6) | 20.7 (11.4) | 30.0 (39.0) | 0.07 |
| Total cholesterol (mg/dL) | 156.2 (33.3) | 148.4 (27.6) | 160.2 (35.5) | 153.1 (32.2) | 0.45 |
| LDL (mg/dL) | 103.0 (38.0) | 87.9 (24.6) | 109.5 (42.8) | 100.4 (32.6) | 0.16 |
| HDL (mg/dL) | 41.6 (11.5) | 51.1 (10.6) | 40.3 (10.5) | 37.1 (10.8) | <0.01 |
| Triglycerides (mg/dL) | 85.0 (65.4) | 55.4 (16.5) | 77.7 (34.7) | 124.8 (111.9) | <0.01 |
| Glycemic Markers | |||||
| Fasting glucose (mg/dL) | 106.9 (53.8) | 91.3 (7.8) | 90.1 (11.5) | 158.0 (91.4) | <0.01 |
| Hemoglobin A1c (%) | 6.2 (1.6) | 5.5 (0.4) | 5.7 (0.5) | 7.8 (2.6) | <0.01 |
| Inflammatory Markers | |||||
| CRP (mg/L) | 8.2 (7.6) | 7.4 (6.7) | 9.2 (8.4) | 5.6 (4.5) | 0.29 |
| TNF-α (pg/mL) | 1.6 (0.6) | 1.9 (0.9) | 1.6 (0.4) | 1.4 (0.4) | 0.07 |
| IL-6 (pg/mL) | 1.8 (2.1) | 1.2 (1.3) | 1.9 (1.9) | 1.9 (2.9) | 0.46 |
| Use of Metformin | |||||
| Yes, n (%) | 26.0 (33.3) | 0.0 (0.0) | 12.0 (27.3) | 14.0 (73.6) | <0.01 |
| No, n (%) | 52.0 (66.7) | 15.0 (19.2) | 32.0 (72.7) | 5.0 (26.4) | |
| Variables | One-Way ANOVA | Post Hoc Test (Tukey) | |||
|---|---|---|---|---|---|
| F-Value | p-Value | Group Comparison | Mean Difference | 95% CI | |
| Weight z-score | 84.5 | <0.01 | 2–1 | 3.0 | 2.4, 3.5 |
| 3–1 | 2.9 | 2.3, 3.6 | |||
| Height z-score | 4.0 | 0.02 | 3–1 | 1.2 | 0.3, 2.2 |
| BMI z-score | 149.8 | <0.01 | 2–1 | 2.5 | 2.2, 2.9 |
| 3–1 | 2.4 | 2.0, 2.8 | |||
| HDL (mg/dL) | 8.0 | <0.01 | 2–1 | −10.7 | −18.4, −3.1 |
| 3-1 | −14.0 | −22.7, −5.2 | |||
| Triglycerides (mg/dL) | 6.0 | <0.01 | 2–3 | −47.1 | −87.6, −6.6 |
| 3–1 | 69.4 | 18.8, 120.2 | |||
| Fasting glucose (mg/dL) | 15.7 | <0.01 | 2–3 | −67.9 | −97.9, −37.9 |
| 3–1 | 66.7 | 28.9, 104.5 | |||
| Hemoglobin A1c (%) | 18.9 | <0.01 | 2–3 | −2.1 | −3.0, −1.2 |
| 3–1 | 2.3 | 1.2, 3.4 | |||
| Effect | df | Wilks’ Lambda | f Value | p |
|---|---|---|---|---|
| 1 Obesity and T2D + Obesity | ||||
| Metformin use | 3 | 0.9 | 1.2 | 0.33 |
| Age | 3 | 1.0 | 0.2 | 0.88 |
| Sex * | 3 | 0.8 | 4.0 | 0.01 |
| BMI z-score | 3 | 1.0 | 0.8 | 0.48 |
| 2 Obesity only | ||||
| Metformin use | 3 | 0.9 | 1.9 | 0.15 |
| Age | 3 | 1.0 | 0.3 | 0.82 |
| Sex * | 3 | 0.7 | 4.3 | 0.01 |
| BMI z-score | 3 | 0.9 | 0.7 | 0.56 |
| 3 T2D + Obesity | ||||
| Metformin use | 3 | 0.4 | 3.9 | 0.06 |
| Age | 3 | 0.6 | 1.4 | 0.33 |
| Sex * | 3 | 0.6 | 1.7 | 0.25 |
| BMI z-score | 3 | 0.5 | 2.0 | 0.20 |
| Effect | β | SE | 95% CI | p | |
|---|---|---|---|---|---|
| LL | UL | ||||
| Metformin use | 0.34 | 0.12 | 0.08 | 0.59 | 0.02 |
| Age | 0.05 | 0.03 | −0.01 | 0.11 | 0.12 |
| Sex * | 0.11 | 0.14 | −0.17 | 0.41 | 0.40 |
| BMI z-score | 0.25 | 0.19 | −0.16 | 0.66 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Foster, C.; Anderson, N.; Datcher, I.; Ashraf, A.; Hidalgo, B. Inflammatory Markers Among African American Adolescents with Type 2 Diabetes Mellitus and Obesity: A Cross-Sectional Study. Diabetology 2026, 7, 13. https://doi.org/10.3390/diabetology7010013
Foster C, Anderson N, Datcher I, Ashraf A, Hidalgo B. Inflammatory Markers Among African American Adolescents with Type 2 Diabetes Mellitus and Obesity: A Cross-Sectional Study. Diabetology. 2026; 7(1):13. https://doi.org/10.3390/diabetology7010013
Chicago/Turabian StyleFoster, Christy, Nekayla Anderson, Ivree Datcher, Ambika Ashraf, and Bertha Hidalgo. 2026. "Inflammatory Markers Among African American Adolescents with Type 2 Diabetes Mellitus and Obesity: A Cross-Sectional Study" Diabetology 7, no. 1: 13. https://doi.org/10.3390/diabetology7010013
APA StyleFoster, C., Anderson, N., Datcher, I., Ashraf, A., & Hidalgo, B. (2026). Inflammatory Markers Among African American Adolescents with Type 2 Diabetes Mellitus and Obesity: A Cross-Sectional Study. Diabetology, 7(1), 13. https://doi.org/10.3390/diabetology7010013

