Alterations in Specific Fatty Acids and Phospholipids Are Associated with the Onset and Progression of Diabetes-like Phenotypes in High-Sugar Diet-Fed Fruit Flies
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Experimental Design
2.3. Dietary Intake Estimation
2.4. Fly Body Weight Measurement
2.5. Fly Survival
2.6. Total Triglyceride Measurement
2.7. Hemolymph Combined Glucose + Trehalose Measurement
2.8. Ilp2 Relative Expression Assessment
2.9. Feature-Based Targeted Lipidomic Analysis
2.10. Statistical Analysis
3. Results
3.1. High-Sugar Diet Induces Metabolic Alterations Associated with Obesity and T2DM-like Progression
3.2. Targeted Lipidomic Profiling Identifies Early Metabolic Alterations During Obesity-Related Insulin Resistance and T2DM-like Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T2DM | Type 2 diabetes mellitus |
HSD | High-sugar diet |
SD | Standard diet |
PE | Phosphatidylethanolamine |
LysoPE | Lysophosphatidylethanolamine |
PI | Phosphatidylinositol |
LysoPI | Lysophosphatidylinositol |
PC | Phosphatidylcholine |
PS | Phosphatidylserine |
PG | Phosphatidylglycerol |
FA | Fatty acid |
CAFE | Capillary feeder |
Ilp2 | Insulin-like peptide 2 |
RT-PCR | Real-time polymerase chain reaction |
QC | Quality control |
UPLC | Ultra performance liquid chromatography |
QToF | Quadrupole Time-of-flight |
MS | Mass spectrometer |
ESI | Electrospray ionization |
PCA | Principal component analysis |
PLS-DA | Partial least square-discriminant analysis |
VIP | Variable importance in the projection |
IPC | Insulin producing cells |
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Wali, J.A.; Solon-Biet, S.M.; Freire, T.; Brandon, A.E. Macronutrient determinants of obesity, insulin resistance and metabolic health. Biology 2021, 10, 336. [Google Scholar] [CrossRef]
- Al-Sulaiti, H.; Diboun, I.; Agha, M.V.; Mohamed, F.F.; Atkin, S.; Dömling, A.S.; Elrayess, M.A.; Mazloum, N.A. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes. J. Transl. Med. 2019, 17, 348. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes Metab. Syndr. Obes. 2020, 13, 3611. [Google Scholar] [CrossRef]
- Vanamala, J.K.; Sivaramakrishnan, V.; Mummidi, S. Integrated multi-omic studies of metabolic syndrome, diabetes and insulin-related disorders: Mechanisms, biomarkers, and therapeutic targets. Front. Endocrinol. 2025, 15, 1537554. [Google Scholar] [CrossRef]
- Palau-Rodriguez, M.; Marco-Ramell, A.; Casas-Agustench, P.; Tulipani, S.; Minñarro, A.; Sanchez-Pla, A.; Murri, M.; Tinahones, F.J.; Andres-Lacueva, C. Visceral adipose tissue phospholipid signature of insulin sensitivity and obesity. J. Proteome Res. 2021, 20, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Rendón, J.P.; Salceda, R.; Riesgo-Escovar, J.R. Drosophila melanogaster as a model for diabetes type 2 progression. Bimed Res. Int. 2018, 2018, 1417528. [Google Scholar]
- Murillo-Maldonado, J.M.; Riesgo-Escovar, J.R. Development and diabetes on the fly. Mech. Dev. 2017, 144, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Wagner, A.E. Drosophila melanogaster as a model organism for obesity and type-2 diabetes mellitus by applying high-sugar and high-fat diets. Biomolecules 2022, 12, 307. [Google Scholar] [CrossRef]
- Hong, S.H.; Kang, M.; Lee, K.S.; Yu, K. High fat diet-induced TGF-β/Gbb signaling provokes insulin resistance through the tribbles expression. Sci. Rep. 2016, 6, 30265. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.N.S.; Coogan, C.; Chamseddin, K.; Fernandez-Kim, S.O.; Kolli, S.; Keller, J.N.; Bauer, J.H. Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 1230–1237. [Google Scholar] [CrossRef]
- Musselman, L.P.; Fink, J.L.; Baranski, T.J. Similar effects of high-fructose and high-glucose feeding in a Drosophila model of obesity and diabetes. PLoS ONE 2019, 14, e0217096. [Google Scholar] [CrossRef]
- Musselman, L.P.; Kühnlein, R.P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 2018, 221, jeb163881. [Google Scholar] [CrossRef]
- Rovenko, B.M.; Perkhulyn, N.V.; Gospodaryov, D.V.; Sanz, A.; Lushchak, V.; Lushchak, V.I. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75–85. [Google Scholar] [CrossRef]
- Diegelmann, S.; Jansen, A.; Jois, S.; Kastenholz, K.; Velo Escarcena, L.; Strudthoff, N.; Scholz, H. The CApillary FEeder assay measures food intake in Drosophila melanogaster. J. Vis. Exp. 2017, 17, 55024. [Google Scholar]
- Tennessen, J.M.; Barry, W.E.; Cox, J.; Thummel, C.S. Methods for studying metabolism in Drosophila. Methods 2014, 68, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2011, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Rodríguez, I.I.; Castaño-Tostado, E.; García-Gutiérrez, D.G.; Reynoso-Camacho, R.; Elton-Puente, J.E.; Barajas-Pozos, A.; Pérez-Ramírez, I.F. Non-targeted metabolomic analysis reveals serum phospholipid alterations in patients with early stages of diabetic foot ulcer. Biomark. Insights 2020, 15, 1177271920954828. [Google Scholar] [CrossRef] [PubMed]
- Musselman, L.P.; Fink, J.L.; Narzinski, K.; Ramachandran, P.V.; Sukumar Hathiramani, S.; Cagan, R.L.; Baranski, T.J. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 2011, 4, 842–849. [Google Scholar] [CrossRef]
- Skorupa, D.A.; Dervisefendic, A.; Zwiener, J.; Pletcher, S.D. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 2008, 7, 478–490. [Google Scholar] [CrossRef]
- Meshrif, W.S.; El Husseiny, I.M.; Elbrense, H. Drosophila melanogaster as a low-cost and valuable model for studying type 2 diabetes. J. Exp. Zool. A Ecol. Integr. Physiol. 2022, 337, 457–466. [Google Scholar] [CrossRef]
- van Dam, E.; van Leeuwen, L.A.; Dos Santos, E.; James, J.; Best, L.; Lennicke, C.; Vincent, A.J.; Marinos, G.; Foley, A.; Buricova, M.; et al. Sugar-induced obesity and insulin resistance are uncoupled from shortened survival in Drosophila. Cell Met. 2020, 31, 710–725. [Google Scholar] [CrossRef]
- Inoue, Y.H.; Katsube, H.; Hinami, Y. Drosophila models to investigate insulin action and mechanisms underlying human diabetes mellitus. In Drosophila Models for Human Diseases; Yamaguchi, M., Ed.; Springer: Singapore, 2018; Volume 1075, pp. 235–256. [Google Scholar]
- Ikeya, T.; Galic, M.; Belawat, P.; Nairz, K.; Hafen, E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 2002, 12, 1293–1300. [Google Scholar] [CrossRef]
- Brogiolo, W.; Stocker, H.; Ikeya, T.; Rintelen, F.; Fernandez, R.; Hafen, E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 2001, 11, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mao, Y.S.; Chen, F.; Xia, D.X.; Zhao, T.Q. Palmitic acid up regulates Gal-3 and induces insulin resistance in macrophages by mediating the balance between KLF4 and NF-κB. Exp. Ther. Med. 2021, 22, 1028. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: An overview of molecular mechanisms. Inflamm. Res. 2019, 68, 915–932. [Google Scholar] [CrossRef]
- Tricò, D.; Mengozzi, A.; Nesti, L.; Hatunic, M.; Gabriel Sanchez, R.; Konrad, T.; Lalić, K.; Lalić, N.M.; Mari, A.; Natali, A. Circulating palmitoleic acid is an independent determinant of insulin sensitivity, beta cell function and glucose tolerance in non-diabetic individuals: A longitudinal analysis. Diabetologia 2020, 63, 206–218. [Google Scholar] [CrossRef]
- Qureshi, W.; Santaren, I.D.; Hanley, A.J.; Watkins, S.M.; Lorenzo, C.; Wagenknecht, L.E. Risk of diabetes associated with fatty acids in the de novo lipogenesis pathway is independent of insulin sensitivity and response: The Insulin Resistance Atherosclerosis Study (IRAS). BMJ Open Diabetes Res. Care 2019, 7, e000691. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, H.J.; Ko, J.; Lee, J.H. Metabolically unhealthy overweight individuals have high lysophosphatide levels, phospholipase activity, and oxidative stress. Clin. Nutr. 2020, 39, 1137–1145. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Sakurai, T.; Chen, Z.; Inoue, N.; Chiba, H.; Hui, S.P. Lysophosphatidylethanolamine affects lipid accumulation and metabolism in a human liver-derived cell line. Nutrients 2022, 14, 579. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Li, Y.; Guo, L.; Cui, Y.; Zhang, X.; Li, E. Metabolomic analysis of serum from obese adults with hyperlipemia by UHPLC-Q-TOF MS/MS. Biomed. Chromatogr. 2016, 30, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Frigolet, M.E.; Gutiérrez-Aguilar, R. The role of the novel lipokine palmitoleic acid in health and disease. Adv. Nutr. 2017, 8, 173S–181S. [Google Scholar] [CrossRef] [PubMed]
- Hulver, M.W.; Berggren, J.R.; Carper, M.J.; Miyazaki, M.; Ntambi, J.M.; Hoffman, E.P.; Thyfault, J.P.; Stevens, R.; Dohm, G.L.; Houmard, J.A.; et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005, 2, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.J.; Liu, T.T.; Pan, J.C.; Man, Q.Q.; Song, S.; Zhang, J. The Association between the plasma phospholipid profile and insulin resistance: A population-based cross-section study from the China Adult Chronic Disease and Nutrition Surveillance. Nutrients 2024, 16, 1205. [Google Scholar] [CrossRef] [PubMed]
- Hosseinkhani, S.; Aazami, H.; Hashemi, E.; Dehghanbanadaki, H.; Adibi-Motlagh, B.; Razi, F. The trend in application of omics in type 2 diabetes researches; A bibliometric study. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102250. [Google Scholar] [CrossRef] [PubMed]
Compound 1 | Fold-Change Values (HSD vs. SD) | ||||||
---|---|---|---|---|---|---|---|
Day 2 | Day 4 | Day 6 | Day 8 | Day 10 | Day 12 | Day 14 | |
FA 16:0 | −1.09 * | 1.68 * | 1.79 * | 2.03 * | 2.01 * | 1.75 * | 2.17 * |
FA 16:1 | 1.06 * | 1.11 * | 1.39 * | −1.23 | −1.74 | 1.14 | 1.39 |
FA 18:0 | 1.17 | 1.84 | 2.14 * | −2.73 | −2.87 * | 1.35 | 1.53 |
FA 18:1 | 6.82 * | 14.07 * | 3.54 * | −4.68 * | −4.04 * | −1.36 | −1.02 |
FA 18:2 | 2.11 * | 1.72 * | 2.63 * | −1.62 * | −1.07 * | 1.21 | −1.02 |
FA 20:0 | 3.98 * | 2.02 * | 3.77 * | 1.02 * | 1.01 | 1.06 | ND in SD |
LysoPC 16:0 | 1.34 | 5.86 * | 2.68 * | −4.17 * | ND in HSD | ND in HSD | ND in both |
LysoPC 16:1 | 1.68 * | 7.40 * | 5.07 * | −1.99 | ND in HSD | ND in both | ND in SD |
LysoPC 22:4 | −1.13 | 3.18 * | 1.21 | ND in both | ND in both | ND in both | ND in both |
LysoPE 16:0 | 5.07 * | 8.09 * | 10.09 * | 1.05 | 1.03 | 1.42 * | −1.07 |
LysoPE 16:1 | −2.37 * | 2.34 * | 2.55 * | 1.14 | −1.35 * | 1.91 * | 2.95 * |
LysoPE 18:0 | −1.29 * | 2.39 * | 1.66 * | 1.30 * | −1.02 | 1.04 | 1.35 * |
LysoPE 18:1 | −4.34 * | 5.00 * | 8.42 * | 2.47 * | 1.59 * | 3.11 * | 1.31 * |
LysoPE 18:2 | −1.05 | 3.22 * | 6.03 * | 1.08 | −1.96 * | 1.60 * | 1.10 |
LysoPE 20:0 | 2.39 * | 5.11 * | 2.93 * | ND in HSD | ND in both | ND in both | ND in both |
LysoPG 16:0 | 1.49 * | 5.18 * | 1.38 * | ND in HSD | ND in both | ND in both | ND in both |
LysoPG 16:1 | −3.54 * | 2.69 * | −1.49 * | −1.08 | ND in both | ND in both | ND in both |
LysoPG 18:1 | ND in SD | 2.72 * | 2.80 * | −2.40 * | −1.04 | ND in both | ND in both |
LysoPG 18:2 | −1.66 * | 1.50 * | ND in SD | ND in both | ND in both | ND in both | ND in both |
LysoPI 16:0 | 1.58 * | 8.44 * | 3.04 * | 1.33 * | −1.21 | −1.83 * | ND in SD |
LysoPI 16:1 | 3.44 * | 4.18 * | −1.23 * | −1.25 * | 1.01 | 1.07 | 1.81 * |
LysoPI 18:0 | ND in SD | 2.50 * | 2.99 * | −2.33 * | −1.70 * | 1.13 | ND in both |
LysoPI 18:1 | −4.80 * | 7.85 * | 12.98 * | 1.17 * | 1.04 | 1.38 * | 1.92 * |
LysoPI 18:2a | −1.21 * | 2.68 * | 1.66 * | 1.32 * | 1.99 * | 1.95 * | 2.49 * |
LysoPI 18:2b | −1.93 * | 3.02 * | 3.25 * | −1.12 | −1.07 | 2.10 * | 2.28 * |
LysoPI 18:3 | −1.05 | 1.83 * | 1.52 * | −1.39 * | 1.12 | 1.02 | 1.17 |
LysoPS 16:1 | ND in both | 1.90 * | 2.89 * | −1.07 | 1.06 | −1.09 | 1.72 * |
LysoPS 18:1 | −1.46 * | 8.38 * | 4.50 * | 1.12 | −1.13 | −1.44 * | 1.76 * |
PE 16:0 16:1 | 1.65 * | 3.00 * | 1.29 * | ND in HSD | ND in both | ND in both | ND in both |
PE 16:0 18:1 | −1.27 | 6.70 * | 1.28 * | −1.42 * | 1.15 | −2.90 * | −4.63 * |
PE 16:1 16:1 | −3.14 * | 3.37 * | 2.68 | 1.25 | −1.12 | −2.82 * | 1.23 |
PE 16:1 18:1 | −2.40 * | 3.03 * | 1.15 | ND in HSD | ND in both | ND in both | ND in both |
PE 18:0 20:1 | −1.03 | −1.67 * | ND in HSD | ND in both | ND in both | ND in both | ND in both |
PE 18:1 18:1 | −4.33 * | 4.20 * | 2.08 * | −5.95 * | −3.62 * | −5.85 * | −2.28 * |
PE 18:1 18:2 | −1.11 * | 4.34 * | 1.18 * | ND in HSD | ND in both | ND in both | ND in both |
PI 18:1 18:1 | ND in both | ND in SD | −1.03 | 2.48 * | −1.22 | 1.44 * | −1.14 |
PS 16:0 22:4 | −1.44 * | 3.21 * | 1.78 * | −3.17 * | ND in both | ND in both | ND in both |
PS 18:0 18:0 | −2.27 * | −1.42 * | −1.02 | ND in HSD | ND in both | ND in both | ND in both |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Nieves, S.; García-Gutiérrez, D.G.; Reynoso-Camacho, R.; Bertadillo-Jilote, A.D.; Riesgo-Escovar, J.R.; Murillo-Maldonado, J.M.; Pérez-Ramírez, I.F. Alterations in Specific Fatty Acids and Phospholipids Are Associated with the Onset and Progression of Diabetes-like Phenotypes in High-Sugar Diet-Fed Fruit Flies. Diabetology 2025, 6, 92. https://doi.org/10.3390/diabetology6090092
Estrada-Nieves S, García-Gutiérrez DG, Reynoso-Camacho R, Bertadillo-Jilote AD, Riesgo-Escovar JR, Murillo-Maldonado JM, Pérez-Ramírez IF. Alterations in Specific Fatty Acids and Phospholipids Are Associated with the Onset and Progression of Diabetes-like Phenotypes in High-Sugar Diet-Fed Fruit Flies. Diabetology. 2025; 6(9):92. https://doi.org/10.3390/diabetology6090092
Chicago/Turabian StyleEstrada-Nieves, Sofía, David G. García-Gutiérrez, Rosalía Reynoso-Camacho, Alma D. Bertadillo-Jilote, Juan R. Riesgo-Escovar, Juan M. Murillo-Maldonado, and Iza F. Pérez-Ramírez. 2025. "Alterations in Specific Fatty Acids and Phospholipids Are Associated with the Onset and Progression of Diabetes-like Phenotypes in High-Sugar Diet-Fed Fruit Flies" Diabetology 6, no. 9: 92. https://doi.org/10.3390/diabetology6090092
APA StyleEstrada-Nieves, S., García-Gutiérrez, D. G., Reynoso-Camacho, R., Bertadillo-Jilote, A. D., Riesgo-Escovar, J. R., Murillo-Maldonado, J. M., & Pérez-Ramírez, I. F. (2025). Alterations in Specific Fatty Acids and Phospholipids Are Associated with the Onset and Progression of Diabetes-like Phenotypes in High-Sugar Diet-Fed Fruit Flies. Diabetology, 6(9), 92. https://doi.org/10.3390/diabetology6090092