Accelerated Ageing in Type 1 Diabetes: A Focus on Molecular Mechanisms Underlying Telomere Shortening
Abstract
1. Introduction
2. Telomere Structure and Function
3. Evidence of Telomere Shortening and Accelerated Ageing in T1D Patients
4. Molecular Mechanisms Contributing to Telomere Shortening in T1D
4.1. Chronic Inflammation and Immune Activation
4.2. Oxidative Stress and Mitochondrial Dysfunction
4.2.1. ROS-Induced Telomeric DNA Damage
4.2.2. Mitochondrial ROS and Impaired Antioxidant Defence in T1D
4.3. DNA Damage Response and Cellular Senescence Pathways
5. Discussions, Knowledge Gaps and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
8-OHdG | 8-Hydroxy-2′-Deoxyguanosine |
ATM | Ataxia-Telangiectasia Mutated Kinase |
ATR | ATM and Rad3-Related Kinase |
AYA | Adolescents and Young Adults |
BAK | BCL-2 Homologous Antagonist/Killer |
Bax | BCL-2 Associated X Protein |
BER | Base Excision Repair |
BIM | Bcl-2-Like Protein 11 |
BMI | Body Mass Index |
CCL5 | C-C Motif Chemokine Ligand 5 |
CDKN1A | Cyclin-Dependent Kinase Inhibitor 1A (gene encoding p21) |
CHD | Coronary Heart Disease |
ChK1/2 | Checkpoint Kinase 1/2 |
COC | Combined Oral Contraceptive |
COX | Cyclooxygenase |
CPE | Carboxypeptidase E |
CXCL | C-X-C Motif Chemokine Ligand |
CXCR | C-X-C Chemokine Receptor |
DBP | Diastolic Blood Pressure |
DDR | DNA Damage Response |
DKD | Diabetic Kidney Disease |
DNA-PK | DNA-Dependent Protein Kinase |
DR | Diabetic Retinopathy |
DSB | Double-Strand Break |
eGFR | Estimated Glomerular Filtration Rate |
eNOS | Endothelial Nitric Oxide Synthase |
EPCs | Endothelial Progenitor Cells |
ER | Endoplasmic Reticulum |
ETC | Electron Transport Chain |
FAS | Apoptosis Antigen 1 (CD95) |
FOXP3 | Forkhead Box P3 |
G9a | Euchromatic Histone-Lysine N-Methyltransferase 2 |
GAPDH | Glyceraldehyde-3-Phosphate Dehydrogenase |
gp130 | Glycoprotein 130 |
H2O2 | Hydrogen Peroxide |
HbA1c | Glycated Haemoglobin |
HMOX1 | Heme Oxygenase 1 |
HR | Homologous Recombination |
IDO1 | Indoleamine 2,3-Dioxygenase 1 |
IFN | Interferon |
IL | Interleukin |
iNOS | Inducible Nitric Oxide Synthase |
IRAK | Interleukin-1 Receptor-Associated Kinase |
IRF-1 | Interferon Regulatory Factor 1 |
JAK | Janus Kinase |
JNK | c-Jun N-terminal Kinase |
JUN | Jun Proto-Oncogene |
KEAP1 | Kelch-Like ECH-Associated Protein 1 |
LADA | Latent Autoimmune Diabetes in Adults |
LADY | Latent Autoimmune Diabetes in Youth |
LEA | Lower-Extremity Amputation |
LPC | Laser Photocoagulation |
LPO | Lipoxygenase |
MAF | Musculoaponeurotic Fibrosarcoma Oncogene Homolog |
MAPKs | Mitogen-Activated Protein Kinases |
MCP-1 | Monocyte Chemoattractant Protein-1 |
MDC | Macrophage-Derived Chemokine |
MHC I | Major Histocompatibility Complex Class I |
MHP | Mitochondrial Hyperpolarisation |
MK2 | MAPK-Activated Protein Kinase 2 |
MM-qPCR | Monochrome Multiplex qPCR |
MR | Mendelian Randomisation |
mtDNA | Mitochondrial DNA |
mTOR | Mammalian Target of Rapamycin |
NAD+/NADH | Nicotinamide Adenine Dinucleotide (oxidised/reduced forms) |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
Ncf1 | Neutrophil Cytosolic Factor 1 |
NDR | No Diabetic Retinopathy |
NFAT | Nuclear Factor of Activated T Cells |
NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells |
NHEJ | Non-Homologous End Joining |
NK cells | Natural Killer Cells |
NO | Nitric Oxide |
NOS | Nitric Oxide Synthase |
NOX2 | NADPH Oxidase 2 |
NPDR | Non-Proliferative Diabetic Retinopathy |
NQO1 | NAD(P)H Quinone Oxidoreductase 1 |
Nrf2 | Nuclear Factor Erythroid 2–Related Factor 2 |
OS | Oxidative Stress |
PARP1 | Poly(ADP-ribose) Polymerase 1 |
PBMC | Peripheral Blood Mononuclear Cells |
PC1/2/3 | Prohormone Convertase 1/2/3 |
PD-1 | Programmed Cell Death Protein 1 |
PD-L1 | Programmed Death-Ligand 1 |
PDR | Proliferative Diabetic Retinopathy |
PGC-1α | PPARγ Coactivator 1 Alpha |
POT1 | Protection of Telomeres 1 |
PPAR | Peroxisome Proliferator-Activated Receptor |
pRB | Retinoblastoma Protein |
PRDX1 | Peroxiredoxin-1 |
qPCR | Quantitative Polymerase Chain Reaction |
RAGE | Receptor for Advanced Glycation End-products |
RNS | Reactive Nitrogen Species |
ROS | Reactive Oxygen Species |
SASP | Senescence-Associated Secretory Phenotype |
SBP | Systolic Blood Pressure |
SGLT2 | Sodium–Glucose Co-Transporter 2 |
SIRT1 | Sirtuin 1 |
SNP | Single Nucleotide Polymorphism |
SSB | Single-Strand Break |
STAT | Signal Transducer and Activator of Transcription |
STZ | Streptozotocin |
T1D | Type 1 Diabetes |
T2D | Type 2 Diabetes |
TACE | TNF-Alpha Converting Enzyme |
TERC | Telomerase RNA Component |
TERRA | Telomeric Repeat-Containing RNA |
TERT | Telomerase Reverse Transcriptase |
TGF-β | Transforming Growth Factor Beta |
Th1 | T Helper 1 |
TIN2 | TRF1-Interacting Nuclear Protein 2 |
TL | Telomere Length |
T-loop | Telomere Loop |
TLR | Toll-Like Receptor |
TNF | Tumour Necrosis Factor |
TNFR | Tumour Necrosis Factor Receptor |
TP53 | Tumour Protein p53 |
TPP1 | TIN2-Interacting Protein 1 |
TRADD | TNFR1-Associated Death Domain Protein |
TRAF | TNF Receptor Associated Factor |
Treg | Regulatory T Cells |
UAC | Urinary Albumin Concentration |
WBC | White Blood Cell |
WGS | Whole-Genome Sequencing |
XO | Xanthine Oxidase |
γ-H2AX | Phosphorylated Histone H2AX |
References
- ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Ebekozien, O.; Echouffo-Tcheugui, J.B.; Ekhlaspour, L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S27–S49. [Google Scholar] [CrossRef]
- Selim, S. Type 5 Diabetes Mellitus: Global Recognition of a Previously Overlooked Subtype. Bangladesh J. Endocrinol. Metab. 2025, 4, 59–60. [Google Scholar] [CrossRef]
- Poche, E. New Type 1 Diabetes Statistics Report. Available online: https://www.type1strong.org/blog-post/new-type-1-diabetes-statistics-report#:~:text=As of 2024%2C over 9.4,continuous glucose monitors (accessed on 30 March 2025).
- Du, M.; Li, S.; Jiang, J.; Ma, X.; Liu, L.; Wang, T.; Zhang, J.; Niu, D. Advances in the Pathogenesis and Treatment Strategies for Type 1 Diabetes Mellitus. Int. Immunopharmacol. 2025, 148, 114185. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ko, K.S.; Rhee, B.D. New Perspectives in Studying Type 1 Diabetes Susceptibility Biomarkers. Int. J. Mol. Sci. 2025, 26, 3249. [Google Scholar] [CrossRef]
- Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 2021, 17, 150–161. [Google Scholar] [CrossRef]
- Hilliard, B.K.; Prendergast, J.E.; Smith, M.J. Dia-B-Ties: B Cells in the Islet–Immune-Cell Interface in T1D. Biomolecules 2025, 15, 332. [Google Scholar] [CrossRef]
- Roy, S.; Pokharel, P.; Piganelli, J.D. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol. Metab. 2024, 88, 101998. [Google Scholar] [CrossRef]
- Graham, K.L.; Sutherland, R.M.; Mannering, S.I.; Zhao, Y.; Chee, J.; Krishnamurthy, B.; Thomas, H.E.; Lew, A.M.; Kay, T.W.H. Pathogenic Mechanisms in Type 1 Diabetes: The Islet is Both Target and Driver of Disease. Rev. Diabet. Stud. 2012, 9, 148–168. [Google Scholar] [CrossRef]
- Lemos, J.R.N.; Hirani, K.; von Herrath, M. Immunological and virological triggers of type 1 diabetes: Insights and implications. Front. Immunol. 2024, 14, 1326711. [Google Scholar] [CrossRef]
- Abrantes, J.A.; de Azevedo, J.V.; Fernandes, F.; Almeida, V.; de Oliveira, L.C.; de Oliveira, M.F.; de Araújo, J.G.; Lanza, D.; Bezerra, F.; Andrade, V.; et al. Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomed. Rep. 2024, 20, 81. [Google Scholar] [CrossRef]
- Rojas, M.; Restrepo-Jiménez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramírez-Santana, C.; Leung, P.S.C.; Ansari, A.A.; Gershwin, M.E.; Anaya, J.-M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018, 95, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Hogquist, K.A. T-Cell Tolerance: Central and Peripheral. Cold Spring Harb. Perspect. Biol. 2012, 4, a006957. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Calvo, T.; Johnson, J.D.; Overbergh, L.; Dunne, J.L. Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Front. Immunol. 2021, 12, 667989. [Google Scholar] [CrossRef] [PubMed]
- Pino, S.C.; Kruger, A.J.; Bortell, R. The role of innate immune pathways in type 1 diabetes pathogenesis. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 126–130. [Google Scholar] [CrossRef]
- Webster, K.L.; Mirmira, R.G. Beta cell dedifferentiation in type 1 diabetes: Sacrificing function for survival? Front. Endocrinol. 2024, 15, 1427723. [Google Scholar] [CrossRef]
- Han, L.; Wu, T.; Zhang, Q.; Qi, A.; Zhou, X. Immune Tolerance Regulation Is Critical to Immune Homeostasis. J. Immunol. Res. 2025, 2025, 5006201. [Google Scholar] [CrossRef]
- Rathod, S. Novel Insights into the Immunotherapy-Based Treatment Strategy for Autoimmune Type 1 Diabetes. Diabetology 2022, 3, 79–96. [Google Scholar] [CrossRef]
- Pugliese, A. Autoreactive T cells in type 1 diabetes. J. Clin. Investig. 2017, 127, 2881–2891. [Google Scholar] [CrossRef]
- Longendyke, R.; Grundman, J.B.; Majidi, S. Acute and Chronic Adverse Outcomes of Type 1 Diabetes. Endocrinol. Metab. Clin. 2024, 53, 123–133. [Google Scholar] [CrossRef]
- Lenzen, S.; Jörns, A. Therapy concepts in type 1 diabetes mellitus treatment: Disease modifying versus curative approaches. J. Mol. Med. 2024, 102, 1451–1455. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; Khunti, K.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S158–S178. [Google Scholar] [CrossRef]
- Tsatsakis, A. Telomeres: Biomarkers of a Healthy Life and Successful Aging; Jenny Stanford Publishing: Singapore, 2025; ISBN 9781040264959. [Google Scholar]
- Alanazi, A.F.R.; Parkinson, G.N.; Haider, S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024, 63, 827–842. [Google Scholar] [CrossRef]
- Cusanelli, E.; Chartrand, P. Telomeric repeat-containing RNA TERRA: A noncoding RNA connecting telomere biology to genome integrity. Front. Genet. 2015, 6, 143. [Google Scholar] [CrossRef]
- Rossiello, F.; Jurk, D.; Passos, J.F.; d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 2022, 24, 135–147. [Google Scholar] [CrossRef]
- Shay, J.W.; Wright, W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019, 20, 299–309. [Google Scholar] [CrossRef]
- Varela-Eirín, M.; Demaria, M. Cellular senescence. Curr. Biol. 2022, 32, R448–R452. [Google Scholar] [CrossRef]
- de Lange, T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev. 2005, 19, 2100–2110. [Google Scholar] [CrossRef]
- Doksani, Y. The Response to DNA Damage at Telomeric Repeats and Its Consequences for Telomere Function. Genes 2019, 10, 318. [Google Scholar] [CrossRef]
- Chakravarti, D.; LaBella, K.A.; DePinho, R.A. Telomeres: History, health, and hallmarks of aging. Cell 2021, 184, 306–322. [Google Scholar] [CrossRef]
- Apetroaei, M.-M.; Fragkiadaki, P.; Velescu, B.S.; Baliou, S.; Renieri, E.; Dinu-Pirvu, C.E.; Drăgănescu, D.; Vlăsceanu, A.M.; Nedea, M.I.; Udeanu, D.I.; et al. Pharmacotherapeutic Considerations on Telomere Biology: The Positive Effect of Pharmacologically Active Substances on Telomere Length. Int. J. Mol. Sci. 2024, 25, 7694. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, H.; Ping, F.; Li, W.; Li, Y. Insulin treatment affects leukocyte telomere length in patients with type 2 diabetes: 6-year longitudinal study. J. Diabetes Complicat. 2019, 33, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes. Metab. 2024, 26, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, R.; Boyle, J.G.; Petrie, J.R. A new perspective on metformin therapy in type 1 diabetes. Diabetologia 2017, 60, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.J.; Hellberg, K.; Turner, M.; Talbott, G.; Kolar, M.J.; Ross, D.S.; Hoxhaj, G.; Saghatelian, A.; Shaw, R.J.; Manning, B.D. Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab. 2017, 25, 463–471. [Google Scholar] [CrossRef]
- Bharath, L.P.; Agrawal, M.; McCambridge, G.; Nicholas, D.A.; Hasturk, H.; Liu, J.; Jiang, K.; Liu, R.; Guo, Z.; Deeney, J.; et al. Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell Metab. 2020, 32, 44–55. [Google Scholar] [CrossRef]
- Cheng, F.-F.; Liu, Y.-L.; Du, J.; Lin, J.-T. Metformin’s Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging Dis. 2022, 13, 970. [Google Scholar] [CrossRef]
- Katsuumi, G.; Shimizu, I.; Suda, M.; Yoshida, Y.; Furihata, T.; Joki, Y.; Hsiao, C.-L.; Jiaqi, L.; Fujiki, S.; Abe, M.; et al. SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. Nat. Aging 2024, 4, 926–938. [Google Scholar] [CrossRef]
- Savage, S.A.; Bertuch, A.A. The genetics and clinical manifestations of telomere biology disorders. Genet. Med. 2010, 12, 753–764. [Google Scholar] [CrossRef]
- Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef]
- Sahin, E.; DePinho, R.A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 2010, 464, 520–528. [Google Scholar] [CrossRef]
- Huang, X.; Huang, L.; Lu, J.; Cheng, L.; Wu, D.; Li, L.; Zhang, S.; Lai, X.; Xu, L. The relationship between telomere length and aging-related diseases. Clin. Exp. Med. 2025, 25, 72. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.I.; Freeman, K.; Ghoneim, D.; Vengassery, A.; Ghezelaiagh, B.; Reinhardt, M.M. Advances in the Conceptualization and Study of Schizophrenia in Later Life. Psychiatr. Clin. 2018, 41, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Damluji, A.A.; Nanna, M.G.; Rymer, J.; Kochar, A.; Lowenstern, A.; Baron, S.J.; Narins, C.R.; Alkhouli, M. Chronological vs Biological Age in Interventional Cardiology. JACC Cardiovasc. Interv. 2024, 17, 961–978. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, Y.; Zhang, S.; Bulloch, G.; Zhang, J.; Liao, H.; Shang, X.; Clark, M.; Peng, Q.; Ge, Z.; et al. Biomarkers of ageing: Current state-of-art, challenges, and opportunities. MedComm–Futur. Med. 2023, 2, e50. [Google Scholar] [CrossRef]
- Mathur, A.; Taurin, S.; Alshammary, S. New insights into methods to measure biological age: A literature review. Front. Aging 2024, 5, 1395649. [Google Scholar] [CrossRef]
- Nieto-Martinez, R.; Carrera-Boada, C.; Corpas, E. Diabetes Mellitus as a Risk Factor for Aging. In Endocrinology of Aging; Elsevier: Amsterdam, The Netherlands, 2021; pp. 577–606. [Google Scholar]
- Gold, N.M.; Okeke, M.N.; He, Y. Involvement of Inheritance in Determining Telomere Length beyond Environmental and Lifestyle Factors. Aging Dis. 2023, 15, 2470. [Google Scholar] [CrossRef]
- Wei, G.; Chen, R.; Liu, S.; Cai, S.; Feng, Z. Telomere Length as Both Cause and Consequence in Type 1 Diabetes: Evidence from Bidirectional Mendelian Randomization. Biomedicines 2025, 13, 774. [Google Scholar] [CrossRef]
- Opstad, T.B.; Berg, T.J.; Holte, K.B.; Arnesen, H.; Solheim, S.; Seljeflot, I. Reduced leukocyte telomere lengths and sirtuin 1 gene expression in long-term survivors of type 1 diabetes: A Dialong substudy. J. Diabetes Investig. 2021, 12, 1183–1192. [Google Scholar] [CrossRef]
- Astrup, A.S.; Tarnow, L.; Jorsal, A.; Lajer, M.; Nzietchueng, R.; Benetos, A.; Rossing, P.; Parving, H.-H. Telomere length predicts all-cause mortality in patients with type 1 diabetes. Diabetologia 2010, 53, 45–48. [Google Scholar] [CrossRef]
- Januszewski, A.S.; Sutanto, S.S.; McLennan, S.; O’Neal, D.N.; Keech, A.C.; Twigg, S.M.; Jenkins, A.J. Shorter telomeres in adults with Type 1 diabetes correlate with diabetes duration, but only weakly with vascular function and risk factors. Diabetes Res. Clin. Pract. 2016, 117, 4–11. [Google Scholar] [CrossRef]
- Svikle, Z.; Pahirko, L.; Zariņa, L.; Baumane, K.; Kardonaite, D.; Radzeviciene, L.; Daugintyte-Petrusiene, L.; Balciuniene, V.J.; Verkauskiene, R.; Tiščuka, A.; et al. Telomere Lengths and Serum Proteasome Concentrations in Patients with Type 1 Diabetes and Different Severities of Diabetic Retinopathy in Latvia and Lithuania. J. Clin. Med. 2022, 11, 2768. [Google Scholar] [CrossRef] [PubMed]
- Diaz, P.C.; Nicolini, H.; Nolasco-Rosales, G.A.; Rojop, I.J.; Tovilla-Zarate, C.A.; Sanchez, E.R.; Genis-Mendoza, A.D. Telomere Shortening in Three Diabetes Mellitus Types in a Mexican Sample. Biomedicines 2023, 11, 730. [Google Scholar] [CrossRef] [PubMed]
- Törn, C.; Liu, X.; Onengut-Gumuscu, S.; Counts, K.M.; Moreno, J.L.; Remedios, C.L.; Chen, W.-M.; LeFaive, J.; Butterworth, M.D.; Akolkar, B.; et al. Telomere length is not a main factor for the development of islet autoimmunity and type 1 diabetes in the TEDDY study. Sci. Rep. 2022, 12, 4516. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Lardone, M.C.; Giraudo, F.; López, P.; Ortiz, E.; Iñiguez, G.; Cassorla, F.; Codner, E. Differential Effect of 2 Hormonal Contraceptives on the Relative Telomere Length of Youth With Type 1 Diabetes. J. Endocr. Soc. 2024, 8, bvae091. [Google Scholar] [CrossRef]
- Fyhrquist, F.; Tiitu, A.; Saijonmaa, O.; Forsblom, C.; Groop, P.-H. Telomere length and progression of diabetic nephropathy in patients with type 1 diabetes. J. Intern. Med. 2010, 267, 278–286. [Google Scholar] [CrossRef]
- Muñoz-Pardeza, J.; López-Gil, J.F.; Huerta-Uribe, N.; Hormazábal-Aguayo, I.; Ojeda-Rodríguez, A.; Marti del Moral, A.; Izquierdo, M.; García-Hermoso, A. Is physical fitness associated with leucocyte telomere length in youth with type 1 diabetes? Pediatr. Res. 2024, 1–6. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, W.; Hu, S.; Yu, X.; Yang, Y. Association between oxidative stress and telomere length in Type 1 and Type 2 diabetic patients. J. Endocrinol. Investig. 2013, 36, 1032–1037. [Google Scholar] [CrossRef]
- Hill, C.; Duffy, S.; Kettyle, L.M.; McGlynn, L.; Sandholm, N.; Salem, R.M.; Thompson, A.; Swan, E.J.; Kilner, J.; Rossing, P.; et al. Differential Methylation of Telomere-Related Genes Is Associated with Kidney Disease in Individuals with Type 1 Diabetes. Genes 2023, 14, 1029. [Google Scholar] [CrossRef]
- Sanchez, M.; Kannengiesser, C.; Hoang, S.; Potier, L.; Fumeron, F.; Venteclef, N.; Scheen, A.; Gautier, J.-F.; Hadjadj, S.; Marre, M.; et al. Leukocyte telomere length, allelic variations in related genes and risk of coronary heart disease in people with long-standing type 1 diabetes. Cardiovasc. Diabetol. 2022, 21, 206. [Google Scholar] [CrossRef]
- Tesovnik, T.; Kovac, J.; Hovnik, T.; Kotnik, P.; Battelino, T.; Podkrajsek, K.T. Association of Average Telomere Length with Body-Mass Index and Vitamin D Status in Juvenile Population with Type 1 Diabetes/Povezava Povprečnih Dolžin Telomerov Z Indeksom Telesne Teže in Vitaminom D Pri Mladostnikih S Sladkorno Boleznijo Tipa 1. Slov. J. Public Health 2015, 54, 74–78. [Google Scholar] [CrossRef]
- Cross, J.A.; Temple, R.C.; Hughes, J.C.; Dozio, N.C.; Brennan, C.; Stanley, K.; Murphy, H.R.; Fowler, D.; Hughes, D.A.; Sampson, M.J. Cord blood telomere length, telomerase activity and inflammatory markers in pregnancies in women with diabetes or gestational diabetes. Diabet. Med. 2010, 27, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.; Hoang, S.; Kannengiesser, C.; Potier, L.; Hadjadj, S.; Marre, M.; Roussel, R.; Velho, G.; Mohammedi, K. Leukocyte Telomere Length, DNA Oxidation, and Risk of Lower-Extremity Amputation in Patients With Long-standing Type 1 Diabetes. Diabetes Care 2020, 43, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.J.; Syreeni, A.; Mutter, S.; Januszewski, A.S.; Groop, P.-H. Telomeres in clinical diabetes research—Moving towards precision medicine in diabetes care? Diabetes Res. Clin. Pract. 2022, 194, 110178. [Google Scholar] [CrossRef]
- Lu, J.; Liu, J.; Li, L.; Lan, Y.; Liang, Y. Cytokines in type 1 diabetes: Mechanisms of action and immunotherapeutic targets. Clin. Transl. Immunol. 2020, 9, e1122. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, Y.; Pan, Y.; Tian, F.; Xu, Y.; Zhang, X.; Zhao, H. The change of serum tumor necrosis factor alpha in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0176157. [Google Scholar] [CrossRef]
- Jahn, L.A.; Logan, B.; Love, K.M.; Horton, W.B.; Eichner, N.Z.; Hartline, L.M.; Weltman, A.L.; Barrett, E.J. Nitric oxide-dependent micro- and macrovascular dysfunction occurs early in adolescents with type 1 diabetes. Am. J. Physiol. Metab. 2022, 322, E101–E108. [Google Scholar] [CrossRef]
- Khaja, A.S.S.; Binsaleh, N.K.; Beg, M.M.A.; Ashfaq, F.; Khan, M.I.; Almutairi, M.G.; Qanash, H.; Saleem, M.; Ginawi, I.A.M. Clinical importance of cytokine (IL-6, IL-8, and IL-10) and vitamin D levels among patients with Type-1 diabetes. Sci. Rep. 2024, 14, 24225. [Google Scholar] [CrossRef]
- Wołoszyn-Durkiewicz, A.; Iwaszkiewicz-Grześ, D.; Świętoń, D.; Kujawa, M.J.; Jankowska, A.; Durawa, A.; Glasner, P.; Trzonkowski, P.; Glasner, L.; Szurowska, E.; et al. The Complex Network of Cytokines and Chemokines in Pediatric Patients with Long-Standing Type 1 Diabetes. Int. J. Mol. Sci. 2024, 25, 1565. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.; Bakery, H.H.; Allam, G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed. Pharmacother. 2018, 101, 287–292. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, F. A complex auxiliary: IL-17/Th17 signaling during type 1 diabetes progression. Mol. Immunol. 2019, 105, 16–31. [Google Scholar] [CrossRef]
- Madonna, R.; Balistreri, C.R.; Geng, Y.-J.; De Caterina, R. Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vascul. Pharmacol. 2017, 90, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cano-Cano, F.; Gómez-Jaramillo, L.; Ramos-García, P.; Arroba, A.I.; Aguilar-Diosdado, M. IL-1β Implications in Type 1 Diabetes Mellitus Progression: Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1303. [Google Scholar] [CrossRef] [PubMed]
- Mandrup-Poulsen, T.; Pickersgill, L.; Donath, M.Y. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2010, 6, 158–166. [Google Scholar] [CrossRef]
- Li, J.; Sun, X.; Luo, S.; Lin, J.; Xiao, Y.; Yu, H.; Huang, G.; Li, X.; Xie, Z.; Zhou, Z. The Positivity Rate of IA-2A and ZnT8A in the Chinese Han Population With Type 1 Diabetes Mellitus: Association With rs1143627 and rs1143643 Polymorphisms in the IL1B Gene. Front. Pharmacol. 2021, 12, 729890. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Gomes, K.B. IL-6 and type 1 diabetes mellitus: T cell responses and increase in IL-6 receptor surface expression. Ann. Transl. Med. 2017, 5, 16. [Google Scholar] [CrossRef]
- Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234–248. [Google Scholar] [CrossRef]
- Hundhausen, C.; Roth, A.; Whalen, E.; Chen, J.; Schneider, A.; Long, S.A.; Wei, S.; Rawlings, R.; Kinsman, M.; Evanko, S.P.; et al. Enhanced T cell responses to IL-6 in type 1 diabetes are associated with early clinical disease and increased IL-6 receptor expression. Sci. Transl. Med. 2016, 8, 356ra119. [Google Scholar] [CrossRef]
- D’Agostino, S.; Valentini, G.; Dolci, M. Exploring Interleukin Levels in Type 1 Diabetes and Periodontitis: A Review with a Focus on Childhood. Children 2024, 11, 238. [Google Scholar] [CrossRef]
- Mehta, A.K.; Gracias, D.T.; Croft, M. TNF activity and T cells. Cytokine 2018, 101, 14–18. [Google Scholar] [CrossRef]
- McSorley, S.J.; Soldera, S.; Malherbe, L.; Carnaud, C.; Locksley, R.M.; Flavell, R.A.; Glaichenhaus, N. Immunological Tolerance to a Pancreatic Antigen as a Result of Local Expression of TNFα by Islet β Cells. Immunity 1997, 7, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Bazzaz, J.T.; Amoli, M.M.; Taheri, Z.; Larijani, B.; Pravica, V.; Hutchinson, I.V. TNF-α and IFN-γ gene variation and genetic susceptibility to type 1 diabetes and its microangiopathic complications. J. Diabetes Metab. Disord. 2014, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Bazile, C.; Abdel Malik, M.M.; Ackeifi, C.; Anderson, R.L.; Beck, R.W.; Donath, M.Y.; Dutta, S.; Hedrick, J.A.; Karpen, S.R.; Kay, T.W.H.; et al. TNF-α inhibitors for type 1 diabetes: Exploring the path to a pivotal clinical trial. Front. Immunol. 2024, 15, 1470677. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, F.; Cui, Y.; Cui, C.; Cao, Z.; Xu, K.; Han, S.; Zhu, P.; Sun, Y. The Association between Depression and Type 1 Diabetes Mellitus: Inflammatory Cytokines as Ferrymen in between? Mediat. Inflamm. 2019, 2019, 2987901. [Google Scholar] [CrossRef]
- Ozgur, B.A.; Cinar, S.A.; Coskunpinar, E.; Yilmaz, A.; Altunkanat, D.; Deniz, G.; Gurol, A.O.; Yilmaz, M.T. The role of cytokines and T-bet, GATA3, ROR-γt, and FOXP3 transcription factors of T cell subsets in the natural clinical progression of Type 1 Diabetes. Immunol. Res. 2023, 71, 451–462. [Google Scholar] [CrossRef]
- dos Santos Haber, J.F.; Barbalho, S.M.; Sgarbi, J.A.; de Argollo Haber, R.S.; de Labio, R.W.; Laurindo, L.F.; Chagas, E.F.B.; Payão, S.L.M. The Relationship between Type 1 Diabetes Mellitus, TNF-α, and IL-10 Gene Expression. Biomedicines 2023, 11, 1120. [Google Scholar] [CrossRef]
- Pobezinskaya, Y.L.; Liu, Z. The role of TRADD in death receptor signaling. Cell Cycle 2012, 11, 871–876. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Y.; Xiong, X.; Zheng, Y.; Liu, X.; Wang, W.; Meng, G. Roles of the adaptor protein tumor necrosis factor receptor type 1-associated death domain protein (TRADD) in human diseases. Biomed. Pharmacother. 2022, 153, 113467. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Courtois, G.; Fauvarque, M.-O. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018, 6, 43. [Google Scholar] [CrossRef]
- De George, D.J.; Ge, T.; Krishnamurthy, B.; Kay, T.W.H.; Thomas, H.E. Inflammation versus regulation: How interferon-gamma contributes to type 1 diabetes pathogenesis. Front. Cell Dev. Biol. 2023, 11, 1205590. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ye, L.; Bai, Y.; Mojidi, H.; Simister, N.E.; Zhu, X. Activation of the JAK/STAT-1 Signaling Pathway by IFN-γ Can Down-Regulate Functional Expression of the MHC Class I-Related Neonatal Fc Receptor for IgG. J. Immunol. 2008, 181, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Wu, C.; Zhang, Y.-J. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism. Front. Immunol. 2017, 8, 1758. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.A.; Richardson, S.J.; Morgan, N.G. The role of the interferon/JAK-STAT axis in driving islet HLA-I hyperexpression in type 1 diabetes. Front. Endocrinol. 2023, 14, 1270325. [Google Scholar] [CrossRef]
- Israel, A. The IKK Complex, a Central Regulator of NF- B Activation. Cold Spring Harb. Perspect. Biol. 2010, 2, a000158. [Google Scholar] [CrossRef]
- Jurk, D.; Wilson, C.; Passos, J.F.; Oakley, F.; Correia-Melo, C.; Greaves, L.; Saretzki, G.; Fox, C.; Lawless, C.; Anderson, R.; et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2014, 5, 4172. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef]
- Liu, S.; Nong, W.; Ji, L.; Zhuge, X.; Wei, H.; Luo, M.; Zhou, L.; Chen, S.; Zhang, S.; Lei, X.; et al. The regulatory feedback of inflammatory signaling and telomere/telomerase complex dysfunction in chronic inflammatory diseases. Exp. Gerontol. 2023, 174, 112132. [Google Scholar] [CrossRef]
- Victorelli, S.; Passos, J.F. Telomeres and Cell Senescence—Size Matters Not. EBioMedicine 2017, 21, 14–20. [Google Scholar] [CrossRef]
- Liao, P.; Yan, B.; Wang, C.; Lei, P. Telomeres: Dysfunction, Maintenance, Aging and Cancer. Aging Dis. 2024, 15, 2595–2631. [Google Scholar] [CrossRef]
- Abdelazim, A.M.; Abomughaid, M.M. Oxidative stress: An overview of past research and future insights. All. Life 2024, 17, 2316092. [Google Scholar] [CrossRef]
- Scărlătescu, A.-I.; Voicu, S.N.; Pițuru, M.; Apetroaei, M.-M.; Velescu, B.S.; Udeanu, D.I.; Nedea, M.-I.; Arsene, A.L. Probiotic Effects on Oxidative Stress Pathways in Diabetes. Farmacia 2024, 72, 1437–1449. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, H.K.; Pereira, M.; Rajavelu, I.; Jayaraman, V.; Krishna, K.; Wang, T.; Bei, K.; Rajasekaran, J.J. Oxidative stress: Fundamentals and advances in quantification techniques. Front. Chem. 2024, 12, 1470458. [Google Scholar] [CrossRef]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. Oxidative Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef]
- Barnes, R.P.; Fouquerel, E.; Opresko, P.L. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech. Ageing Dev. 2019, 177, 37–45. [Google Scholar] [CrossRef]
- Ahmed, W.; Lingner, J. Impact of oxidative stress on telomere biology. Differentiation 2018, 99, 21–27. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Olsson, M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol. Ecol. 2022, 31, 6040–6052. [Google Scholar] [CrossRef]
- Boiteux, S.; Coste, F.; Castaing, B. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic. Biol. Med. 2017, 107, 179–201. [Google Scholar] [CrossRef]
- de Zio, D.; Cianfanelli, V.; Cecconi, F. New Insights into the Link Between DNA Damage and Apoptosis. Antioxid. Redox Signal. 2013, 19, 559–571. [Google Scholar] [CrossRef]
- Gavia-García, G.; Rosado-Pérez, J.; Arista-Ugalde, T.L.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. Biology 2021, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Lingner, J. PRDX1 Counteracts Catastrophic Telomeric Cleavage Events That Are Triggered by DNA Repair Activities Post Oxidative Damage. Cell Rep. 2020, 33, 108347. [Google Scholar] [CrossRef] [PubMed]
- Aeby, E.; Ahmed, W.; Redon, S.; Simanis, V.; Lingner, J. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase. Cell Rep. 2016, 17, 3107–3114. [Google Scholar] [CrossRef]
- Gu, L.; Liu, M.; Zhang, Y.; Zhou, H.; Wang, Y.; Xu, Z.-X. Telomere-related DNA damage response pathways in cancer therapy: Prospective targets. Front. Pharmacol. 2024, 15, 1379166. [Google Scholar] [CrossRef]
- Ojo, O.A.; Ibrahim, H.S.; Rotimi, D.E.; Ogunlakin, A.D.; Ojo, A.B. Diabetes mellitus: From molecular mechanism to pathophysiology and pharmacology. Med. Nov. Technol. Devices 2023, 19, 100247. [Google Scholar] [CrossRef]
- Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef]
- Tse, H.M.; Thayer, T.C.; Steele, C.; Cuda, C.M.; Morel, L.; Piganelli, J.D.; Mathews, C.E. NADPH Oxidase Deficiency Regulates Th Lineage Commitment and Modulates Autoimmunity. J. Immunol. 2010, 185, 5247–5258. [Google Scholar] [CrossRef]
- Thayer, T.C.; Delano, M.; Liu, C.; Chen, J.; Padgett, L.E.; Tse, H.M.; Annamali, M.; Piganelli, J.D.; Moldawer, L.L.; Mathews, C.E. Superoxide Production by Macrophages and T Cells Is Critical for the Induction of Autoreactivity and Type 1 Diabetes. Diabetes 2011, 60, 2144–2151. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Chernatynskaya, A.V.; Newby, B.; Brusko, T.M.; Xu, Y.; Barra, J.M.; Morgan, N.; Santarlas, C.; Reeves, W.H.; et al. NADPH Oxidase 2–Derived Reactive Oxygen Species Promote CD8+ T Cell Effector Function. J. Immunol. 2024, 212, 258–270. [Google Scholar] [CrossRef]
- Leiding, J.W.; Mathews, C.E.; Arnold, D.E.; Chen, J. The Role of NADPH Oxidase 2 in Leukocytes. Antioxidants 2025, 14, 309. [Google Scholar] [CrossRef]
- Padgett, L.E.; Broniowska, K.A.; Hansen, P.A.; Corbett, J.A.; Tse, H.M. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann. Acad. Sci. 2013, 1281, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Lee, N.; Choi, S.-E.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Kang, Y.; Lee, K.W.; Kim, H.J. Amphiregulin Induces iNOS and COX-2 Expression through NF-κB and MAPK Signaling in Hepatic Inflammation. Mediat. Inflamm. 2023, 2023, 2364121. [Google Scholar] [CrossRef] [PubMed]
- Yee, Y.H.; Chong, S.J.F.; Kong, L.R.; Goh, B.C.; Pervaiz, S. Sustained IKKβ phosphorylation and NF-κB activation by superoxide-induced peroxynitrite-mediated nitrotyrosine modification of B56γ3 and PP2A inactivation. Redox Biol. 2021, 41, 101834. [Google Scholar] [CrossRef]
- Papi, S.; Ahmadizar, F.; Hasanvand, A. The role of nitric oxide in inflammation and oxidative stress. Immunopathol. Persa 2019, 5, e08. [Google Scholar] [CrossRef]
- Anavi, S.; Tirosh, O. iNOS as a metabolic enzyme under stress conditions. Free Radic. Biol. Med. 2020, 146, 16–35. [Google Scholar] [CrossRef]
- Korac, B.; Kalezic, A.; Pekovic-Vaughan, V.; Korac, A.; Jankovic, A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol. 2021, 42, 101887. [Google Scholar] [CrossRef]
- Jiang, Y.; He, P.; Sheng, K.; Peng, Y.; Wu, H.; Qian, S.; Ji, W.; Guo, X.; Shan, X. The protective roles of eugenol on type 1 diabetes mellitus through NRF2-mediated oxidative stress pathway. eLife 2025, 13, RP96600. [Google Scholar] [CrossRef]
- Yagishita, Y.; Uruno, A.; Chartoumpekis, D.V.; Kensler, T.W.; Yamamoto, M. Nrf2 represses the onset of type 1 diabetes in non-obese diabetic mice. J. Endocrinol. 2019, 240, 403–416. [Google Scholar] [CrossRef]
- Dodson, M.; Shakya, A.; Anandhan, A.; Chen, J.; Garcia, J.G.N.; Zhang, D.D. NRF2 and Diabetes: The Good, the Bad, and the Complex. Diabetes 2022, 71, 2463–2476. [Google Scholar] [CrossRef]
- Li, W.; Khor, T.O.; Xu, C.; Shen, G.; Jeong, W.-S.; Yu, S.; Kong, A.-N. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76, 1485–1489. [Google Scholar] [CrossRef]
- Rushworth, S.A.; Shah, S.; MacEwan, D.J. TNF Mediates the Sustained Activation of Nrf2 in Human Monocytes. J. Immunol. 2011, 187, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Stimpson, S.E.; Fernandez-Bueno, G.A.; Mathews, C.E. Mitochondrial Reactive Oxygen Species and Type 1 Diabetes. Antioxid. Redox Signal. 2018, 29, 1361–1372. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.A.; Li, S.; Jairaman, A.; Prakriya, M.; Ezponda, T.; Hildeman, D.A.; Wang, C.-R.; Schumacker, P.T.; Licht, J.D.; Perlman, H.; et al. Mitochondria Are Required for Antigen-Specific T Cell Activation through Reactive Oxygen Species Signaling. Immunity 2013, 38, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Silva-Rodrigues, T.; De-Souza-Ferreira, E.; Machado, C.M.; Cabral-Braga, B.; Rodrigues-Ferreira, C.; Galina, A. Hyperglycemia in a type 1 Diabetes Mellitus model causes a shift in mitochondria coupled-glucose phosphorylation and redox metabolism in rat brain. Free Radic. Biol. Med. 2020, 160, 796–806. [Google Scholar] [CrossRef]
- Burg, A.R.; Tse, H.M. Redox-Sensitive Innate Immune Pathways During Macrophage Activation in Type 1 Diabetes. Antioxid. Redox Signal. 2018, 29, 1373–1398. [Google Scholar] [CrossRef]
- Popoviciu, M.S.; Kaka, N.; Sethi, Y.; Patel, N.; Chopra, H.; Cavalu, S. Type 1 Diabetes Mellitus and Autoimmune Diseases: A Critical Review of the Association and the Application of Personalized Medicine. J. Pers. Med. 2023, 13, 422. [Google Scholar] [CrossRef]
- Missiroli, S.; Genovese, I.; Perrone, M.; Vezzani, B.; Vitto, V.A.M.; Giorgi, C. The Role of Mitochondria in Inflammation: From Cancer to Neurodegenerative Disorders. J. Clin. Med. 2020, 9, 740. [Google Scholar] [CrossRef]
- Barlow, J.; Solomon, T.P.J.; Affourtit, C. Pro-inflammatory cytokines attenuate glucose-stimulated insulin secretion from INS-1E insulinoma cells by restricting mitochondrial pyruvate oxidation capacity—Novel mechanistic insight from real-time analysis of oxidative phosphorylation. PLoS ONE 2018, 13, e0199505. [Google Scholar] [CrossRef]
- Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018, 592, 728–742. [Google Scholar] [CrossRef]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta-Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Chen, J.; Chernatynskaya, A.V.; Li, J.-W.; Kimbrell, M.R.; Cassidy, R.J.; Perry, D.J.; Muir, A.B.; Atkinson, M.A.; Brusko, T.M.; Mathews, C.E. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci. Rep. 2017, 7, 10835. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.-S.; Chung, J.H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp. Mol. Med. 2023, 55, 510–519. [Google Scholar] [CrossRef]
- Sivitz, W.I.; Yorek, M.A. Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities. Antioxid. Redox Signal. 2010, 12, 537–577. [Google Scholar] [CrossRef] [PubMed]
- She, Y.; Yu, M.; Wang, L.; Wang, Y.; Fang, P.; Zhang, Z. Emerging Protective Actions of PGC-1α in Diabetic Nephropathy. Oxidative Med. Cell. Longev. 2022, 2022, 6580195. [Google Scholar] [CrossRef]
- Rius-Pérez, S.; Torres-Cuevas, I.; Millán, I.; Ortega, Á.L.; Pérez, S. PGC-1 α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxidative Med. Cell. Longev. 2020, 2020, 1452696. [Google Scholar] [CrossRef]
- Gottlieb, D.; Abushamat, L.A.; Nadeau, K.J.; Regensteiner, J.G.; Reusch, J.E.B.; Tommerdahl, K.L.; Rice, J.; Knaub, L.A.; Monaco, C.M.F.; Hawke, T.J.; et al. Muscle mitochondrial function is impaired in adults with type 1 diabetes. J. Diabetes Complicat. 2024, 38, 108798. [Google Scholar] [CrossRef]
- Muniyappa, H.; Das, K.C. Activation of c-Jun N-terminal kinase (JNK) by widely used specific p38 MAPK inhibitors SB202190 and SB203580: A MLK-3-MKK7-dependent mechanism. Cell. Signal. 2008, 20, 675–683. [Google Scholar] [CrossRef]
- Yapryntseva, M.A.; Zhivotovsky, B.; Gogvadze, V. Permeabilization of the outer mitochondrial membrane: Mechanisms and consequences. Biochim. Biophys. Acta-Mol. Basis Dis. 2024, 1870, 167317. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, T.; Huang, S.; Zhang, Z. Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate Immunity. J. Innate Immun. 2023, 15, 665–679. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kuk, M.U.; So, M.K.; Song, E.S.; Lee, H.; Ahn, S.K.; Kwon, H.W.; Park, J.T.; Park, S.C. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants 2023, 12, 934. [Google Scholar] [CrossRef] [PubMed]
- Sedelnikova, O.A.; Redon, C.E.; Dickey, J.S.; Nakamura, A.J.; Georgakilas, A.G.; Bonner, W.M. Role of oxidatively induced DNA lesions in human pathogenesis. Mutat. Res. Mutat. Res. 2010, 704, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Cannan, W.J.; Pederson, D.S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J. Cell. Physiol. 2016, 231, 3–14. [Google Scholar] [CrossRef]
- Coluzzi, E.; Leone, S.; Sgura, A. Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest. Cells 2019, 8, 19. [Google Scholar] [CrossRef]
- Wang, C.; Guan, Y.; Yang, J. Cytokines in the Progression of Pancreatic β-Cell Dysfunction. Int. J. Endocrinol. 2010, 2010, 515136. [Google Scholar] [CrossRef]
- Oleson, B.J.; Corbett, J.A. Dual Role of Nitric Oxide in Regulating the Response of β Cells to DNA Damage. Antioxid. Redox Signal. 2018, 29, 1432–1445. [Google Scholar] [CrossRef]
- Ragu, S.; Matos-Rodrigues, G.; Lopez, B.S. Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Genes 2020, 11, 409. [Google Scholar] [CrossRef]
- Kumari, R.; Jat, P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. Cell Dev. Biol. 2021, 9, 645593. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, X.; Wang, S.; Mao, G. DNA damage response(DDR): A link between cellular senescence and human cytomegalovirus. Virol. J. 2023, 20, 250. [Google Scholar] [CrossRef]
- Sarma, P.A.; Abbadie, C.; de Launoit, Y.; Cleri, F. Cell Senescence and the DNA Single-Strand Break Damage Repair Pathway. DNA 2024, 4, 530–552. [Google Scholar] [CrossRef]
- Dylgjeri, E.; Knudsen, K.E. DNA-PKcs: A Targetable Protumorigenic Protein Kinase. Cancer Res. 2022, 82, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Marechal, A.; Zou, L. DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harb. Perspect. Biol. 2013, 5, a012716. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Agrawal, R.; Pandey, A.; Kopf, S.; Hoeffgen, M.; Kaymak, S.; Bandapalli, O.R.; Gorbunova, V.; Seluanov, A.; Mall, M.A.; et al. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J. 2020, 39, e103477. [Google Scholar] [CrossRef]
- Giovannini, C.; Piaggi, S.; Federico, G.; Scarpato, R. High levels of γ-H2AX foci and cell membrane oxidation in adolescents with type 1 diabetes. Mutat. Res. Mol. Mech. Mutagen. 2014, 770, 128–135. [Google Scholar] [CrossRef]
- Mijit, M.; Caracciolo, V.; Melillo, A.; Amicarelli, F.; Giordano, A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020, 10, 420. [Google Scholar] [CrossRef]
- Chen, J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 2016, 6, a026104. [Google Scholar] [CrossRef]
- Ohtani, N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): Can it be controlled by senolysis? Inflamm. Regen. 2022, 42, 11. [Google Scholar] [CrossRef]
- Wang, L.; Hong, W.; Zhu, H.; He, Q.; Yang, B.; Wang, J.; Weng, Q. Macrophage senescence in health and diseases. Acta Pharm. Sin. 2024, 14, 1508–1524. [Google Scholar] [CrossRef]
- Kale, A.; Sharma, A.; Stolzing, A.; Desprez, P.-Y.; Campisi, J. Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing 2020, 17, 16. [Google Scholar] [CrossRef]
- Yue, Z.; Nie, L.; Zhao, P.; Ji, N.; Liao, G.; Wang, Q. Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Front. Immunol. 2022, 13, 1019313. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Yamamoto, S.; Chikenji, T.S. Role of cellular senescence in inflammation and regeneration. Inflamm. Regen. 2024, 44, 28. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Aguayo-Mazzucato, C.; Thompson, P.J. Pancreatic β-cell senescence in diabetes: Mechanisms, markers and therapies. Front. Endocrinol. 2023, 14, 1212716. [Google Scholar] [CrossRef] [PubMed]
- Herold, K.C.; Delong, T.; Perdigoto, A.L.; Biru, N.; Brusko, T.M.; Walker, L.S.K. The immunology of type 1 diabetes. Nat. Rev. Immunol. 2024, 24, 435–451. [Google Scholar] [CrossRef]
- Han, J.; Wu, M.; Liu, Z. Dysregulation in IFN-γ signaling and response: The barricade to tumor immunotherapy. Front. Immunol. 2023, 14, 1190333. [Google Scholar] [CrossRef]
- Shapiro, M.R.; Dong, X.; Perry, D.J.; McNichols, J.M.; Thirawatananond, P.; Posgai, A.L.; Peters, L.D.; Motwani, K.; Musca, R.S.; Muir, A.; et al. Human immune phenotyping reveals accelerated aging in type 1 diabetes. JCI Insight 2023, 8, e170767. [Google Scholar] [CrossRef]
- Yu, T.; Slone, J.; Liu, W.; Barnes, R.; Opresko, P.L.; Wark, L.; Mai, S.; Horvath, S.; Huang, T. Premature aging is associated with higher levels of 8-oxoguanine and increased DNA damage in the Polg mutator mouse. Aging Cell 2022, 21, e13669. [Google Scholar] [CrossRef]
- Dinić, S.; Jovanović, J.A.; Uskoković, A.; Mihailović, M.; Grdović, N.; Tolić, A.; Rajić, J.; Đorđević, M.; Vidaković, M. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management. Front. Endocrinol. 2022, 13, 1006376. [Google Scholar] [CrossRef]
- Bhattarai, S.; Godsland, I.F.; Misra, S.; Johnston, D.G.; Oliver, N. Metabolic health and vascular complications in type 1 diabetes. J. Diabetes Complicat. 2019, 33, 634–640. [Google Scholar] [CrossRef]
- ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Bajaj, M.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Echouffo-Tcheugui, J.B.; Ekhlaspour, L.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S181–S206. [Google Scholar] [CrossRef]
- Holt, R.I.G.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021, 44, 2589–2625. [Google Scholar] [CrossRef]
- Chaithanya, V.; Kumar, J.; Leela, K.V.; Murugesan, R.; Angelin, M.; Satheesan, A. Impact of telomere attrition on diabetes mellitus and its complications. Diabetes Epidemiol. Manag. 2023, 12, 100174. [Google Scholar] [CrossRef]
- He, X.; Cao, L.; Fu, X.; Wu, Y.; Wen, H.; Gao, Y.; Huo, W.; Wang, M.; Liu, M.; Su, Y.; et al. The Association Between Telomere Length and Diabetes Mellitus: Accumulated Evidence From Observational Studies. J. Clin. Endocrinol. Metab. 2024, 110, e177–e185. [Google Scholar] [CrossRef]
- Sawicki, K.; Matysiak-Kucharek, M.; Gorczyca-Siudak, D.; Kruszewski, M.; Kurzepa, J.; Kapka-Skrzypczak, L.; Dziemidok, P. Leukocyte Telomere Length as a Marker of Chronic Complications in Type 2 Diabetes Patients: A Risk Assessment Study. Int. J. Mol. Sci. 2024, 26, 290. [Google Scholar] [CrossRef] [PubMed]
- Rusu, R.; Ababei, D.; Macadan, I.; Ciobîcă, A.; Paraschiv, M.; Bild, W.; Moraru, A.; Nicolae, C.; Bild, V. Factors that influence treatment adherence—Realities, controversies, perspectives. Farmacia 2023, 71, 638–647. [Google Scholar] [CrossRef]
- Galiè, S.; Canudas, S.; Muralidharan, J.; García-Gavilán, J.; Bulló, M.; Salas-Salvadó, J. Impact of Nutrition on Telomere Health: Systematic Review of Observational Cohort Studies and Randomized Clinical Trials. Adv. Nutr. 2020, 11, 576–601. [Google Scholar] [CrossRef]
- Schellnegger, M.; Lin, A.C.; Hammer, N.; Kamolz, L.-P. Physical Activity on Telomere Length as a Biomarker for Aging: A Systematic Review. Sport. Med.-Open 2022, 8, 111. [Google Scholar] [CrossRef]
- Borhade, M.; Yashi, K.; Singh, S. Diabetes and Exercise; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Baliou, S.; Ioannou, P.; Apetroaei, M.-M.; Vakonaki, E.; Fragkiadaki, P.; Kirithras, E.; Tzatzarakis, M.N.; Arsene, A.L.; Docea, A.O.; Tsatsakis, A. The Impact of the Mediterranean Diet on Telomere Biology: Implications for Disease Management—A Narrative Review. Nutrients 2024, 16, 2525. [Google Scholar] [CrossRef]
- Kaushik, A.; Rekhi, T.K.; Puri, S.; Tandon, N. Nutritional Guidelines for Patients with Type 1 Diabetes Mellitus and its Adherence- A Narrative Review. Indian J. Endocrinol. Metab. 2024, 28, 461–469. [Google Scholar] [CrossRef]
Theory | Mechanism | Reference |
---|---|---|
Autoimmune destruction | Genetic susceptibility + environmental trigger → loss of tolerance → activation of CD4+/CD8+ T cells → islet infiltration → β-cell attack → progressive β-cell destruction | [8] |
Cytokine-mediated death | Th1 cells, macrophages → IFN-γ, TNF-α, IL-1β release → oxidative stress + ER stress in β-cells → activation of death pathways → apoptosis | [8,9] |
Bystander activation | Local inflammation → cytokines (e.g., IL-2) + innate signals (TLRs) activate APCs and some immune cells → not antigen-independent T cell activation → self-antigens act as drivers of autoimmunity | [10] |
Molecular mimicry | Structural similarities between viral/environmental antigens and β-cell proteins → cross-reactive T cell activation → immune attack on β-cells | [11,12] |
Defective central tolerance | Thymic deletion failure (e.g., AIRE/INS mutation) → escape of autoreactive T cells → peripheral activation → β-cell targeting | [13] |
Neoantigen formation | β-cell stress → post-translational modifications (PTMs) or hybrid insulin peptides (HIPs) → formation of novel epitopes → presented via MHC → activation of autoreactive T cells | [14] |
Innate immune activation | Innate cells (macrophages) respond to stress/injury → cytokine release → recruitment + activation of T cells → β-cell destruction → innate-adaptive immune synergy drives autoimmunity | [15] |
Dedifferentiation | Inflammatory cytokines → stress pathway activation → repression of β-cell identity genes (PDX1, MAFA) → loss of insulin expression → emergence of progenitor-like state → β-cell failure | [16] |
Group | TL Assessment | Results | Reference |
---|---|---|---|
102 long-term T1D (≥45 years duration) vs. 55 healthy controls | Singleplex qPCR | TL and SIRT1 mRNA lower in T1D; TL shorter in CHD subgroup; inversely correlated with HbA1c; chronic hyperglycaemia, triglycerides, and inflammation likely contribute to telomere attrition. | [51] |
157 T1D with nephropathy vs. 116 normoalbuminuric T1D; 11-year follow-up | Southern blot (terminal restriction fragment analysis) | TL not different between groups; shorter TL independently predicted all-cause mortality; inversely correlated with age, diabetes duration, and systolic BP; suggests TL reflects biological ageing and vascular stress. | [52] |
199 T1D (128 without and 71 with vascular complications) vs. 140 non-diabetic controls | qPCR | TL shorter in T1D vs. controls; inversely correlated with age and diabetes duration; not different by complication status; weak negative correlation with pulse pressure; no significant correlation with HbA1c, insulin sensitivity, oxidative stress or most inflammation markers. Independent predictors: age and T1D presence. | [53] |
306 T1D: 187 with NDR/NPDR, 119 with PDR/LPC | qPCR | TL longer in PDR/LPC vs. NDR/NPDR (p = 0.036); in NDR/NPDR, TL negatively correlated with age, BMI, waist/hip ratio, LDL, cholesterol; no such correlations in PDR/LPC; suggests altered telomere regulation in advanced DR. | [54] |
115 patients: 72 LADA, 13 LADY, 30 T2D (cross-sectional, GADA-based classification) | qPCR | TL shorter in LADA vs. T2D (p = 0.0121); no difference vs. LADY; longer TL in T2D taking metformin + insulin; suggests protective effect of therapy and possible autoimmunity-linked attrition in LADA. | [55] |
1119 children with high-risk HLA genotypes; nested case–control for IA (n = 389) and T1D (n = 118) | Whole-genome sequencing (WGS); Computel tool used to estimate TL from FASTQ data | TL not associated with risk for IA or T1D; shorter TL in children from Sweden and Finland; paternal age positively correlated with TL; TL influenced by HLA genotype (DR4/4 or DR4/X = longer TL), but no causal link to T1D development. | [56] |
39 AYA-T1D and 40 controls; non-randomised prospective; 18-month COC vs. IM | MM-qPCR on PBMC DNA; validated with Flow-FISH | IM increased TL in AYA-T1D; COC caused TL reduction; hs-CRP negatively correlated with TL in T1D; oestrogen (EE) linked to inflammatory telomere shortening. | [57] |
132 T1D (48 normo-, 7 micro-, 77 macroalbuminuria); 44 controls; 6.9-year follow-up | Southern blot | Progressors had shorter TL and higher % of short telomeres; both were independent predictors of nephropathy progression; reflects oxidative stress and inflammatory ageing in T1D. | [58] |
83 T1D youth (6–18 years), 1-year longitudinal cohort | MM-qPCR (Cawthon method, T/S ratio from leukocytes) | At baseline, TL positively correlated with 1RM, muscle power, and overall fitness; no associations at 1-year follow-up; suggests muscle strength may support telomere maintenance via anti-inflammatory and antioxidant mechanisms. | [59] |
34 T1D, 62 T2D, 40 controls (cross-sectional, Chinese Han) | qPCR | TL significantly shorter in T1D vs. controls; 8-OHdG level elevated in T1D; 8-OHdG was an independent negative predictor of TL; suggests oxidative stress–driven telomere attrition in T1D. | [60] |
1147 T1D: 536 with DKD vs. 611 with ≥15 year T1D and no DKD | Monochrome qPCR | TL significantly shorter in DKD vs. controls (p = 6.6 × 10−5; p = 0.028 after adjustment); methylation analysis of 1091 CpGs in 376 telomere genes revealed differential patterns (496 in DKD, 412 in ESKD); top genes: MAD1L1, PFKP, TUBB; Wnt signalling and chromosomal maintenance implicated. | [61] |
260 T1D (GENEDIAB cohort) + 767 pooled T1D (GENEDIAB + GENESIS); 12–15 year follow-up | Monochrome multiplex qPCR | Short TL predicted CHD (HR 3.14) and all-cause mortality (HR 1.63); SNPs in TERT, TERC, NAF1, TNKS, MEN1, BICD1 also associated with CHD; suggests telomere shortening and genetic susceptibility contribute to vascular ageing in T1D. | [62] |
53 children with newly diagnosed T1D (age 4–14) | Monochrome multiplex qPCR (MM-qPCR, T/S ratio; β-globin reference) | Shorter TL associated with higher BMI-SDS (p = 0.049); vitamin D levels negatively correlated with BMI-SDS; no correlation between ATL and vitamin D, HbA1c, or age at onset; suggests BMI-linked inflammation may drive telomere shortening in T1D youth. | [63] |
26 T1D, 20 T2D, 71 GDM pregnancies vs. 127 controls; cord blood samples | Flow-FISH (CBMC telomere length by MESF units); telomerase by PCR-ELISA | No difference in cord blood TL across groups; telomerase activity ↑ in T1D and GDM vs. controls (p < 0.05); suggests upregulated telomerase as compensation for in utero telomere damage from oxidative stress. | [64] |
478 long-standing T1D (GENEDIAB cohort); 10-year follow-up | Monochrome qPCR | Short TL independently predicted baseline and incident LEA; HR ~0.25–0.29 for longer vs. shortest tertile; 8-OHdG associated with LEA only in partially adjusted models; TL attrition reflects vascular ageing and oxidative DNA damage. | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apetroaei, M.-M.; Baliou, S.; Ioannou, P.; Fandridis, E.; Arsene, A.L.; Tsatsakis, A. Accelerated Ageing in Type 1 Diabetes: A Focus on Molecular Mechanisms Underlying Telomere Shortening. Diabetology 2025, 6, 58. https://doi.org/10.3390/diabetology6070058
Apetroaei M-M, Baliou S, Ioannou P, Fandridis E, Arsene AL, Tsatsakis A. Accelerated Ageing in Type 1 Diabetes: A Focus on Molecular Mechanisms Underlying Telomere Shortening. Diabetology. 2025; 6(7):58. https://doi.org/10.3390/diabetology6070058
Chicago/Turabian StyleApetroaei, Miruna-Maria, Stella Baliou, Petros Ioannou, Emmanouil Fandridis, Andreea Letitia Arsene, and Aristidis Tsatsakis. 2025. "Accelerated Ageing in Type 1 Diabetes: A Focus on Molecular Mechanisms Underlying Telomere Shortening" Diabetology 6, no. 7: 58. https://doi.org/10.3390/diabetology6070058
APA StyleApetroaei, M.-M., Baliou, S., Ioannou, P., Fandridis, E., Arsene, A. L., & Tsatsakis, A. (2025). Accelerated Ageing in Type 1 Diabetes: A Focus on Molecular Mechanisms Underlying Telomere Shortening. Diabetology, 6(7), 58. https://doi.org/10.3390/diabetology6070058