Age-Dependent Loss of Sirtuin1 (Sirt1) Correlates with Reduced Autophagy in Type 2 Diabetic Patients (T2DM)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. PBMC Isolation
2.3. Western Blot
2.4. Cytokine Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Reduced SIRT1 in PBMCs of Diabetic Patients Is Associated with Aging
3.3. Decreased SIRT1 Expression Is Associated with Decreased LC3 II/I Levels and p62 Levels
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- The International Diabetes Federation. IDF Atlas, 9th ed.; IDF: Brussels, Belgium, 2019; Available online: https://www.diabetesatlas.org/en/resources/ (accessed on 23 September 2020).
- Chang, A.M.; Halter, J.B. Aging and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E7–E12. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef] [PubMed]
- Muller, L.M.; Gorter, K.J.; Hak, E.; Goudzwaard, W.L.; Schellevis, F.G.; Hoepelman, A.I.; Rutten, G.E. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis. 2005, 41, 281–288. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest. 2006, 116, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Fischer, J.; Gutierrez, S.; Ganesan, R.; Calabrese, C.; Ranjan, R.; Cildir, G.; Hos, N.J.; Rybniker, J.; Wolke, M.; Fries, J.W.U.; et al. Leptin signaling impairs macrophage defenses against Salmonella Typhimurium. Proc. Natl. Acad. Sci. USA 2019, 116, 16551–16560. [Google Scholar] [CrossRef]
- Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diab. Rep. 2013, 13, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.C.; Mattock, M.B.; Chusney, G.D.; Burt, D. NIDDM as a disease of the innate immune system: Association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997, 40, 1286–1292. [Google Scholar] [CrossRef]
- Spranger, J.; Kroke, A.; Möhlig, M.; Hoffmann, K.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003, 52, 812–817. [Google Scholar] [CrossRef]
- Schmidt, M.I.; Duncan, B.B.; Sharrett, A.R.; Lindberg, G.; Savage, P.J.; Offenbacher, S.; Azambuja, M.I.; Tracy, R.P.; Heiss, G. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): A cohort study. Lancet 1999, 353, 1649–1652. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001, 286, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Silwal, P.; Jo, E.K. Sirtuin 1 in Host Defense during Infection. Cells 2022, 11, 2921. [Google Scholar] [CrossRef]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef]
- Larsen, C.M.; Faulenbach, M.; Vaag, A.; Vølund, A.; Ehses, J.A.; Seifert, B.; Mandrup-Poulsen, T.; Donath, M.Y. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 2007, 356, 1517–1526. [Google Scholar] [CrossRef]
- Ganesan, R.; Hos, N.J.; Gutierrez, S.; Fischer, J.; Stepek, J.M.; Daglidu, E.; Kronke, M.; Robinson, N. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017, 13, e1006227. [Google Scholar] [CrossRef]
- Xu, C.; Wang, L.; Fozouni, P.; Evjen, G.; Chandra, V.; Jiang, J.; Lu, C.; Nicastri, M.; Bretz, C.; Winkler, J.D.; et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell. Biol. 2020, 22, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.H.; Cao, L.; Mostoslavsky, R.; Lombard, D.B.; Liu, J.; Bruns, N.E.; Tsokos, M.; Alt, F.W.; Finkel, T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 2008, 105, 3374–3379. [Google Scholar] [CrossRef]
- Takeda-Watanabe, A.; Kitada, M.; Kanasaki, K.; Koya, D. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem. Biophys. Res. Commun. 2012, 427, 191–196. [Google Scholar] [CrossRef]
- Hos, N.J.; Ganesan, R.; Gutierrez, S.; Hos, D.; Klimek, J.; Abdullah, Z.; Kronke, M.; Robinson, N. Type I interferon enhances necroptosis of Salmonella Typhimurium-infected macrophages by impairing antioxidative stress responses. J. Cell. Biol. 2017, 216, 4107–4121. [Google Scholar] [CrossRef]
- Pant, A.; Yao, X.; Lavedrine, A.; Viret, C.; Dockterman, J.; Chauhan, S.; Chong-Shan, S.; Manjithaya, R.; Cadwell, K.; Kufer, T.A.; et al. Interactions of Autophagy and the Immune System in Health and Diseases. Autophagy Rep. 2022, 1, 438–515. [Google Scholar] [CrossRef] [PubMed]
- Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 2013, 13, 722–737. [Google Scholar] [CrossRef]
- de Kreutzenberg, S.V.; Ceolotto, G.; Papparella, I.; Bortoluzzi, A.; Semplicini, A.; Dalla Man, C.; Cobelli, C.; Fadini, G.P.; Avogaro, A. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: Potential biochemical mechanisms. Diabetes 2010, 59, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Maghbooli, Z.; Emamgholipour, S.; Aliakbar, S.; Amini, M.; Gorgani-Firuzjaee, S.; Hossein-Nezhad, A. Differential expressions of SIRT1, SIRT3, and SIRT4 in peripheral blood mononuclear cells from patients with type 2 diabetic retinopathy. Arch. Physiol. Biochem. 2018, 12, 363–368. [Google Scholar] [CrossRef]
- Biason-Lauber, A.; Böni-Schnetzler, M.; Hubbard, B.P.; Bouzakri, K.; Brunner, A.; Cavelti-Weder, C.; Keller, C.; Meyer-Böni, M.; Meier, D.T.; Brorsson, C.; et al. Identification of a SIRT1 mutation in a family with type 1 diabetes. Cell Metab. 2013, 17, 448–455. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, J.; Hou, X.; Liu, H.; Guo, F.; Zhou, Y.; Zhang, Y.; Qu, Y.; Gu, J.; Jia, X.; et al. SIRT1 rs10823108 and FOXO1 rs17446614 responsible for genetic susceptibility to diabetic nephropathy. Sci. Rep. 2017, 7, 10285. [Google Scholar] [CrossRef]
- Ramachandran, D.; Roy, U.; Garg, S.; Ghosh, S.; Pathak, S.; Kolthur-Seetharam, U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J. 2011, 278, 1167–1174. [Google Scholar] [CrossRef]
- Ramsey, K.M.; Mills, K.F.; Satoh, A.; Imai, S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 2008, 7, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Owczarz, M.; Budzinska, M.; Domaszewska-Szostek, A.; Borkowska, J.; Polosak, J.; Gewartowska, M.; Slusarczyk, P.; Puzianowska-Kuznicka, M. miR-34a and miR-9 are overexpressed and SIRT genes are downregulated in peripheral blood mononuclear cells of aging humans. Exp. Biol. Med. 2017, 242, 1453–1461. [Google Scholar] [CrossRef]
- Kageyama, S.; Gudmundsson, S.R.; Sou, Y.S.; Ichimura, Y.; Tamura, N.; Kazuno, S.; Ueno, T.; Miura, Y.; Noshiro, D.; Abe, M.; et al. p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat. Commun. 2021, 12, 16. [Google Scholar] [CrossRef]
Characteristics n = 98 (%) | T2DM n = 36 (36.7) | Non-Diabetic Controls n = 62 (63.3) | p |
---|---|---|---|
Sex | |||
Male | 19 (52.8) | 19 (30.6) | |
Female | 17 (47.2) | 43 (69.4) | |
Age in years | 0.000 *** | ||
Range | 26—85 | 18—78 | |
Mean | 58.84 | 41.31 | |
Std. Deviation | 15.54 | 13.08 | |
Body Mass Index in kg/m2 | 1.000 | ||
Missing n = 28/98 | 1 (2.8) | 27 (43.5) | |
Range | 21.31—69.14 | 20.54—68.51 | |
Mean | 35.15 | 36.15 | |
Std. Deviation | 10.44 | 12.24 | |
Blood sugar in g/dL | 0.000 *** | ||
(norm < 100 mg/dL) | |||
Missing n = 35/98 | 2 (5.6) | 33 (53.2) | |
Range | 69—383 | 67—126 | |
Mean | 140.74 | 88.62 | |
Std. Deviation | 66.84 | 12.16 | |
Follow up blood sugar (n = 5) | |||
Range | 89-98 | ||
Mean | 94.8 | ||
Std. Deviation | 3.96 | ||
HBa1c in % | 0.000 *** | ||
(norm. 4-6%) | |||
Missing n = 47/98 | 2 (5.6) | 45 (72.6) | |
Range | 4.70—13.80 | 4.90—6.10 | |
Mean | 7.21 | 5.46 | |
Std. Deviation | 1.64 | 0.39 | |
Total Cholesterol in mg/dL | 0.726 | ||
Missing n = 45/98 | 13 (36.1) | 32 (51.6) | |
Range | 141—262 | 135—270 | |
Mean | 203.7 | 200.5 | |
Std. Deviation | 32.19 | 37.11 | |
HDL in mg/dL | 0.093 | ||
Missing n = 43/98 | 13 (36.1) | 40 (64.5) | |
Range | 18—69 | 25—75 | |
Mean | 43.83 | 50.95 | |
Std. Deviation | 12.423 | 15.299 | |
LDL in mg/dL | 0.438 | ||
Missing n = 54/98 | 14 (38.9) | 40 (64.5) | |
Range | 64—199 | 83—184 | |
Mean | 133.23 | 130.82 | |
Std. Deviation | 28.350 | 33.516 | |
Triglyceride in mg/dL | 0.099 | ||
Missing n = 40/98 | 8 (22.2) | 32 (51.6) | |
Range | 60—627 | 43—444 | |
Mean | 202.71 | 154.10 | |
Std. Deviation | 130.187 | 87.738 | |
Underlying conditions | |||
Cardiovascular n = 48/98 | 26 (72.7) | 22 (35.5) | |
Fat metabolism n = 24/98 | 16 (44.4) | 8 (12.9) | |
Psychiatric n = 22/98 | 12 (33.3) | 10 (16.1) | |
Gastrointestinal n = 17/98 | 12 (33.3) | 5 (8.1) | |
Sirt1 expression PBMC | 0.004 ** | ||
Positive n = 31 (31.6) | 5 (13.9) | 26 (41.9) | |
Negative n = 67 (68.4) | 31(86.1) | 36 (58.1) |
(%) | PBMCs SIRT1 Positive | PBMCs SIRT1 Negative | R | p |
---|---|---|---|---|
Sex | 0.504 | |||
Male n = 38 | 10 (32.3) | 28 (41.8) | ||
Female n = 60 | 21 (67.7) | 39 (58.2) | ||
Age (y) | 39.26 ± 12.57 | 51.73 ± 16.49 | −0.346 | 0.000 ** |
BMI (kg/m2) | 37.26 ± 12.41 | 35.05 ± 10.93 | 0.063 | 0.605 |
Past medical history | ||||
Cardiovascular disease n = 48 | 12 (38.7) | 36 (53.7) | 0.196 | |
Diabetes Type II n = 36 | 5 (16.1) | 31 (46.3) | 0.006 ** | |
Fat metabolism disorder n = 24 | 1 (3.2) | 23 (34.3) | 0.001 ** | |
Gastro-intestinal disease n = 17 | 3 (9.7) | 14 (20.9) | 0.253 | |
Mental illness n = 22 | 5 (16.1) | 17 (25.4) | 0.436 | |
Metabolic Variables | ||||
Fasting blood sugar (mg/dL) | 94.53 ± 26.64 | 124,96 ± 61.69 | −0.340 | 0.006 ** |
HbA1c (%) | 6.06 ± 1.11 | 6.83 ± 1.68 | −0.252 | 0.074 |
Total cholesterol (mg/dL) | 213.19 ± 34.70 | 195.37 ± 44.5 | 0.165 | 0.232 |
HDL (mg/dL) | 50.5 ± 14.91 | 46.4 ± 14.1 | 0.101 | 0.510 |
LDL (mg/dL) | 140.00 ± 41.35 | 129.68 ± 27.15 | 0.038 | 0.804 |
Triglyceride (mg/dL) | 169.94 ± 97.39 | 180.48 ± 118.07 | −0.30 | 0.823 |
Independent Variables | B (SE) | Odds Ratio | 95 % C.I. for Odds Ratio Lower Upper | p | |
---|---|---|---|---|---|
Age | 0.059 (0.029) | 0.943 | 0.891 | 0.997 | 0.040 * |
Sex | 0.108 (0.682) | 1.114 | 0.292 | 4.240 | 0.875 |
Cardiovascular disease | 1.130 (0.772) | 3.096 | 0.682 | 14.062 | 0.143 |
Diabetes Type II | 1.262 (0.879) | 3.533 | 0.631 | 19.792 | 0.151 |
Fat metabolism disorder | −4.476 (2.646) | 0.011 | 0.000 | 2.034 | 0.091 |
Gastrointestinal disease | 0.405 (1.165) | 1.5 | 0.153 | 14.715 | 0.728 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, J.; Hos, N.J.; Tritschler, S.; Schmitz-Peters, J.; Ganesan, R.; Calabrese, C.; Schiller, P.; Brunnert, H.; Nowag, A.; Winter, S.; et al. Age-Dependent Loss of Sirtuin1 (Sirt1) Correlates with Reduced Autophagy in Type 2 Diabetic Patients (T2DM). Diabetology 2025, 6, 45. https://doi.org/10.3390/diabetology6060045
Fischer J, Hos NJ, Tritschler S, Schmitz-Peters J, Ganesan R, Calabrese C, Schiller P, Brunnert H, Nowag A, Winter S, et al. Age-Dependent Loss of Sirtuin1 (Sirt1) Correlates with Reduced Autophagy in Type 2 Diabetic Patients (T2DM). Diabetology. 2025; 6(6):45. https://doi.org/10.3390/diabetology6060045
Chicago/Turabian StyleFischer, Julia, Nina Judith Hos, Sophie Tritschler, Joel Schmitz-Peters, Raja Ganesan, Chiara Calabrese, Petra Schiller, Hannah Brunnert, Angela Nowag, Sandra Winter, and et al. 2025. "Age-Dependent Loss of Sirtuin1 (Sirt1) Correlates with Reduced Autophagy in Type 2 Diabetic Patients (T2DM)" Diabetology 6, no. 6: 45. https://doi.org/10.3390/diabetology6060045
APA StyleFischer, J., Hos, N. J., Tritschler, S., Schmitz-Peters, J., Ganesan, R., Calabrese, C., Schiller, P., Brunnert, H., Nowag, A., Winter, S., Hanßen, R., Römer, K., Qurishi, N., Suarèz, I., Jung, N., Lehmann, C., Plum, G., Faust, M., Hartmann, P., & Robinson, N. (2025). Age-Dependent Loss of Sirtuin1 (Sirt1) Correlates with Reduced Autophagy in Type 2 Diabetic Patients (T2DM). Diabetology, 6(6), 45. https://doi.org/10.3390/diabetology6060045