Metabolic Syndrome Drug Therapy: The Potential Interplay of Pharmacogenetics and Pharmacokinetic Interactions in Clinical Practice: A Narrative Review
Abstract
:1. Introduction
2. Methodology
3. Pharmacogenetics of Lipid-Lowering Drug Drugs
3.1. 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase (HMG-CoA Reductase) Inhibitors
3.2. Fibrates
3.3. Selective Cholesterol Absorption Inhibitors
3.4. Novel Lipid-Lowering Drugs
3.4.1. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors
3.4.2. Inclisiran
4. Pharmacogenetics of Antihypertensive Drugs
4.1. Beta-Blockers (BB)
4.2. Calcium Channel Blockers (CCBs)
4.3. Angiotensin Receptor Blockers (ARBs)
4.4. Angiotensin Converting Enzyme Inhibitors (ACEIs)
4.5. Vasodilators
5. Pharmacogenetics of Antihyperglycemic Drugs
5.1. Biguanides
5.2. Thiazolidinedinones (TZDs)
5.3. Sulphonylureas (SU)
5.4. Sodium Glucose Co-Transporter-2 Inhibitors (SGLT2i)
5.5. Glucagon-like Peptide-1 Receptor Agonists (GLP1-RA)
5.6. Dipeptidyl Peptidase-4 (DPP-4) Inhibitors
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- A Fahed, G.; Aoun, L.; BouZerdan, M.; Allam, S.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, C.; Sheehan, N.L. Understanding and preventing drug-drug and drug-gene interactions. Expert Rev. Clin. Pharmacol. 2014, 7, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Malki, M.A.; Pearson, E.R. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenom. J. 2020, 20, 355–366. [Google Scholar] [CrossRef]
- UpToDate Lexidrug [Internet]. Available online: https://online.lexi.com/lco/action/login (accessed on 10 May 2024).
- Fohner, A.E.; Brackman, D.J.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. PharmGKB summary: Very important pharmacogene information for ABCG2. Pharmacogenet. Genom. 2017, 27, 420–427. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef] [PubMed]
- CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network [Internet]. 2024. Available online: https://cpicpgx.org/ (accessed on 23 April 2024).
- Bank, P.C.D.; Caudle, K.E.; Swen, J.J.; Gammal, R.S.; Whirl-Carrillo, M.; Klein, T.E.; Relling, M.; Guchelaar, H. Comparison of the Guidelines of the Clinical Pharmacogenetics Implementation Consortium and the Dutch Pharmacogenetics Working Group. Clin. Pharmacol. Ther. 2018, 103, 599–618. [Google Scholar] [CrossRef]
- Pappan, N.; Rehman, A. Dyslipidemia. StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK560891/ (accessed on 25 April 2024).
- Abera, A.; Worede, A.; Hirigo, A.T.; Alemayehu, R.; Ambachew, S. Dyslipidemia and associated factors among adult cardiac patients: A hospital-based comparative cross-sectional study. Eur. J. Med. Res. 2024, 29, 237. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Cooper-DeHoff, R.M.; Niemi, M.; Ramsey, L.B.; Luzum, J.A.; Tarkiainen, E.K.; Straka, R.J.; Gong, L.; Tuteja, S.; Wilke, R.A.; Wadelius, M.; et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and Statin-Associated Musculoskeletal Symptoms. Clin. Pharmacol. Ther. 2022, 111, 1007–1021. [Google Scholar] [CrossRef]
- Turner, R.M.; Pirmohamed, M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J. Clin. Med. 2019, 9, 22. [Google Scholar] [CrossRef]
- Voora, D.; Baye, J.; McDermaid, A.; Narayana, S.; Wilke, R.A.; Myrmoe, A.N.; Hajek, C.; Larson, E.A. SLCO1B1*5 Allele Is Associated with Atorvastatin Discontinuation and Adverse Muscle Symptoms in the Context of Routine Care. Clin. Pharmacol. Ther. 2022, 111, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.M.; Fontana, V.; Zhang, J.E.; Carr, D.; Yin, P.; FitzGerald, R.; Morris, A.P.; Pirmohamed, M. A Genome-wide Association Study of Circulating Levels of Atorvastatin and Its Major Metabolites. Clin. Pharmacol. Ther. 2020, 108, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, M.K.; Fredrikson, H.; Neuvonen, P.J.; Niemi, M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 2007, 82, 726–733. [Google Scholar] [CrossRef]
- Mykkänen, A.J.; Tarkiainen, E.K.; Taskinen, S.; Neuvonen, M.; Paile-Hyvärinen, M.; Lilius, T.O.; Tapaninen, T.; Klein, K.; Schwab, M.; Backman, J.T.; et al. Genome-Wide Association Study of Atorvastatin Pharmacokinetics: Associations with SLCO1B1, UGT1A3, and LPP. Clin. Pharmacol. Ther. 2024, 115, 1428–1440. [Google Scholar] [CrossRef] [PubMed]
- Božina, T.; Ganoci, L.; Karačić, E.; Šimičević, L.; Vrkić-Kirhmajer, M.; Klarica-Domjanović, I.; Križ, T.; Sertić, Z.; Božina, N. ABCG2 and SLCO1B1 gene polymorphisms in the Croatian population. Ann. Hum. Biol. 2022, 49, 323–331. [Google Scholar] [CrossRef]
- Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 2009, 158, 693–705. [Google Scholar] [CrossRef]
- Klaassen, C.D.; Aleksunes, L.M. Xenobiotic, bile acid, piand cholesterol transporters: Function and regulation. Pharmacol. Rev. 2010, 62, 1–96. [Google Scholar] [CrossRef]
- International Transporter Consortium; Giacomini, K.M.; Huang, S.-M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.R.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar] [CrossRef]
- Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport—An update. AAPS J. 2015, 17, 65–82. [Google Scholar] [CrossRef]
- Poirier, A.; Portmann, R.; Cascais, A.-C.; Bader, U.; Walter, I.; Ullah, M.; Funk, C. The need for human breast cancer resistance protein substrate and inhibition evaluation in drug discovery and development: Why, when, and how? Drug Metab. Dispos. Biol. Fate Chem. 2014, 42, 1466–1477. [Google Scholar] [CrossRef]
- Matsuo, H.; Takada, T.; Ichida, K.; Nakamura, T.; Nakayama, A.; Suzuki, H.; Hosoya, T.; Shinomiya, N. ABCG2/BCRP dysfunction as a major cause of gout. Nucleosides Nucleotides Nucleic Acids 2011, 30, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Hira, D.; Terada, T. BCRP/ABCG2 and high-alert medications: Biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem. Pharmacol. 2018, 147, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Heyes, N.; Kapoor, P.; Kerr, I.D. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab. Dispos. Biol. Fate Chem. 2018, 46, 1886–1899. [Google Scholar] [CrossRef]
- Safar, Z.; Kis, E.; Erdo, F.; Zolnerciks, J.K.; Krajcsi, P. ABCG2/BCRP: Variants, transporter interaction profile of substrates and inhibitors. Expert Opin. Drug Metab. Toxicol. 2019, 15, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, K.M.; Balimane, P.V.; Cho, S.K.; Eadon, M.; Edeki, T.; Hillgren, K.M.; Huang, S.-M.; Sugiyama, Y.; Weitz, D.; Wen, Y.; et al. International Transporter Consortium commentary on clinically important transporter polymorphisms. Clin. Pharmacol. Ther. 2013, 94, 23–26. [Google Scholar] [CrossRef]
- Toyoda, Y.; Takada, T.; Suzuki, H. Inhibitors of Human ABCG2: From Technical Background to Recent Updates with Clinical Implications. Front. Pharmacol. 2019, 10, 208. [Google Scholar] [CrossRef]
- Svedberg, A.; Jacobs, L.; Vikingsson, S.; Gréen, H. The influence of ABCG2 polymorphism on erlotinib efflux in the K562 cell line. Pharmacol. Res. Perspect. 2020, 8, e00581. [Google Scholar] [CrossRef]
- Hofman, J.; Sorf, A.; Vagiannis, D.; Sucha, S.; Kammerer, S.; Küpper, J.-H.; Chen, S.; Guo, L.; Ceckova, M.; Staud, F. Brivanib Exhibits Potential for Pharmacokinetic Drug-Drug Interactions and the Modulation of Multidrug Resistance through the Inhibition of Human ABCG2 Drug Efflux Transporter and CYP450 Biotransformation Enzymes. Mol. Pharm. 2019, 16, 4436–4450. [Google Scholar] [CrossRef]
- Hirota, T.; Fujita, Y.; Ieiri, I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin. Drug Metab. Toxicol. 2020, 16, 809–822. [Google Scholar] [CrossRef]
- Klarica, D.I.; Lovrić, M.; Trkulja, V.; Petelin-Gadže, Ž.; Ganoci, L.; Čajić, I.; Božina, N. Interaction between ABCG2 421C>A polymorphism and valproate in their effects on steady-state disposition of lamotrigine in adults with epilepsy. Br. J. Clin. Pharmacol. 2018, 84, 2106–2119. [Google Scholar] [CrossRef]
- Šušak, S.I.; Božina, N.; Klarica, D.I.; Sporiš, D.; Bašić, S.; Bašić, I.; Lovrić, M.; Ganoci, L.; Trkulja, V. Breast cancer resistance protein polymorphism ABCG2 c.421C>A (rs2231142) moderates the effect of valproate on lamotrigine trough concentrations in adults with epilepsy. Fundam. Clin. Pharmacol. 2024, 38, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Keskitalo, J.E.; Zolk, O.; Fromm, M.F.; Kurkinen, K.J.; Neuvonen, P.J.; Niemi, M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 2009, 86, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Ganoci, L.; Trkulja, V.; Živković, M.; Božina, T.; Šagud, M.; Lovrić, M.; Božina, N. ABCB1, ABCG2 and CYP2D6 polymorphism effects on disposition and response to long-acting risperidone. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 104, 110042. [Google Scholar] [CrossRef]
- Sakiyama, M.; Matsuo, H.; Takada, Y.; Nakamura, T.; Nakayama, A.; Takada, T.; Kitajiri, S.-I.; Wakai, K.; Suzuki, H.; Shinomiya, N. Ethnic differences in ATP-binding cassette transporter, sub-family G, member 2 (ABCG2/BCRP): Genotype combinations and estimated functions. Drug Metab. Pharmacokinet. 2014, 29, 490–492. [Google Scholar] [CrossRef] [PubMed]
- Keskitalo, J.E.; Pasanen, M.K.; Neuvonen, P.J.; Niemi, M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 2009, 10, 1617–1624. [Google Scholar] [CrossRef]
- Tsamandouras, N.; Guo, Y.; Wendling, T.; Hall, S.; Galetin, A.; Aarons, L. Modelling of atorvastatin pharmacokinetics and the identification of the effect of a BCRP polymorphism in the Japanese population. Pharmacogenet. Genom. 2017, 27, 27–38. [Google Scholar] [CrossRef]
- Merćep, I.; Radman, I.; Trkulja, V.; Božina, T.; Šimičević, L.; Budimir, E.; Ganoci, L.; Božina, N. Loss of function polymorphisms in SLCO1B1 (c.521T>C, rs4149056) and ABCG2 (c.421C>A, rs2231142) genes are associated with adverse events of rosuvastatin: A case-control study. Eur. J. Clin. Pharmacol. 2022, 78, 227–236. [Google Scholar] [CrossRef]
- Mirošević, S.N.; Macolić, S.V.; Šimić, I.; Ganoci, L.; Muačević, D.; Božina, N. ABCG2 gene polymorphisms as risk factors for atorvastatin adverse reactions: A case-control study. Pharmacogenomics 2015, 16, 803–815. [Google Scholar] [CrossRef]
- Miroševic, S.N.; Božina, N.; Zibar, L.; Barišic, I.; Pejnovic, L.; Macolic, S.V. CYP2C9 and ABCG2 polymorphisms as risk factors for developing adverse drug reactions in renal transplant patients taking fluvastatin: A case-control study. Pharmacogenomics 2013, 14, 1419–1431. [Google Scholar] [CrossRef]
- European Medicine Agency. Guideline on the Investigation of Drug Interactions [Internet]. 2012. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf (accessed on 1 June 2024).
- Draft Guidance for Industry on Drug Interaction Studies-Study Design. Data Analysis, Implications for Dosing, and Labeling Recommendations; Availability [Internet]. Fed. Regist. 2012. Available online: https://www.federalregister.gov/documents/2012/02/21/2012-3958/draft-guidance-for-industry-on-drug-interaction-studies-study-design-data-analysis-implications-for (accessed on 23 April 2024).
- Malfará, B.N.; Benzi, J.R.; Oliveira, G.C.; Zanelli, C.F.; Duarte, G.; Cavalli, R.d.C.; de Moraes, N.V. ABCG2 c.421C>A polymorphism alters nifedipine transport to breast milk in hypertensive breastfeeding women. Reprod. Toxicol. 2019, 85, 1–5. [Google Scholar] [CrossRef]
- Ganoci, L.; Božina, T.; Mirošević, N.; Lovrić, M.; Mas, P.; Božina, N. Genetic polymorphisms of cytochrome P450 enzymes: CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 in the Croatian population. Drug Metab. Pers Ther. 2017, 32, 11–21. [Google Scholar] [CrossRef]
- Wilke, R.A.; Ramsey, L.B.; Johnson, S.G.; Maxwell, W.D.; McLeod, H.L.; Voora, D.; Krauss, R.M.; Roden, D.M.; Feng, Q.; Cooper-DeHoff, R.M.; et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 2012, 92, 112–117. [Google Scholar] [CrossRef]
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Mykkänen, A.J.; Taskinen, S.; Neuvonen, M.; Paile-Hyvärinen, M.; Tarkiainen, E.K.; Lilius, T.; Tapaninen, T.; Backman, J.T.; Tornio, A.; Niemi, M.; et al. Genomewide Association Study of Simvastatin Pharmacokinetics. Clin. Pharmacol. Ther. 2022, 112, 676–686. [Google Scholar] [CrossRef]
- Zubiaur, P.; Benedicto, M.D.; Villapalos-García, G.; Navares-Gómez, M.; Mejía-Abril, G.; Román, M.; Martín-Vílchez, S.; Ochoa, D.; Abad-Santos, F. SLCO1B1 Phenotype and CYP3A5 Polymorphism Significantly Affect Atorvastatin Bioavailability. J. Pers Med. 2021, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Luzum, J.A.; Theusch, E.; Taylor, K.D.; Wang, A.; Sadee, W.; Binkley, P.F.; Krauss, R.M.; Medina, M.W.; Kitzmiller, J.P. Individual and Combined Associations of Genetic Variants in CYP3A4, CYP3A5, and SLCO1B1 with Simvastatin and Simvastatin Acid Plasma Concentrations. J. Cardiovasc. Pharmacol. 2015, 66, 80–85. [Google Scholar] [CrossRef]
- Lee, S.-J.; Goldstein, J.A. Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics 2005, 6, 357–371. [Google Scholar] [CrossRef]
- Mulder, T.A.; Eerden, R.A.; With, M.; Elens, L.; Hesselink, D.A.; Matic, M.; Bins, S.; Mathijssen, R.H.J.; van Schaik, R.H.N. CYP3A4∗22 Genotyping in Clinical Practice: Ready for Implementation? Front. Genet. 2021, 12, 711943. [Google Scholar] [CrossRef] [PubMed]
- Westlind-Johnsson, A.; Hermann, R.; Huennemeyer, A.; Hauns, B.; Lahu, G.; Nassr, N.; Zech, K.; Ingelmansundberg, M.; Vonrichter, O. Identification and characterization of CYP3A4*20, a novel rare CYP3A4 allele without functional activity. Clin. Pharmacol. Ther. 2006, 79, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Elens, L.; Capron, A.; Schaik, R.H.; Meyer, M.; Pauw, L.; Eddour, D.C.; Latinne, D.; Wallemacq, P.; Mourad, M.; Haufroid, V. Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: Toward updated genotype-based dosage guidelines. Ther. Drug Monit. 2013, 35, 608–616. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenom. J. 2011, 11, 274–286. [Google Scholar] [CrossRef]
- Theile, D.; Hohmann, N.; Kiemel, D.; Gattuso, G.; Barreca, D.; Mikus, G.; Haefeli, W.E.; Schwenger, V.; Weiss, J. Clementine juice has the potential for drug interactions—In vitro comparison with grapefruit and mandarin juice. Eur. J. Pharm. Sci. Off J Eur. Fed. Pharm. Sci. 2017, 97, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Riedmaier, S.; Klein, K.; Hofmann, U.; Keskitalo, J.E.; Neuvonen, P.J.; Schwab, M.; Niemi, M.; Zanger, U.M. UDP-glucuronosyltransferase (UGT) polymorphisms affect atorvastatin lactonization in vitro and in vivo. Clin. Pharmacol. Ther. 2010, 87, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Keskitalo, J.E.; Kurkinen, K.J.; Neuvoneni, P.J.; Niemi, M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther. 2008, 84, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, B.K.; Bujac, S.R.; Elsby, R.; Azumaya, C.T.; Wei, C.; Chen, Y.; Mosqueda-Garcia, R.; Ambrose, H.J. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: A class effect? Eur. J. Clin. Pharmacol. 2015, 71, 341–355. [Google Scholar] [CrossRef]
- Thompson, P.D.; Clarkson, P.; Karas, R.H. Statin-associated myopathy. JAMA 2003, 289, 1681–1690. [Google Scholar] [CrossRef]
- Shah, M.B. Inhibition of CYP2C8 by Acyl Glucuronides of Gemfibrozil and Clopidogrel: Pharmacological Significance, Progress and Challenges. Biomolecules 2022, 12, 1218. [Google Scholar] [CrossRef]
- Türk, D.; Hanke, N.; Wolf, S.; Frechen, S.; Eissing, T.; Wendl, T.; Schwab, M.; Lehr, T. Physiologically Based Pharmacokinetic Models for Prediction of Complex CYP2C8 and OATP1B1 (SLCO1B1) Drug-Drug-Gene Interactions: A Modeling Network of Gemfibrozil, Repaglinide, Pioglitazone, Rifampicin, Clarithromycin and Itraconazole. Clin. Pharmacokinet. 2019, 58, 1595–1607. [Google Scholar] [CrossRef]
- Kosoglou, T.; Statkevich, P.; Johnson-Levonas, A.O.; Paolini, J.F.; Bergman, A.J.; Alton, K.B. Ezetimibe: A review of its metabolism, pharmacokinetics and drug interactions. Clin. Pharmacokinet. 2005, 44, 467–494. [Google Scholar] [CrossRef]
- Oswald, S.; Haenisch, S.; Fricke, C.; Sudhop, T.; Remmler, C.; Giessmann, T.; Jedlitschky, G.; Adam, U.; Dazert, E.; Warzok, R. Intestinal expression of P-glycoprotein (ABCB1), multidrug resistance associated protein 2 (ABCC2), and uridine diphosphate-glucuronosyltransferase 1A1 predicts the disposition and modulates the effects of the cholesterol absorption inhibitor ezetimibe in humans. Clin. Pharmacol. Ther. 2006, 79, 206–217. [Google Scholar] [CrossRef]
- Waart, D.R.; Vlaming, M.L.; Kunne, C.; Schinkel, A.H.; Oude, E. Complex pharmacokinetic behavior of ezetimibe depends on abcc2, abcc3, and abcg2. Drug Metab. Dispos. Biol. Fate Chem. 2009, 37, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Oswald, S.; König, J.; Lütjohann, D.; Giessmann, T.; Kroemer, H.K.; Rimmbach, C.; Rosskopf, D.; Fromm, M.F.; Siegmund, W. Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1. Pharmacogenet. Genom. 2008, 18, 559–568. [Google Scholar] [CrossRef]
- Bozina, N.; Simicevic, L.; Pecin, I. The pharmacogenomics of hypolipemics: ABCG2 as a potential predictor of hepatotoxicity. Biochem. Med. Zagreb. 2018, 8, 28. [Google Scholar]
- Hajar, R. PCSK 9 Inhibitors: A Short History and a New Era of Lipid-Lowering Therapy. Heart Views 2019, 20, 74. [Google Scholar] [CrossRef]
- Hindi, N.N.; Alenbawi, J.; Nemer, G. Pharmacogenomics Variability of Lipid-Lowering Therapies in Familial Hypercholesterolemia. J. Pers. Med. 2021, 11, 877. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Liu, H.; Wang, H.; Li, B.; Zhang, M.; Li, J.; Yang, L.; Fan, L. Inclisiran: A New Generation of Lipid-Lowering SiRNA Therapeutic. Front. Pharmacol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Blood Pressure Lowering Treatment Trialists’ Collaboration. Blood pressure-lowering treatment based on cardiovascular risk: A meta-analysis of individual patient data. Lancet 2014, 384, 591–598. [Google Scholar] [CrossRef]
- Franklin, S.S. Hypertension in the metabolic syndrome. Metab. Syndr. Relat. Disord. 2006, 4, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Höcht, C.; Bertera, F.M.; Mayer, M.A.; Taira, C.A. Issues in drug metabolism of major antihypertensive drugs: Beta-blockers, calcium channel antagonists and angiotensin receptor blockers. Expert Opin. Drug Metab. Toxicol. 2010, 6, 199–211. [Google Scholar] [CrossRef]
- Collins, K.S.; Pratt, V.M.; Stansberry, W.M.; Medeiros, E.B.; Kannegolla, K.; Swart, M.; Skaar, T.C.; Chapman, A.B.; Decker, B.S.; Moorthi, R.N.; et al. Analytical validity of a genotyping assay for use with personalized antihypertensive and chronic kidney disease therapy. Pharmacogenet. Genom. 2019, 29, 18–22. [Google Scholar] [CrossRef]
- Eadon, M.T.; Maddatu, J.; Moe, S.M.; Sinha, A.D.; Ferreira, R.M.; Miller, B.W.; Sher, S.J.; Su, J.; Pratt, V.M.; Chapman, A.B.; et al. Pharmacogenomics of Hypertension in CKD: The CKD-PGX Study. Kidney360 2022, 3, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Tanner, R.M.; Calhoun, D.A.; Bell, E.K.; Bowling, C.B.; Gutiérrez, O.M.; Irvin, M.R.; Lackland, D.T.; Oparil, S.; Warnock, D.; Muntner, P. Prevalence of apparent treatment-resistant hypertension among individuals with CKD. Clin. J. Am. Soc. Nephrol. CJASN 2013, 8, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration: BiDil (Isosorbide Dinitrate and Hydralazine Hydrochloride) Prescribing Information [Package Insert]. [Internet]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020727s010lbl.pdf (accessed on 1 June 2024).
- US Food and Drug Administration: Cozaar (Losartan) Prescribing Information [Package Insert] [Internet]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020386s062lbl.pdf (accessed on 1 June 2024).
- US Food and Drug Administration: Lopressor (Metoprolol) Prescribing Information [Package INSERT]. [Internet]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/018704s025lbl.pdf (accessed on 1 June 2024).
- Annotation of DPWG Guideline for Metoprolol and CYP2D6 [Internet]. Available online: https://www.pharmgkb.org/guidelineAnnotation/PA166104995 (accessed on 1 June 2024).
- Swen, J.J.; Nijenhuis, M.; Boer, A.; Grandia, L.; Maitland-van, A.H.; Mulder, H.; Rongen, G.A.P.J.M.; Van Schaik, R.H.N.; Schalekamp, T.; Touw, D.J.; et al. Pharmacogenetics: From bench to byte—An update of guidelines. Clin. Pharmacol. Ther. 2011, 89, 662–673. [Google Scholar] [CrossRef]
- Zhou, Y.; Nevosadová, L.; Eliasson, E.; Lauschke, V.M. Global distribution of functionally important CYP2C9 alleles and their inferred metabolic consequences. Hum. Genom. 2023, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Liggett, S.B. Cardiovascular pharmacogenomics of adrenergic receptor signaling: Clinical implications and future directions. Clin. Pharmacol. Ther. 2011, 89, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Meloche, M.; Khazaka, M.; Kassem, I.; Barhdadi, A.; Dubé, M.-P.; Denus, S. CYP2D6 polymorphism and its impact on the clinical response to metoprolol: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2020, 86, 1015–1033. [Google Scholar] [CrossRef]
- Dean, L. Metoprolol Therapy and CYP2D6 Genotype. In Med Genet Summ [Internet]; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. Available online: http://www.ncbi.nlm.nih.gov/books/NBK425389/ (accessed on 24 April 2024).
- Collett, S.; Massmann, A.; Petry, N.J.; Heukelom, J.; Schultz, A.; Hellwig, T.; Baye, J.F. Metoprolol and CYP2D6: A Retrospective Cohort Study Evaluating Genotype-Based Outcomes. J. Pers. Med. 2023, 13, 416. [Google Scholar] [CrossRef]
- Viviani, R.; Berres, J.; Stingl, J.C. Phenotypic Models of Drug-Drug-Gene Interactions Mediated by Cytochrome Drug-Metabolizing Enzymes. Clin. Pharmacol. Ther. 2024, 116, 592–601. [Google Scholar] [CrossRef]
- Duricova, J.; Perinova, I.; Jurckova, N.; Kacirova, I.; Grundmann, M. Clinically important interaction between metoprolol and propafenone. Can. Fam. Physician Med. Fam. Can. 2013, 59, 373–375. [Google Scholar]
- Luzum, J.A.; Sweet, K.M.; Binkley, P.F.; Schmidlen, T.J.; Jarvis, J.P.; Christman, M.F.; Sadee, W.; Kitzmiller, J.P. CYP2D6 Genetic Variation and Beta-Blocker Maintenance Dose in Patients with Heart Failure. Pharm. Res. 2017, 34, 1615–1625. [Google Scholar] [CrossRef]
- Lefebvre, J.; Poirier, L.; Poirier, P.; Turgeon, J.; Lacourciere, Y. The influence of CYP2D6 phenotype on the clinical response of nebivolol in patients with essential hypertension. Br. J. Clin. Pharmacol. 2007, 63, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Kirch, W.; Görg, K.G. Clinical pharmacokinetics of atenolol—A review. Eur. J. Drug Metab. Pharmacokinet. 1982, 7, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.G. Fruit juice inhibition of uptake transport: A new type of food-drug interaction. Br. J. Clin. Pharmacol. 2010, 70, 645–655. [Google Scholar] [CrossRef]
- Jeon, H.; Jang, I.-J.; Lee, S.; Ohashi, K.; Kotegawa, T.; Ieiri, I.; Cho, J.; Yoon, S.H.; Shin, S.; Yu, K.; et al. Apple juice greatly reduces systemic exposure to atenolol. Br. J. Clin. Pharmacol. 2013, 75, 172–179. [Google Scholar] [CrossRef]
- Tocci, G.; Battistoni, A.; Passerini, J.; Musumeci, M.B.; Francia, P.; Ferrucci, A.; Volpe, M. Calcium channel blockers and hypertension. J. Cardiovasc. Pharmacol. Ther. 2015, 20, 121–130. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, G.; Lu, Y.; Wen, J.; Ji, Y.; Xing, X.; Li, Y.; Wen, J.; Yuan, H. CYP3A4*1G and CYP3A5*3 genetic polymorphisms alter the antihypertensive efficacy of amlodipine in patients with hypertension following renal transplantation. Int. J. Clin. Pharmacol Ther. 2017, 55, 109–118. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Zuo, X.-C.; Huang, Z.-J.; Cai, J.-J.; Wen, J.; Duan, D.D.; Yuan, H. CYP3A5 polymorphism, amlodipine and hypertension. J. Hum. Hypertens. 2014, 28, 145–149. [Google Scholar] [CrossRef]
- Bhatnagar, V.; Garcia, E.P.; O’Connor, D.T.; Brophy, V.H.; Alcaraz, J.; Richard, E.; Bakris, G.L.; Middleton, J.P.; Norris, K.C.; Wright, J.; et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am. J. Nephrol. 2010, 31, 95–103. [Google Scholar] [CrossRef]
- Kim, K.-A.; Park, P.-W.; Lee, O.-J.; Choi, S.-H.; Min, B.H.; Shin, K.-H.; Chun, B.G.; Shin, J.G.; Park, J.Y. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of amlodipine in healthy Korean subjects. Clin. Pharmacol. Ther. 2006, 80, 646–656. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, X.; Ma, Z.; Sun, Y.; Shu, C.; Zhu, Y.; Zhang, Y.; Hu, S.; Fu, X.; Liu, L. Association of CYP3A5 Gene Polymorphisms and Amlodipine-Induced Peripheral Edema in Chinese Han Patients with Essential Hypertension. Pharmacogenom. Pers. Med. 2021, 14, 189–197. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Hsieh, T.-C.; Chou, C.-L.; Wu, J.-L.; Fang, T.-C. Risks of Adverse Events Following Coprescription of Statins and Calcium Channel Blockers: A Nationwide Population-Based Study. Medicine 2016, 95, e2487. [Google Scholar] [CrossRef] [PubMed]
- Cutrell, S.; Alhomoud, I.S.; Mehta, A.; Talasaz, A.H.; Tassell, B.; Dixon, D.L. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Curr. Hypertens. Rep. 2023, 25, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Sica, D.A.; Gehr, T.W.; Ghosh, S. Clinical pharmacokinetics of losartan. Clin. Pharmacokinet. 2005, 44, 797–814. [Google Scholar] [CrossRef]
- Yasar, U.; Forslund-Bergengren, C.; Tybring, G.; Dorado, P.; Llerena, A.; Sjöqvist, F.; Eliasson, E.; Dahl, M. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin. Pharmacol. Ther. 2002, 71, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Babaoglu, M.O.; Yasar, U.; Sandberg, M.; Eliasson, E.; Dahl, M.-L.; Kayaalp, S.O.; Bozkurt, A. CYP2C9 genetic variants and losartan oxidation in a Turkish population. Eur. J. Clin. Pharmacol. 2004, 60, 337–342. [Google Scholar] [CrossRef]
- Sekino, K.; Kubota, T.; Okada, Y.; Yamada, Y.; Yamamoto, K.; Horiuchi, R.; Kimura, K.; Iga, T. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur. J. Clin. Pharmacol. 2003, 59, 589–592. [Google Scholar] [CrossRef]
- Kaukonen, K.M.; Olkkola, K.T.; Neuvonen, P.J. Fluconazole but not itraconazole decreases the metabolism of losartan to E-3174. Eur. J. Clin. Pharmacol. 1998, 53, 445–449. [Google Scholar] [CrossRef]
- Spinasse, L.B.; Santos, A.R.; Suffys, P.N.; Muxfeldt, E.S.; Salles, G.F. Different phenotypes of the NAT2 gene influences hydralazine antihypertensive response in patients with resistant hypertension. Pharmacogenomics 2014, 15, 169–178. [Google Scholar] [CrossRef]
- Han, L.W.; Ryu, R.J.; Cusumano, M.; Easterling, T.R.; Phillips, B.R.; Risler, L.J.; Shen, D.D.; Hebert, M.F. Effect of N-Acetyltransferase 2 Genotype on the Pharmacokinetics of Hydralazine During Pregnancy. J. Clin. Pharmacol. 2019, 59, 1678–1689. [Google Scholar] [CrossRef]
- Mazari, L.; Ouarzane, M.; Zouali, M. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc. Natl. Acad. Sci. USA 2007, 104, 6317–6322. [Google Scholar] [CrossRef] [PubMed]
- Schoonen, W.M.; Thomas, S.L.; Somers, E.C.; Smeeth, L.; Kim, J.; Evans, S.; Hall, A.J. Do selected drugs increase the risk of lupus? A matched case-control study. Br. J. Clin. Pharmacol. 2010, 70, 588–596. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47, S20–S42. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47, S158–S178. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef]
- Imamovic, K.S.; Kulo, A.; Dujic, T. Pharmacogenetics of new classes of antidiabetic drugs. Bosn. J. Basic Med. Sci. 2021, 21, 659–671. [Google Scholar] [CrossRef]
- Hardie, D.G. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 185–210. [Google Scholar] [CrossRef]
- Zeng, Z.; Huang, S.-Y.; Sun, T. Pharmacogenomic Studies of Current Antidiabetic Agents and Potential New Drug Targets for Precision Medicine of Diabetes. Diabetes Ther. 2020, 11, 2521–2538. [Google Scholar] [CrossRef]
- Pearson, E.R. New Insights Into the Genetics of Glycemic Response to Metformin. Diabetes Care 2024, 47, 193–195. [Google Scholar] [CrossRef]
- Nasykhova, Y.A.; Tonyan, Z.N.; Mikhailova, A.A.; Danilova, M.M.; Glotov, A.S. Pharmacogenetics of Type 2 Diabetes—Progress and Prospects. Int. J. Mol. Sci. 2020, 21, 6842. [Google Scholar] [CrossRef]
- Baye, A.M.; Fanta, T.G.; Siddiqui, M.K.; Dawed, A.Y. The Genetics of Adverse Drug Outcomes in Type 2 Diabetes: A Systematic Review. Front. Genet. 2021, 12, 675053. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Takane, H.; Shikata, E.; Otsubo, K.; Higuchi, S.; Ieiri, I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics 2008, 9, 415–422. [Google Scholar] [CrossRef]
- Florez, J.C. The pharmacogenetics of metformin. Diabetologia 2017, 60, 1648–1655. [Google Scholar] [CrossRef]
- Peng, A.; Gong, C.; Xu, Y.; Liang, X.; Chen, X.; Hong, W.; Yan, J. Association between organic cation transporter genetic polymorphisms and metformin response and intolerance in T2DM individuals: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1183879. [Google Scholar] [CrossRef]
- Zhou, K.; Donnelly, L.A.; Kimber, C.H.; Donnan, P.T.; Doney, A.S.; Leese, G.; Hattersley, A.T.; McCarthy, M.I.; Morris, A.D.; Palmer, C.N.; et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: A GoDARTS study. Diabetes 2009, 58, 1434–1439. [Google Scholar] [CrossRef] [PubMed]
- Rotroff, D.M.; Yee, S.W.; Zhou, K.; Marvel, S.W.; Shah, H.S.; Jack, J.R.; Havener, T.M.; Hedderson, M.M.; Kubo, M.; Herman, M.A.; et al. Genetic Variants in CPA6 and PRPF31 Are Associated with Variation in Response to Metformin in Individuals with Type 2 Diabetes. Diabetes 2018, 67, 1428–1440. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Yee, S.W.; Seiser, E.L.; Leeuwen, N.; Tavendale, R.; Bennett, A.J.; Groves, C.J.; Coleman, R.L.; van der Heijden, A.; Beulens, J.W.; et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet. 2016, 48, 1055–1059. [Google Scholar] [CrossRef]
- Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways: Pharmacokinetics and pharmacodynamics. Pharmacogenet. Genom. 2012, 22, 820–827. [Google Scholar] [CrossRef]
- Nies, A.T.; Hofmann, U.; Resch, C.; Schaeffeler, E.; Rius, M.; Schwab, M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS ONE 2011, 6, e22163. [Google Scholar] [CrossRef]
- Minematsu, T.; Giacomini, K.M. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol. Cancer Ther. 2011, 10, 531–539. [Google Scholar] [CrossRef]
- Pellegrinotti, M.; Fimognari, F.L.; Franco, A.; Repetto, L.; Pastorelli, R. Erlotinib-induced hepatitis complicated by fatal lactic acidosis in an elderly man with lung cancer. Ann. Pharmacother. 2009, 43, 542–545. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Pioglitazone-Summary of Product Characteristics [Internet]. Available online: https://www.ema.europa.eu/en/documents/product-information/pioglitazone-actavis-epar-product-information_en.pdf (accessed on 4 April 2024).
- European Medicine Agency. Actos: EPAR—Scientific Discussion [Internet]. 2004. Available online: https://www.ema.europa.eu/en/documents/scientific-discussion/actos-epar-scientific-discussion_en.pdf (accessed on 7 March 2024).
- Jaakkola, T.; Laitila, J.; Neuvonen, P.J.; Backman, J.T. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: Potential for interactions with CYP2C8 inhibitors. Basic Clin. Pharmacol. Toxicol. 2006, 99, 44–51. [Google Scholar] [CrossRef]
- Pfützner, A.; Weber, M.M.; Forst, T. Pioglitazone: Update on an oral antidiabetic drug with antiatherosclerotic effects. Expert Opin. Pharmacother. 2007, 8, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Aquilante, C.L.; Wempe, M.F.; Spencer, S.H.; Kosmiski, L.A.; Predhomme, J.A.; Sidhom, M.S. Influence of CYP2C8*2 on the pharmacokinetics of pioglitazone in healthy African-American volunteers. Pharmacotherapy 2013, 33, 1000–1007. [Google Scholar] [CrossRef]
- Yin, S.-J.; Qi, H.-M.; Wang, X.; Zhang, P.; Lu, Y.; Wei, M.-J.; Li, P.; Qi, G.-Z.; Lou, Y.-Q.; Lu, C.; et al. Effects of functional CYP2C8, CYP2C9, CYP3A5 and ABCB1 genetic variants on the pharmacokinetics of insulin sensitizer pioglitazone in Chinese Han individuals. Pharmacogenet. Genom. 2017, 27, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Aquilante, C.L.; Kosmiski, L.A.; Bourne, D.W.; Bushman, L.R.; Daily, E.B.; Hammond, K.P.; Hopley, C.W.; Kadam, R.S.; Kanack, A.T.; Kompella, U.B.; et al. Impact of the CYP2C8 *3 polymorphism on the drug-drug interaction between gemfibrozil and pioglitazone. Br. J. Clin. Pharmacol. 2013, 75, 217–226. [Google Scholar] [CrossRef]
- Tornio, A.; Niemi, M.; Neuvonen, P.J.; Backman, J.T. Trimethoprim and the CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab. Dispos. Biol. Fate Chem. 2008, 36, 73–80. [Google Scholar] [CrossRef]
- Yang, H.; Ye, E.; Si, G.; Chen, L.; Cai, L.; Ye, C.; Zhang, C.; Lu, X. Adiponectin gene polymorphism rs2241766 T/G is associated with response to pioglitazone treatment in type 2 diabetic patients from southern China. PLoS ONE 2014, 9, e112480. [Google Scholar] [CrossRef]
- Dawed, A.Y.; Donnelly, L.; Tavendale, R.; Carr, F.; Leese, G.; Palmer, C.N.; Pearson, E.R.; Zhou, K. CYP2C8 and SLCO1B1 Variants and Therapeutic Response to Thiazolidinediones in Patients with Type 2 Diabetes. Diabetes Care 2016, 39, 1902–1908. [Google Scholar] [CrossRef]
- Zhang, Y.; Si, D.; Chen, X.; Lin, N.; Guo, Y.; Zhou, H.; Zhong, D. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br. J. Clin Pharmacol. 2007, 64, 67–74. [Google Scholar] [CrossRef]
- Al-Omary, F.A. Gliclazide. Profiles Drug Subst. Excip. Relat. Methodol. 2017, 42, 125–192. [Google Scholar] [CrossRef] [PubMed]
- Klen, J.; Dolžan, V.; Janež, A. CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur. J. Clin. Pharmacol. 2014, 70, 421–428. [Google Scholar] [CrossRef]
- Zhou, K.; Donnelly, L.; Burch, L.; Tavendale, R.; Doney, A.S.; Leese, G.; Hattersley, A.T.; I McCarthy, M.; Morris, A.D.; Lang, C.C.; et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: A Go-DARTS study. Clin. Pharmacol. Ther. 2010, 87, 52–56. [Google Scholar] [CrossRef]
- Kirchheiner, J.; Brockmöller, J.; Meineke, I.; Bauer, S.; Rohde, W.; Meisel, C.; Roots, I. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin. Pharmacol. Ther. 2002, 71, 286–296. [Google Scholar] [CrossRef]
- Niemi, M.; Cascorbi, I.; Timm, R.; Kroemer, H.K.; Neuvonen, P.J.; Kivistö, K.T. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin. Pharmacol. Ther. 2002, 72, 326–332. [Google Scholar] [CrossRef]
- Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef] [PubMed]
- Francke, S.; Mamidi, R.N.; Solanki, B.; Scheers, E.; Jadwin, A.; Favis, R.; Devineni, D. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J. Clin. Pharmacol. 2015, 55, 1061–1072. [Google Scholar] [CrossRef]
- Hoeben, E.; Winter, W.; Neyens, M.; Devineni, D.; Vermeulen, A.; Dunne, A. Population Pharmacokinetic Modeling of Canagliflozin in Healthy Volunteers and Patients with Type 2 Diabetes Mellitus. Clin Pharmacokinet. 2016, 55, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Liang, Y.; Sahasrabudhe, V.; Tensfeldt, T.; Fediuk, D.J.; Zhou, S.; Krishna, R.; Dawra, V.K.; Wood, L.S.; Sweeney, K. Meta-Analysis of Noncompartmental Pharmacokinetic Parameters of Ertugliflozin to Evaluate Dose Proportionality and UGT1A9 Polymorphism Effect on Exposure. J. Clin. Pharmacol. 2021, 61, 1220–1231. [Google Scholar] [CrossRef]
- European Medicine Agency. Byetta-Summary of Product Characteristics [Internet]. Available online: https://www.ema.europa.eu/en/documents/product-information/byetta-epar-product-information_en.pdf (accessed on 3 April 2024).
- European Medicine Agency. Ozempic-Summary of Product Characteristics [Internet]. Available online: https://www.ema.europa.eu/en/documents/product-information/ozempic-epar-product-information_en.pdf (accessed on 3 April 2024).
- European Medicine Agency. Saxenda-Summary of Product Characteristics [Internet]. Available online: https://www.ema.europa.eu/en/documents/product-information/saxenda-epar-product-information_en.pdf (accessed on 3 April 2024).
- European Medicine Agency. Mounjaro-Summary of product characteristics [Internet]. Available online: https://www.ema.europa.eu/en/documents/product-information/mounjaro-epar-product-information_en.pdf (accessed on 3 April 2024).
- Heo, C.; Choi, C.-I. Current Progress in Pharmacogenetics of Second-Line Antidiabetic Medications: Towards Precision Medicine for Type 2 Diabetes. J. Clin. Med. 2019, 8, 393. [Google Scholar] [CrossRef]
- Pathak, R.; Bridgeman, M.B. Dipeptidyl Peptidase-4 (DPP-4) Inhibitors in the Management of Diabetes. P & T Peer-Rev. J. Formul. Manag. 2010, 35, 509–513. [Google Scholar]
- Scheen, A.J. Dipeptidylpeptitase-4 Inhibitors (Gliptins). Clin. Pharmacokinet. 2010, 49, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Herman, G.; Stevens, C.; Vandyck, K.; Bergman, A.; Yi, B.; Desmet, M.; Snyder, K.; Hilliard, D.; Tanen, M.; Tanaka, W. Pharmacokinetics and Pharmacodynamics of Sitagliptin, an Inhibitor of Dipeptidyl Peptidase IV, in Healthy Subjects: Results from Two Randomized, Double-Blind, Placebo-Controlled Studies with Single Oral Doses. Clin. Pharmacol. Ther. 2005, 78, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Prescribing Pearls: A Guide to DPP-4 Inhibitors (Gliptins)—DiabetesontheNet. Available online: https://diabetesonthenet.com/diabetes-primary-care/prescribing-pearls-dpp4is/ (accessed on 1 June 2024).
- Khan, M.W.; Kurian, S.; Bishnoi, R. Acute-Onset Rhabdomyolysis Secondary to Sitagliptin and Atorvastatin Interaction. Int. J. Gen. Med. 2016, 9, 103–106. [Google Scholar] [CrossRef]
- Bhome, R.; Penn, H. Rhabdomyolysis Precipitated by a Sitagliptin-Atorvastatin Drug Interaction. Diabet. Med. 2012, 29, 693–694. [Google Scholar] [CrossRef]
- DiGregorio, R.V.; Pasikhova, Y. Rhabdomyolysis Caused by a Potential Sitagliptin-Lovastatin Interaction. Pharmacotherapy 2009, 29, 352–356. [Google Scholar] [CrossRef]
- Kao, D.P.; Kohrt, H.E.; Kugler, J. Renal Failure and Rhabdomyolysis Associated with Sitagliptin and Simvastatin Use. Diabet. Med. 2008, 25, 1229–1230. [Google Scholar] [CrossRef]
- Cerra. The Effects of Simvastatin on the Pharmacokinectics of Sitagliptin. J. Popul. Ther. Clin. Pharmacol. 2015, 19, e356–e360. [Google Scholar]
- Tahrani, A.A.; Piya, M.K.; Barnett, A.H. Saxagliptin: A New DPP-4 Inhibitor for the Treatment of Type 2 Diabetes Mellitus. Adv. Ther. 2009, 26, 249–262. [Google Scholar] [CrossRef]
- Egan, A.; Colman, E. Weighing the benefits of high-dose simvastatin against the risk of myopathy. N. Engl. J. Med. 2011, 365, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Backman, J.T.; Kyrklund, C.; Kivistö, K.T.; Wang, J.S.; Neuvonen, P.J. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin. Pharmacol. Ther. 2000, 68, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Schneck, D.W.; Birmingham, B.K.; Zalikowski, J.A.; Mitchell, P.D.; Wang, Y.; Martin, P.D.; Lasseter, K.C.; Brown, C.D.A.; Windass, A.S.; Raza, A. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther. 2004, 75, 455–463. [Google Scholar] [CrossRef] [PubMed]
Group | Drug | ABCB1 | ABCG2 | CYP2C8 | CYP2C9 | CYP2C19 | CYP2D6 | CYP3A4/5 | UGT1A | UGT1A9 | UGT2B4 | UGT2B7 | SLC2A2 | SLC22A/OCT | SLC47A1 | SLC47A2 | SLC5A2 | SLCO1B1/OATP1B1 | SLC29A4/PMAT | SLC47A1/MATE1 | SLC47A2/MATE2 | SP1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HMG-CoA Reductase Inhibitors | Simvastatin | + | + | + | + | + | + | + | + | |||||||||||||
Atorvastatin | + | + | + | + | + | + | + | + | ||||||||||||||
Lovastatin | + | + | + | + | + | + | + | |||||||||||||||
Pitavastatin | + | + | + | + | + | + | + | + | ||||||||||||||
Fluvastatin | + | + | + | + | + | |||||||||||||||||
Rosuvastatin | + | + | + | + | ||||||||||||||||||
Pravastatin | + | + | + | |||||||||||||||||||
Fibrates | Fenofibrate | + | ||||||||||||||||||||
Gemfibrozil | + | + | ||||||||||||||||||||
SCAI | Ezetimibe | + | + | + | ||||||||||||||||||
BB | Atenolol | + | + | |||||||||||||||||||
Bisoprolol | + | + | + | |||||||||||||||||||
Carvedilol | + | + | + | + | + | + | + | |||||||||||||||
Metoprolol | + | + | + | |||||||||||||||||||
Nebivolol | + | + | + | |||||||||||||||||||
Propranolol | + | + | + | + | + | |||||||||||||||||
ARBs | Losartan | + | + | + | + | + | + | |||||||||||||||
CCBs | Amlodipine | + | + | + | ||||||||||||||||||
Lacidipine | + | + | ||||||||||||||||||||
Lercanidipine | + | + | ||||||||||||||||||||
Diltiazem | + | + | + | + | ||||||||||||||||||
Verapamil | + | + | + | + | + | |||||||||||||||||
Biguanides | Metformin | + | + | + | + | + | + | + | + | |||||||||||||
Glitazones | Pioglitazone | + | + | + | + | + | ||||||||||||||||
Gliclazide | + | + | ||||||||||||||||||||
Sulphonylureas | Glimepiride | + | ||||||||||||||||||||
Glibenclamide | + | + | + | + | ||||||||||||||||||
SGLT2i | Empagliflozin | + | + | + | + | + | + | + | ||||||||||||||
Ertugliflozin | + | + | + | + | + | |||||||||||||||||
Dapagliflozin | + | + | + | + | + | + | + | |||||||||||||||
Canagliflozin | + | + | + | + | + | |||||||||||||||||
GLP1-RA | Exenatide | + | ||||||||||||||||||||
DPP4-inhibitors | Sitagliptin Saxagliptin | + + |
Substrate | Inhibitor | Relevant Genotype | Effect | Reference | Risk Rating |
---|---|---|---|---|---|
SLCO1B1-mediated | |||||
gliclazide glimepiride glipizide gliquidone | gemfibrozil | SLCO1B | increased risk of hypoglycemia | [142] | C |
atorvastatin fluvastatin lovastatin pitavastatin pravastatin | gemfibrozil | SLCO1B | increased risk of myopathy | [63,155,156] | X |
repaglinid | gemfibrozil | SLCO1B CYP2C8 | increase the serum concentration of repaglinide | [63] | X |
Various cytochrome P450 (CYP) enzymes | |||||
pioglitazone rosiglitazone * | gemfibrozil | CYP2C8 | decreased blood glucose, evidence of edema or hepatotoxicity | [131,132,133] | D/C * |
simvastatin | diltiazem | CYP3A5*3/*3 | increased risk of myopathy | [99] | D |
atorvastatin lovastatin simvastatin | amlodipine diltiazem verapamil | CYP3A4 | increase the serum concentration of simvastatin acute kidney injury, hyperkalemia | [99] | D |
saxagliptin | diltiazem | CYP3A4 | may increase the serum concentration of saxagliptin | [67] | C |
sitagliptin | simvastatin | CYP3A4 | increased risk of myopathy | [162,163,164,165,166] | C |
atorvastatin, fluvastatin lovastatin pitavastatin pravastatin rosuvastatin simvastatin | fenofibrate | Uncertain (possible additive effect) | increased risk of myopathy | [61] | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knežević, S.; Filippi-Arriaga, F.; Belančić, A.; Božina, T.; Mršić-Pelčić, J.; Vitezić, D. Metabolic Syndrome Drug Therapy: The Potential Interplay of Pharmacogenetics and Pharmacokinetic Interactions in Clinical Practice: A Narrative Review. Diabetology 2024, 5, 406-429. https://doi.org/10.3390/diabetology5040031
Knežević S, Filippi-Arriaga F, Belančić A, Božina T, Mršić-Pelčić J, Vitezić D. Metabolic Syndrome Drug Therapy: The Potential Interplay of Pharmacogenetics and Pharmacokinetic Interactions in Clinical Practice: A Narrative Review. Diabetology. 2024; 5(4):406-429. https://doi.org/10.3390/diabetology5040031
Chicago/Turabian StyleKnežević, Sandra, Francesca Filippi-Arriaga, Andrej Belančić, Tamara Božina, Jasenka Mršić-Pelčić, and Dinko Vitezić. 2024. "Metabolic Syndrome Drug Therapy: The Potential Interplay of Pharmacogenetics and Pharmacokinetic Interactions in Clinical Practice: A Narrative Review" Diabetology 5, no. 4: 406-429. https://doi.org/10.3390/diabetology5040031
APA StyleKnežević, S., Filippi-Arriaga, F., Belančić, A., Božina, T., Mršić-Pelčić, J., & Vitezić, D. (2024). Metabolic Syndrome Drug Therapy: The Potential Interplay of Pharmacogenetics and Pharmacokinetic Interactions in Clinical Practice: A Narrative Review. Diabetology, 5(4), 406-429. https://doi.org/10.3390/diabetology5040031