Insulin in Frail, Older People with Type 2 Diabetes—Low Threshold for Therapy
Abstract
:1. Introduction
2. Methods
3. Effects of Insulin on Skeletal Muscles
4. Insulin Analogues Safety
5. Insulin—Low Threshold of Therapy
6. Insulin Use in Frail, Older People with Diabetes
7. Goals of Therapy
8. Future Perspectives
9. Conclusions
10. Key Points
- Frailty and sarcopenia are newly emerged diabetes-related complications in older people with diabetes.
- Frailty appears to be metabolically heterogeneous with anorexic malnourished (AM) phenotypes at one end, and sarcopenic obese (SO) phenotypes at the other end of the spectrum.
- The AM phenotype is likely to be less tolerant to oral hypoglycaemic therapy due to multiple comorbidities and organ dysfunction.
- Insulin therapy, especially long-acting insulin analogues, are an early option in the AM phenotype.
- Insulin may have positive effects on muscle function in this frail phenotype, although future confirmation studies are required.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sinclair, A.; Saeedi, P.; Kaundal, A.; Karuranga, S.; Malanda, B.; Williams, R. Diabetes and global ageing among 65–99-year-old adults: Findings from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2020, 162, 108078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, A.J.; Abdelhafiz, A.H.; Rodríguez-Mañas, L. Frailty and sarcopenia-newly emerging and high impact complications of diabetes. J. Diabetes Complicat. 2017, 31, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, P.; Fauré, I.; Corcoran, N.; Butterly, E.; Lewsey, J.; McAllister, D.; Mair, F.S. Frailty measurement, prevalence, incidence, and clinical implications in people with diabetes: A systematic review and study-level meta-analysis. Lancet Health Longev. 2020, 1, e106–e116. [Google Scholar] [CrossRef]
- Sinclair, A.J.; Abdelhafiz, A.; Dunning, T.; Izquierdo, M.; Manas, L.R.; Bourdel-Marchasson, I.; Morley, J.E.; Munshi, M.; Woo, J.; Vellas, B. An International Position Statement on the Management of Frailty in Diabetes Mellitus: Summary of Recommendations 2017. J. Frailty Aging 2018, 7, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Leroith, D.; Biessels, G.J.; Braithwaite, S.S.; Casanueva, F.F.; Draznin, B.; Halter, J.B.; Hirsch, I.B.; McDonnell, M.; Molitch, M.E.; Murad, M.H.E.; et al. TReatment of diabetes in older adults: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2019, 104, 1520–1574. [Google Scholar] [CrossRef] [Green Version]
- Abdelhafiz, A.H.; Emmerton, D.; Sinclair, A.J. Impact of frailty metabolic phenotypes on the management of older people with type 2 diabetes mellitus. Geriatr. Gerontol. Int. 2021, 21, 614–622. [Google Scholar] [CrossRef]
- Abdulla, H.; Smith, K.; Atherton, P.J.; Idris, I. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: A systematic review and meta-analysis. Diabetologia 2016, 59, 44–55. [Google Scholar] [CrossRef]
- Fujita, S.; Glynn, E.L.; Timmerman, K.L.; Rasmussen, B.B.; Volpi, E. Supraphysiological hyperinsulinaemia is necessary to stimulate skeletal muscle protein anabolism in older adults: Evidence of a true age-related insulin resistance of muscle protein metabolism. Diabetologia 2009, 52, 1889–1898. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.-I.; Kanazawa, I.; Sugimoto, T. Reduction in Endogenous Insulin Secretion is a Risk Factor of Sarcopenia in Men with Type 2 Diabetes Mellitus. Calcif. Tissue Res. 2015, 97, 385–390. [Google Scholar] [CrossRef]
- Bouchi, R.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Insulin Treatment Attenuates Decline of Muscle Mass in Japanese Patients with Type 2 Diabetes. Calcif. Tissue Res. 2017, 101, 1–8. [Google Scholar] [CrossRef]
- Kalyani, R.R.; Tra, Y.; Yeh, H.C.; Egan, J.M.; Ferrucci, L.; Brancati, F.L. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: Results from the National Health and Nutrition Examination Survey, 1999–2002. J. Am. Geriatr. Soc. 2013, 61, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Gang, X.; Wang, G.; Xiao, X.; Li, Z.; Jiang, Z.; Wang, G. Associations between sarcopenia and clinical characteristics of patients with type 2 diabetes. Medicine 2020, 99, e18708. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, U.; Then, C.; Rottenkolber, M.; Selte, C.; Seissler, J.; Conzade, R.; Linkohr, B.; Peters, A.; Drey, M.; Thorand, B. Longitudinal association of type 2 diabetes and insulin therapy with muscle parameters in the KORA-Age study. Acta Diabetol. 2020, 57, 1057–1063. [Google Scholar] [CrossRef]
- Sugimoto, K.; Ikegami, H.; Takata, Y.; Katsuya, T.; Fukuda, M.; Akasaka, H.; Tabara, Y.; Osawa, H.; Hiromine, Y.; Rakugi, H. Glycemic Control and Insulin Improve Muscle Mass and Gait Speed in Type 2 Diabetes: The MUSCLES-DM Study. J. Am. Med. Dir. Assoc. 2021, 22, 834–838.e1. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Schwartz, S.L.; Clark, C.M., Jr.; Park, G.D.; Donley, D.W.; Edwards, M.B. Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care 2001, 24, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riddle, M.C.; Rosenstock, J.; Gerich, J. Insulin Glargine 4002 Study Investigators. The treat-to-target trial: Randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care 2003, 26, 3080–3086. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, A.; Schweitzer, M.A.; Häring, H.U.; 4001 Study Group. Glimepiride combined with morning insulin glargine, bedtime neutral protamine hagedorn insulin, or bedtime insulin glargine in patients with type 2 diabetes: A randomized, controlled trial. Ann. Intern. Med. 2003, 138, 952–959. [Google Scholar] [CrossRef]
- Haak, T.; Tiengo, A.; Draeger, E.; Suntum, M.; Waldhausl, W. Lower within-subject variability of fasting blood glucose and reduced weight gain with insulin detemir compared to NPH insulin in patients with type 2 diabetes. Diabetes Obes. Metab. 2005, 7, 56–64. [Google Scholar] [CrossRef]
- Hermansen, K.; Davies, M.; Derezinski, T.; Martinez Ravn, G.; Clauson, P.; Home, P. A 26-week, randomized, parallel, treat-to-target trial comparing insulin detemir with NPH insulin as add-on therapy to oral glucose-lowering drugs in insulin-naïve people with type 2 diabetes. Diabetes Care 2006, 29, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Eliaschewitz, F.G.; Calvo, C.; Valbuena, H.; Ruiz, M.; Aschner, P.; Villena, J.; Ramirez, L.A.; Jimenez, J. Therapy in Type 2 Diabetes: Insulin Glargine vs. NPH Insulin Both in Combination with Glimepiride. Arch. Med. Res. 2006, 37, 495–501. [Google Scholar] [CrossRef]
- Horvath, K.; Jeitler, K.; Berghold, A.; Ebrahim, S.H.; Gratzer, T.W.; Plank, J.; Kaiser, T.; Pieber, T.R.; Siebenhofer, A. Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2007, CD005613. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.R.; Ahmad, F.; Lal, A.; Yu, C.; Bai, Z.; Bennett, H. Efficacy and safety of insulin analogues for the management of diabetes mellitus: A meta-analysis. CMAJ 2009, 180, 385–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, K.; Iwakura, T.; Aburaya, M.; Matsuoka, N. Twice-daily insulin degludec/insulin aspart effectively improved morning and evening glucose levels and quality of life in patients previously treated with premixed insulin: An observational study. Diabetol. Metab. Syndr. 2018, 10, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipska, K.J.; Parker, M.M.; Moffet, H.H.; Huang, E.S.; Karter, A.J. Association of Initiation of Basal Insulin Analogs vs Neutral Protamine Hagedorn Insulin with Hypoglycemia-Related Emergency Department Visits or Hospital Admissions and with Glycemic Control in Patients With Type 2 Diabetes. JAMA 2018, 320, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Haukka, J.; Hoti, F.; Erästö, P.; Saukkonen, T.; Mäkimattila, S.; Korhonen, P. Evaluation of the incidence and risk of hypoglycemic coma associated with selection of basal insulin in the treatment of diabetes: A Finnish register linkage study. Pharmacoepidemiol. Drug Saf. 2013, 22, 1326–1335. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, A.Y.; Khanfir, H.; Mäkimattila, S.; Saukkonen, T.; Strandberg, T.; Hoti, F. Insulins NPH, glargine, and detemir, and risk of severe hypoglycemia among working-age adults. Ann. Med. 2017, 49, 357–364. [Google Scholar] [CrossRef]
- Bradley, M.C.; Chillarige, Y.; Lee, H.; Wu, X.; Parulekar, S.; Muthuri, S.; Wernecke, M.; MaCurdy, T.E.; Kelman, J.A.; Graham, D.J. Severe Hypoglycemia Risk with Long-Acting Insulin Analogs vs Neutral Protamine Hagedorn Insulin. JAMA Intern. Med. 2021, 181, 598. [Google Scholar] [CrossRef]
- Betônico, C.C.; Titan, S.M.O.; Lira, A.; Pelaes, T.S.; Correa-Giannella, M.L.C.; Nery, M.; Queiroz, M. Insulin Glargine U100 Improved Glycemic Control and Reduced Nocturnal Hypoglycemia in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease Stages 3 and 4. Clin. Ther. 2019, 41, 2008–2020. [Google Scholar] [CrossRef]
- Alsahli, M.; Gerich, J.E. Hypoglycemia in Patients with Diabetes and Renal Disease. J. Clin. Med. 2015, 4, 948–964. [Google Scholar] [CrossRef]
- Pecoits-Filho, R.; Abensur, H.; Betônico, C.C.R.; Machado, A.D.; Parente, E.B.; Queiroz, M.; Salles, J.E.N.; Titan, S.; Vencio, S. Interactions between kidney disease and diabetes: Dangerous liaisons. Diabetol. Metab. Syndr. 2016, 8, 50. [Google Scholar] [CrossRef]
- Özçelik, S.; Çelik, M.; Vural, A.; Aydın, B.; Özçelik, M.; Gozu, M. Outcomes of transition from premixed and intensive insulin therapies to insulin aspart/degludec co-formulation in type 2 diabetes mellitus: A real-world experience. Arch. Med. Sci. 2021, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rodbard, H.W.; Cariou, B.; Pieber, T.R.; Endahl, L.A.; Zacho, J.; Cooper, J.G. Treatment intensification with an insulin degludec (IDeg)/insulin aspart (IAsp) co-formulation twice daily compared with basal IDeg and prandial IAsp in type 2 diabetes: A randomized, controlled phase III trial. Diabetes Obes. Metab. 2016, 18, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.; Taylor, C.; Towse, K.; Ward, J.; Hendra, T. Insulin improves well-being for selected elderly type 2 diabetic subjects. Diabetes Res. Clin. Pract. 2002, 55, 201–207. [Google Scholar] [CrossRef]
- Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J.B.; Bolen, S. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes. A Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 164, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Crowley, M.J.; Diamantidis, C.J.; McDuffie, J.R.; Cameron, C.B.; Stanifer, J.W.; Mock, C.K.; Wang, X.; Tang, S.; Nagi, A.; Kosinski, A.S.; et al. Clinical Outcomes of Metformin Use in Populations with Chronic Kidney Disease, Congestive Heart Failure, or Chronic Liver Disease: A Systematic Review. Ann. Intern. Med. 2017, 166, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafiz, A.H.; Sinclair, A.J. Cardio-renal protection in older people with diabetes with frailty and medical comorbidities—A focus on the new hypoglycaemic therapy. J. Diabetes Complicat. 2020, 34, 107639. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chuang, L.M.; Lin, J.W.; Chen, S.T.; Lai, M.S.; Chang, C.H. Cardiovascular risks associated with second-line oral antidiabetic agents added to metformin in patients with Type 2 diabetes: A nationwide cohort study. Diabet. Med. 2015, 32, 1460–1469. [Google Scholar] [CrossRef]
- Doyle-Delgado, K.; Chamberlain, J.J.; Shubrook, J.H.; Skolnik, N.; Trujillo, K. Pharmacologic Approaches to glycemic treatment of type 2 diabetes: Synopsis of the 2020 American diabetes Association’s standards of medical care in diabetes clinical guideline. Ann. Intern. Med. 2020, 173, 813e21. [Google Scholar] [CrossRef]
- Blonde, L.; Aschner, P.; Bailey, C.; Ji, L.; Leiter, L.A.; Matthaei, S.; Global Partnership for Effective Diabetes Management. Matthaei S on behalf of the Global Partnership for Effective Diabetes Management. Gaps and barriers in the control of blood glucose in people with type 2 diabetes. Diabetes Vasc. Dis. Res. 2017, 14, 172e83. [Google Scholar] [CrossRef] [Green Version]
- Reach, G.; Pechtner, V.; Gentilella, R.; Corcos, A.; Ceriello, A. Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus. Diabetes Metab. 2017, 43, 501–511. [Google Scholar] [CrossRef]
- Khunti, K.; Gomes, M.B.; Pocock, S.; Shestakova, M.V.; Pintat, S.; Fenici, P.; Hammar, N.; Medina, J. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic Review. Diabetes Obes. Metabol. 2018, 20, 427e37. [Google Scholar] [CrossRef] [Green Version]
- Edelman, S.V.; Blose, J.S. The Impact of Nocturnal Hypoglycemia on Clinical and Cost-Related Issues in Patients with Type 1 and Type 2 Diabetes. Diabetes Educ. 2014, 40, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Jaap, A.; Jones, G.; McCrimmon, R.; Deary, I.J.; Frier, B.M. Perceived symptoms of hypoglycemia in elderly type 2 diabetic patients treated with insulin. Diabet Med. 1998, 15, 398–401. [Google Scholar] [CrossRef]
- Goto, A.; Arah, O.; Goto, M.; Terauchi, Y.; Noda, M. Severe hypoglycaemia and cardiovascular disease: Systematic review and meta-analysis with bias analysis. BMJ 2013, 347, f4533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin, T.A.; Littley, M.D. Diabetes care in residential homes: Staff training makes a difference. J. Hum. Nutr. Dietet. 2001, 14, 443–447. [Google Scholar] [CrossRef]
- Munshi, M.N.; Slyne, C.; Segal, A.R.; Saul, N.; Lyons, C.; Weinger, K. Liberating A1C goals in older adults may not protect against the risk of hypoglycemia. J. Diabetes Complicat. 2017, 31, 1197–1199. [Google Scholar] [CrossRef]
- Stout, M.B.; Justice, J.N.; Nicklas, B.J.; Kirkland, J.L. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology 2017, 32, 9–19. [Google Scholar] [CrossRef]
- Abdelhafiz, A.H.; Rodríguez-Mãnas, L.; Morley, J.E.; Sinclair, A.J. Hypoglycemia in older people-a less well recognized risk factor for frailty. Aging Dis. 2015, 10, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Zaslavsky, O.; Walker, R.L.; Crane, P.K.; Gray, S.L.; Larson, E.B. Glucose levels and risk of frailty. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1223–1229. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.W.; Ha, Y.-C.; Kim, K.M.; Moon, J.H.; Choi, S.H.; Lim, S.; Park, Y.J.; Lim, J.-Y.; Kim, K.W.; Park, K.S.; et al. Hyperglycemia Is Associated with Impaired Muscle Quality in Older Men with Diabetes: The Korean Longitudinal Study on Health and Aging. Diabetes Metab. J. 2016, 40, 140–146. [Google Scholar] [CrossRef]
- Godino, J.G.; Appel, L.J.; Gross, A.L.; Schrack, J.A.; Parrinello, C.M.; Kalyani, R.R.; Windham, B.G.; Pankow, J.S.; Kritchevsky, S.B.; Bandeen-Roche, K.; et al. Diabetes, hyperglycemia, and the burden of functional disability among older adults in a community-based study. J. Diabetes 2017, 9, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, S.; Gulliford, M.C. Mortality in individuals aged 80 and older with type 2 diabetes mellitus in relation to glycosylated hemoglobin, blood pressure, and total cholesterol. J. Am. Geriatr. Soc. 2016, 64, 1425–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palta, P.; Huang, E.S.; Kalyani, R.R.; Golden, S.H.; Yeh, H.-C. Hemoglobin A1c and Mortality in Older Adults With and Without Diabetes: Results From the National Health and Nutrition Examination Surveys (1988–2011). Diabetes Care 2017, 40, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currie, C.J.; Holden, S.E.; Jenkins-Jones, S.; Morgan, C.L.; Voss, B.; Rajpathak, S.N.; Alemayehu, B.; Peters, J.R.; Engel, S.S. Impact of differing glucose-lowering regimens on the pattern of association between glucose control and survival. Diabetes Obes. Metab. 2018, 20, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Bollig, C.; Torbahn, G.; Bauer, J.; Brefka, S.; Dallmeier, D.; Denkinger, M.; Eidam, A.; Klöppel, S.; Zeyfang, A.; Voigt-Radloff, S.; et al. Evidence gap on antihyperglycemic pharmacotherapy in frail older adults: A systematic review. Evidenzmangel für die antihyperglykämische Pharmakotherapie gebrechlicher älterer Patienten: Ein systematisches Review. Z. Gerontol. Geriatr. 2021, 54, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Ambrož, M.; de Vries, S.T.; Hoogenberg, K.; Denig, P. Trends in HbA1c thresholds for initiation of hypoglycemic agents: Impact of changed recommendations for older and frail patients. Pharmacoepidemiol. Drug Saf. 2021, 30, 37–44. [Google Scholar] [CrossRef]
- Mangé, A.-S.; Pagès, A.; Sourdet, S.; Cestac, P.; McCambridge, C. Diabetes and Frail Older Patients: Glycemic Control and Prescription Profile in Real Life. Pharmacy 2021, 9, 115. [Google Scholar] [CrossRef]
- Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.; Aly, D.M.; Almgren, P.; et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018, 6, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Shea, M.K.; Nicklas, B.J.; Marsh, A.P.; Houston, D.; Miller, G.D.; Isom, S.; Miller, M.E.; Carr, J.; Lyles, M.F.; Harris, T.B.; et al. The Effect of Pioglitazone and Resistance Training on Body Composition in Older Men and Women Undergoing Hypocaloric Weight Loss. Obesity 2011, 19, 1636–1646. [Google Scholar] [CrossRef]
- Marsh, A.P.; Shea, M.K.; Locke, R.M.V.; Miller, M.E.; Isom, S.; Miller, G.D.; Nicklas, B.J.; Lyles, M.F.; Carr, J.J.; Kritchevsky, S.B. Resistance Training and Pioglitazone Lead to Improvements in Muscle Power During Voluntary Weight Loss in Older Adults. J. Gerontol. Ser. A 2013, 68, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Rajaobelina, K.; Helmer, C.; Vélayoudom-Céphise, F.-L.; Nov, S.; Farges, B.; Pupier, E.; Blanco, L.; Hugo, M.; Gin, H.; Rigalleau, V. Progression of skin autofluorescence of AGEs over 4 years in patients with type 1 diabetes. Diabetes Metab. Res. Rev. 2017, 33, e2917. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.R.; Barbieri, M.; Fava, I.; Desiderio, M.; Coppola, C.; Marfella, R.; Paolisso, G. Sarcopenia in Elderly Diabetic Patients: Role of Dipeptidyl Peptidase 4 Inhibitors. J. Am. Med. Dir. Assoc. 2016, 17, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Guido, D.; Bologna, C.; Solerte, S.B.; Guerriero, F.; Isu, A.; Rondanelli, M. Liraglutide and obesity in elderly: Efficacy in fat loss and safety in order to prevent sarcopenia. A perspective case series study. Aging Clin. Exp. Res. 2016, 28, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Yajima, T.; Yajima, K.; Takahashi, H.; Yasuda, K. The effect of dulaglutide on body composition in type 2 diabetes mellitus patients on hemodialysis. J. Diabetes Complicat. 2018, 32, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, H.S.; Bergenstal, R.M.; Christoffersen, A.; Davies, M.J.; Gowda, A.; Isendahl, J.; Lingvay, I.; Senior, P.A.; Silver, R.J.; Trevisan, R.; et al. Switching to Once-Weekly Insulin Icodec Versus Once-Daily Insulin Glargine U100 in Type 2 Diabetes Inadequately Controlled on Daily Basal Insulin: A Phase 2 Randomized Controlled Trial. Diabetes Care 2021, 44, 1586–1594. [Google Scholar] [CrossRef]
Study | Patients | Aim to | Main Findings |
---|---|---|---|
Tanaka K et al., cross-sectional, Japan, 2015 [9]. | 191 men with type 2 DM, mean (SD) age 60.2 (12.5) Y. | Examine association of muscle mass with endogenous insulin secretion. | A. Endogenous insulin significantly and positively correlated with muscle mass of arms and legs as well as RSMI (p < 0.05). B. Endogenous insulin significantly lower in subjects with compared to those without sarcopenia (p < 0.05). |
Bouchi R et al., retrospective observational, Japan, 2017 [10]. | 312 patients with type 2 DM, mean (SD) age 64.0 (11.0) Y. | Examine impact of insulin treatment on muscle mass. | A. Insulin was protective against annual decline in SMI (standardized β 0.195; p = 0.025) adjusted for covariates. B. In a cohort matched by propensity scores, insulin significantly increased the 1-year change in SMI compared with non-insulin-treated group; mean (SE) 2.40 (0.98%) vs. −0.43 (0.98%), p = 0.050). |
Cui M et al., cross-sectional, China, 2020 [12]. | 132 patients with type 2 DM, aged ≥65 Y. | Explore factors associated with sarcopenia. | A. Insulin use was not significantly different between patients with sarcopenia and those with no sarcopenia (68.4% vs. 74.5%, p = 0.48). B. Metformin was significantly less used in patients with compared to those with no sarcopenia (13.2% vs. 41.5%, p = 0.002). |
Ferrari U et al., prospective, Germany, 2020 [13]. | 731 (118 type 2 DM) participants of KORA-Age study, mean (SD) age 74.6 (6.2) Y, F/UP 3 Y. | Investigate association of type 2 DM and insulin treatment with changes in muscle mass, muscle strength and physical performance. | A. DM associated with change in SMI (β −0.1 (95% CI −0.3 to −0.02) kg/m2, p = 0.02), but not with a change in GS (β −0.9, 95% CI −1.9 to 0.04 kg) or TUG (β −0.1, 95% CI −0.7 to 0.5 s). B. Insulin therapy positively associated with change in SMI (β 0.6 (95% CI 0.3 to 0.9) kg/m2, p = 0.001), but not in GS (β −1.6, 95% CI −4.1 to 0.8 kg) or TUG (β 1.6, 95% CI −0.2 to 3.4 s). |
Sugimoto K et al., observational longitudinal, Japan, 2021 [14]. | 588 patients with type 2 DM, mean (SD) age 70.0 (8.0) Y, F/U 1Y. | Examine relationship between glycaemic control and effect of antidiabetic agents on sarcopenia. | After 382 (53) days of F/U: A. Frequency of sarcopenia non-significantly increased (7.8% vs. 6.3%, p = 0.12). B. Patients with ≥1% drop in HbA1c had significant increase in SMI (B = 0.113, p = 0.027), gait speed (B = 0.145, p = 0.002), but non-significant change in handgrip strength (B = −0.005, p = 0.914). C. Insulin use significantly increased SMI (B = 0.115, p = 0.022). D. Oral antidiabetic therapy has no effect on sarcopenia. |
Study | Patients | Aim to | Main Findings |
---|---|---|---|
Fujimoto K. et al., prospective, observational, Japan, 2018 [23]. | 22 patients with type 2 DM, mean (SD) age 68.0 (9.9) Y, treated with premixed insulin for 2 M, then IDegAsp for next 2 M. | Investigate changes in glucose variability and QOL during switch from premixed insulin to IDegAsp twice daily. | Switching to IDegAsp from premixed insulin: A. Improved daily glucose level variability, morning and evening glucose control and QOL. B. No change in day-to-day variability of morning fasting glucose levels. |
Lipska KJ et al., retrospective observational, US, 2018 [24]. | 25,489 patients with type 2 DM initiated basal or NPH insulin, mean (SD) age 60.2 (11.8) Y. F/Up 1.7Y. | Compare rates of hypoglycaemia-related ED visits or hospitalisation associated with initiation of long-acting insulin analogues vs. NPH insulin. | A. In 1928 patients initiated on insulin analogue, there were 39 hypoglycaemia-related ED visits or hospital admissions (11.9 events, 95% CI 8.1 to 15.6/1000 person–years) compared with 354 events among 23,561 patients on NPH (8.8 events, 7.9 to 9.8/1000 person–years, p = 0.07). B. Adjusted HR 1.16, 95% CI, 0.71 to 1.78 for hypoglycaemia-related events with insulin analogue use. C. After one year, there was no significant difference in glycaemic control between both groups. |
Bradley MC et al., retrospective, US, 2021 [27]. | Medicare 575, 008 patients, mean (SD) age 74.9 (6.7) Y with type 2 DM, 407,018 initiated insulin glargine, 141,588 detemir, 26,402 NPH. | Examine risk of ED visits or hospitalisations due to hypoglycaemia in older community patients with type 2 DM who initiated long acting or NPH insulin. | A. Incidence rates for ED visits or hospitalisations for hypoglycaemia per 1000 person–years were 17.37 (95% CI 16.89 to17.84) for glargine and 26.64 (95% CI 26.01–27.3) for NPH. B. For detemir and NPH, incidence rates were 16.69 (15.92 to 17.51) and 25.04 (24.01 to 26.11), respectively. C. Glargine or detemir use associated with reduced risk of hypoglycaemia compared with NPH (HR for glargine vs. NPH 0.71, 95% CI 0.63 to 0.80, and detemir vs. NPH insulin 0.72, 0.63 to 0.82). |
Betônico CC et al., prospective, randomized, 2-way, crossover, open-label, Brazil, 2019 [28]. | 34 patients with type 2 DM randomly assigned to glargine U100 {16 patients, mean (SD) age 63.0 (7.0) Y} or NPH {18 patients, mean (SD) age 60.0 (8.7) Y}. | Compare glycaemic response to glargine U100 or NPH in patients with type 2 DM and CKD stages 3 and 4. | A. After 24 weeks, mean HbA1c declined from 8.86% (72.7 mmol/mol) to 7.95% (62.8 mmol/mol) in glargine group, but increased from 8.21% (66.2 mmol/mol) to 8.44% (69.4 mmol/mol) in INPH group, p = 0.029. B. Incidence of nocturnal hypoglycaemia was 3 times lower with glargine (0.5 events/patient) than with INPH (1.5 events/patient; p = 0.047). |
Ozcelik et al., prospective observational, Turkey, 2021 [30]. | 115 patients with type 2 DM, group 1, 55 on premixed insulin switched to IDegAsp; group 2, 60 on intensive insulin switched to bd IDegAsp, median (IQR) age 67.0 (62.0–69.0). Y. | Evaluate efficacy and safety of transition from premixed and intensive insulin to twice-daily insulin IDegAsp. | A. Mean (SD) rate hypoglycaemia 1.5 (0.85)/week before treatment switch in group 1 decreased to 0.03 (0.11)/week after IdegAsp (p < 0.0001). B. In group 2, episodes of hypoglycaemia were 0.93 (1.17)/week before treatment transition, decreased to 0.07 (0.25)/week after IDegAsp (p < 0.0001). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhafiz, A.; Bisht, S.; Kovacevic, I.; Pennells, D.; Sinclair, A. Insulin in Frail, Older People with Type 2 Diabetes—Low Threshold for Therapy. Diabetology 2022, 3, 369-383. https://doi.org/10.3390/diabetology3020028
Abdelhafiz A, Bisht S, Kovacevic I, Pennells D, Sinclair A. Insulin in Frail, Older People with Type 2 Diabetes—Low Threshold for Therapy. Diabetology. 2022; 3(2):369-383. https://doi.org/10.3390/diabetology3020028
Chicago/Turabian StyleAbdelhafiz, Ahmed, Shail Bisht, Iva Kovacevic, Daniel Pennells, and Alan Sinclair. 2022. "Insulin in Frail, Older People with Type 2 Diabetes—Low Threshold for Therapy" Diabetology 3, no. 2: 369-383. https://doi.org/10.3390/diabetology3020028
APA StyleAbdelhafiz, A., Bisht, S., Kovacevic, I., Pennells, D., & Sinclair, A. (2022). Insulin in Frail, Older People with Type 2 Diabetes—Low Threshold for Therapy. Diabetology, 3(2), 369-383. https://doi.org/10.3390/diabetology3020028