Effect of Moderate Heating Temperatures on Physical, Mechanical and Spectral Properties of Flaxseeds and Pressed Oils
Abstract
1. Introduction
2. Materials and Methods
2.1. Determination of Moisture and Oil Content of Samples
2.2. Flaxseeds Samples Under Hot-Air Oven Pretreatment
2.3. Pressed Oils Under Linear Compression Process
2.4. Oil Yield, Oil Expression Efficiency, and Deformation Energy
2.5. Hardness and Compressive Stress
2.6. Porosity
2.7. Density, Viscosity, and Flow Rate of Pressed Oils
2.8. Absorbance and Transmittance Spectra Properties
2.9. Statistical Analyses
3. Results and Discussion
3.1. Effect of Heating Temperature on Physical Properties
3.2. Effect of Heating Temperature on Mechanical Properties
3.3. Effect of Heating Temperature on Spectral Properties
3.4. Established Linear Regression Models as a Function of Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coşkuner, Y.; Karababa, E. Some physical properties of flaxseed (Linum usitatissimum L.). J. Food Eng. 2007, 78, 1067–1073. [Google Scholar] [CrossRef]
- Berglund, D.R. Flax: New Uses and Demands. In Trends in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, Egypt, 2002; pp. 358–360. [Google Scholar]
- Oomah, B.D. Flaxseed as a functional food source. J. Sci. Food Agric. 2001, 81, 889–894. [Google Scholar] [CrossRef]
- Broderick, C.H.; Dibrov, E.; Hirst, S.D.; Pierce, G.N. Physiological and pathological considerations for the use of flaxseed as a therapeutic dietary strategy. Rev. Cardiovasc. Med. 2023, 24, 149. [Google Scholar] [CrossRef]
- Rebolé, A.; Rodríguez, M.L.; Ortiz, L.T.; Alzueta, C.; Centeno, C.; Trevino, J. Mucilage in linseed: Effects on the intestinal viscosity and nutrient digestion in broiler chicks. J. Sci. Food Agric. 2002, 82, 1171–1776. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Ratnayake, W.M.N.; Cunnane, S.C. Oxidative stability of flaxseed lipids during baking. Am. Oil Chem. Soc. 1994, 71, 629–632. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef] [PubMed]
- Al-Madhagy, S.; Ashmawy, N.S.; Mamdouh, A.; Omayma, A.E.; Farag, M.A. A comprehensive review of the health benefits of flaxseed oil in relation to its chemical composition and comparison with other omega-3-rich oils. Eur. J. Med. Res. 2023, 28, 240. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Zhao, Y.; Cui, R.; Wu, H.; Xu, M.; Liu, W.; Liu, R.; Xu, L.; Song, L. Effect of different heating pretreatment methods on physicochemical properties of pressed walnut oils and functional properties of walnut protein isolates. LWT—Food Sci. Technol. 2025, 225, 117885. [Google Scholar] [CrossRef]
- Cheng, C.; Yu, X.; Huang, F.; Wang, L.; Zhu, Z.; Yang, J.; Chen, P.; Qianchun, D. Effect of heat-treated flaxseed lignan macromolecules on the interfacial properties and physicochemical stability of α-linolenic acid-enriched o/w emulsions. Food Funct. 2024, 15, 9524–9540. [Google Scholar] [CrossRef]
- Brestenský, M.; Nitrayová, S.; Patráš, P. The effect of heat treatment on the quality of fat in flaxseeds and chia seeds. Czech J. Food Sci. 2023, 41, 21–28. [Google Scholar] [CrossRef]
- Midhun, J.; Stephi, D.; Selvi, K.M.; Kameshwari, Y.; Swatika, S.K.; Sunil, C.K. Effect of emerging pretreatment methods on extraction and quality of edible oils: A review. Food Humanit. 2023, 1, 1511–1522. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Wang, L.-J.; Li, D.; Jiao, S.S.; Chen, X.D.; Mao, Z.-H. Ultrasound-assisted extraction of oil from flaxseed. Sep. Purif. Technol. 2008, 62, 192–198. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Li, H.; Zhou, J.; Han, J.; Wei, C. Changes in the volatile profile, fatty acid composition and oxidative stability of flaxseed oil during heating at different temperatures. LWT—Food Sci. Technol. 2021, 151, 112137. [Google Scholar] [CrossRef]
- Petrů, M.; Novák, O.; Herák, D.; Simanjuntak, S. Finite element method model of the mechanical behaviour of Jatropha curcas L. seeds under compression loading. Biosyst. Eng. 2012, 111, 412–421. [Google Scholar] [CrossRef]
- Gutte, K.B.; Sahoo, A.K.; Ranveer, R.C. Effect of ultrasonic treatment on extraction and fatty acid profile of flaxseed oil. OCL 2015, 22, D606. [Google Scholar] [CrossRef]
- Losada-Barreiro, S.; Paiva-Martins, F.; Bravo-Díaz, C. Partitioning of antioxidants in edible oil–water binary systems and in oil-in-water emulsions. Antioxidants 2023, 12, 828. [Google Scholar] [CrossRef]
- Kabutey, A.; Kibret, S.H.; Kiros, A.W.; Afework, M.A.; Onwuka, M.; Raj, A. Comparative analysis of pretreatment methods for processing bulk flax and hemp oilseeds under uniaxial compression. Foods 2025, 14, 629. [Google Scholar] [CrossRef]
- Kabutey, A.; Herak, D.; Mizera, C. Assessment of quality and efficiency of cold-pressed oil from selected oilseeds. Foods 2023, 12, 3636. [Google Scholar] [CrossRef]
- IS:3579; Indian Standard Methods for Analysis of Oilseeds. Indian Standard Institute: New Delhi, India, 1996.
- Blahovec, J. Agromaterials Study Guide; Czech University of Life Sciences Prague: Prague, Czech Republic, 2008. [Google Scholar]
- Niu, L.; Li, J.; Chen, M.S.; Xu, Z.F. Determination of oil contents in Sacha inchi (Plukenetia volubilis) seeds at different developmental stages by two methods: Soxhlet extraction and time-domain nuclear magnetic resonance. Ind. Crop. Prod. 2014, 56, 187–190. [Google Scholar] [CrossRef]
- Danlami, J.M.; Arsad, A.; Zaini, M.A.A. Characterization and process optimization of castor oil (Ricinus communis L.) extracted by the Soxhlet method using polar and non-polar solvents. J. Taiwan Inst. Chem. Eng. 2015, 47, 99–104. [Google Scholar] [CrossRef]
- Gürdil, G.A.K.; Kabutey, A.; Selvi, K.Ç.; Mizera, Č.; Herák, D.; Fraňková, A. Evaluation of postharvest processing of hazelnut kernel oil extraction using uniaxial pressure and organic solvent. Processes 2020, 8, 957. [Google Scholar] [CrossRef]
- Herak, D.; Kabutey, A.; Choteborsky, R.; Petru, M.; Sigalingging, R. Mathematical models describing the relaxation behaviour of Jatropha curcas L. bulk seeds under axial compression. Biosyst. Eng. 2015, 131, 77–83. [Google Scholar] [CrossRef]
- Deli, S.; Farah Masturah, M.; Tajul Aris, Y.; Wan Nadiah, W.A. The effects of physical parameters of the screw press oil expeller on oil yield from Nigella sativa L. seeds. Int. Food Res. J. 2011, 18, 1367–1373. [Google Scholar]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT—Food Sci. Technol. 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Hernandez-Santos, B.; Rodriguez-Miranda, J.; Herman-Lara, E.; Torruco-Uco, J.G.; Carmona-Garcia, R.; Juarez-Barrientos, J.M.; Chavez-Zamudio, R.; Martinez-Sanchez, C.E. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrason. Sonochem. 2016, 31, 429–436. [Google Scholar] [CrossRef]
- Gupta, R.K.; Das, S.K. Fracture Resistance of Sunflower Seed and Kernel to Compressive Loading. J. Food Eng. 2000, 46, 1–8. [Google Scholar] [CrossRef]
- Chakespari, A.G.; Rajabipour, A.; Mobli, H. Strength Behavior Study of Apples (cv. Shafi Abadi & Golab Kohanz) under Compression Loading. Mod. Appl. Sci. 2010, 4, 173–182. [Google Scholar]
- Thompson, R.A.; Isaacs, G.W. Porosity determinations of grains and seeds with an air-comparison pycnometer. Trans. ASAE 1967, 10, 693–696. [Google Scholar] [CrossRef]
- Mohsenin, N.N. Physical Properties of Plants and Animal Materials; Gordon and Breach, Science Publishers, Inc. Taylor and Francis: New York, NY, USA, 1970. [Google Scholar]
- Olajide, J.O.; Ade-Omowaye, B.I.O.; Otunola, E.T. Some physical properties of shea kernel. J. Agric. Eng. Res. 2000, 76, 419–421. [Google Scholar] [CrossRef]
- Amin, M.N.; Hossain, M.A.; Roy, K.C. Effects of moisture content on some physical properties of lentil seeds. J. Food Eng. 2004, 65, 83–87. [Google Scholar] [CrossRef]
- Esteban, B.; Riba, J.-R.; Baquero, G.; Rius, A.; Puig, R. Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenergy 2012, 42, 164–171. [Google Scholar] [CrossRef]
- Mihcakan, I.M.; Alkan, K.H.; Ugur, Z. Petroleum and Natural Gas Laboratory, Course Notes, I-Fluid Properties; ITU, Petroleum and Natural Gas Engineering: Istanbul, Turkey, 2001; pp. 2–7. [Google Scholar]
- Davies, R.M. Effect of the temperature on dynamic viscosity, density and flow rate of some vegetable oil. J. Sci. Res. Eng. Technol. 2016, 1, 14–24. [Google Scholar]
- Mohammadi, M.; Khorrami, M.; Vatani, A.; Ghasemzadeh, H.; Vatanparast, H.; Bahramian, A.; Fallah, A. Rapid determination and classification of crude oils by ATR-FTIR spectroscopy and chemometric methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 232, 118157. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Meng, X.; Xin, K.; Ju, Y.; Zhang, Y.; Yin, C.; Hu, L. A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 288, 122120. [Google Scholar] [CrossRef]
- Statsoft Inc. STATISTICA for Windows; Statsoft Inc.: Tulsa, OK, USA, 2013. [Google Scholar]
- Cai, Z.; Li, K.; Lee, W.J.; Reaney, M.T.J.; Zhang, N.; Wang, Y. Recent progress in the thermal treatment of oilseeds and oil oxidative stability: A review. Fundam. Res. 2021, 1, 767–784. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Ozcan, M.M.; Uslu, N.; Juhaimi, F.A.L.; Osman, M.A.; Alqah, H.A.S.; Ghafoor, K.; Babiker, E.E. Effect of microwave roasting on color, total phenol, antioxidant activity, fatty acid composition, tocopherol and chemical composition of sesame seed and oils obtained from different countries. J. Food Process. Preserv. 2020, 44, e14807. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.; Shi, A.; Liu, L.; Fauconnier, M.L.; Wang, Q. The effect of microwave pretreatment on micronutrient contents, oxidative stability and flavor quality of peanut oil. Molecules 2019, 24, 62. [Google Scholar] [CrossRef]
- Ren, X.; Wang, L.; Xu, B.; Wei, B.; Liu, Y.; Zhou, C.; Ma, H.; Wang, Z. Influence of microwave pretreatment on the flavor attributes and oxidative stability of cold-pressed rapeseed oil. Dry. Technol. 2019, 37, 397–408. [Google Scholar] [CrossRef]
- Yang, K.; Hsu, F.; Chen, C.; Hsu, C.; Cheng, M. Quality characterization and oxidative stability of camelina seed oils produced with different roasting temperatures. J. Oleo Sci. 2018, 67, 389–396. [Google Scholar] [CrossRef]
- Wang, R.; Hou, N.-C.; Chen, Z.-M.; Liu, Y.-T.; Qin, Z.; Chang, Y.-L.; Qin, Z.; Liu, H.-M. Effect of heat pretreatment of safflower seeds on quality and polyphenol composition of extracted oil. LWT—Food Sci. Technol. 2025, 217, 117418. [Google Scholar] [CrossRef]
- Guo, X.; Wu, B.C.; Jiang, Y.; Zhang, Y.; Jiao, B.; Wang, Q. Improving enzyme accessibility in the aqueous enzymatic extraction process by microwave-induced porous cell walls to increase oil body and protein yields. Food Hydrocoll. 2024, 147, 109407. [Google Scholar] [CrossRef]
- Yerima, J.B.; Madugu, J.S.; Timter, P.; David, Y.M. Dependence of viscosity and density of Nigerian Lophiralanceolata Oil (Ochnaceae) on temperature. Phys. Rev. Res. 2012, 2, 125–132. [Google Scholar]
- Da Cunha, E.F.; Ferreira, F.D.O.; Maciel, G.D.F.; Kitano, C. Absorbance photometric technique to measure roll waves in a free surface of a non-Newtonian fluid flow. Measurement 2024, 235, 114880. [Google Scholar] [CrossRef]
- Parnis, J.; Oldham, K.B. Beyond the Beer-Lambert law: The dependence of absorbance on time in photochemistry. J. Photochem. Photobiol. A Chem. 2013, 267, 6–10. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Chiang, D.; Li, Y.-T.; Perng, T.-P.; Lee, S. Thermal degradation of vegetable oils. Foods 2023, 12, 1839. [Google Scholar] [CrossRef]
- Santana, K.D.S.; Tavares, M.I.B. Characterization of flaxseed oil for nuclear magnetic resonance and its encapsulation. Mater. Sci. Appl. 2022, 13, 279–299. [Google Scholar] [CrossRef]
- Song, F.-F.; Tian, S.-J.; Yang, G.-L.; Sun, X.-Y. Effect of phospholipid/flaxseed oi ratio on characteristics, structure change, and storage stability of liposomes. LWT—Food Sci. Technol. 2022, 157, 113040. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Z.; Li, J.; Qin, Z. Analysis of edible vegetable oils by infrared absorption spectrometry. Adv. Eng. Res. 2017, 86, 286–289. [Google Scholar]
- Xiang, P.-F.; Zhang, Z.-S.; Le, W.; Wei, Y.-Y.; Li, B.-Z. Effect of thermal pretreatments on the quality attributes and irradiation makers of sesame extracted from sesame seeds without and with gamma irradiation. Food Chem. 2025, 463, 141401. [Google Scholar] [CrossRef]
- Cakmak-Arslan, G. Monitoring of hazelnut oil quality during thermal processing in comparison with extra virgin olive oil by using ATR-FTIR spectroscopy combined with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120461. [Google Scholar] [CrossRef]
- Asemani, M.; Rabbani, A.R.; Sarafdokht, H. Evaluation of oil fingerprints similarity by a novel technique based on FTIR spectroscopy of asphaltenes: Modified moving window correction coefficient technique. Mar. Pet. Geol. 2020, 120, 104542. [Google Scholar] [CrossRef]
- Putri, A.R.; Rohman, A.; Setyaningsih, W.; Riyanto, S. Determination of acid, peroxide and saponification value in patin fish oil by FTIR spectroscopy combined with chemometrics. Food Res. 2020, 4, 1758–1766. [Google Scholar] [CrossRef]
- Tudorachi, N.; Mustata, F. Thermal degradation and evolved gas analysis of some vegetable oils using TG/FT-IR/MS technique. J. Therm. Anal. Calorim. 2015, 119, 1703–1711. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. Application of FTIR spectroscopy for monitoring the stabilities of selected vegetable oils during thermal oxidation. Int. J. Food Prop. 2013, 16, 1594–1603. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S.; Xiang, G.; Li, Q.; Fan, L.; He, L.; Gu, K. Determination of the acid values of edible oils via FTIR spectroscopy based on the O-H stretching band. Food Chem. 2016, 212, 585–589. [Google Scholar] [CrossRef]





| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
|---|---|---|---|---|---|---|
| (%) | ||||||
| 22 | 634.144 | 656.013 | 650.236 | 646.798 | 11.333 | 1.752 |
| 40 | 656.013 | 650.236 | 568.655 | 577.732 | 9.861 | 1.707 |
| 45 | 650.236 | 568.655 | 576.318 | 568.006 | 11.260 | 1.982 |
| 50 | 568.655 | 576.318 | 588.225 | 570.089 | 5.718 | 1.003 |
| 55 | 576.318 | 588.225 | 557.809 | 556.590 | 2.593 | 0.466 |
| 60 | 588.225 | 557.809 | 566.120 | 554.390 | 10.928 | 1.971 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Porosity (%) | ||||||
| 22 | 40.318 | 38.260 | 38.803 | 39.127 | 1.067 | 2.726 |
| 40 | 38.260 | 38.803 | 46.481 | 45.627 | 0.928 | 2.034 |
| 45 | 38.803 | 46.481 | 45.760 | 46.542 | 1.060 | 2.277 |
| 50 | 46.481 | 45.760 | 44.640 | 46.346 | 0.538 | 1.161 |
| 55 | 45.760 | 44.640 | 47.502 | 47.617 | 0.244 | 0.512 |
| 60 | 44.640 | 47.502 | 46.720 | 47.824 | 1.029 | 2.151 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
|---|---|---|---|---|---|---|
| (kg/m3) | ||||||
| 22 | 863.6667 | 861.8333 | 897.1667 | 874.2222 | 19.8916 | 2.2753 |
| 40 | 836.2000 | 861.5000 | 885.3333 | 861.0111 | 24.5703 | 2.8537 |
| 45 | 829.0833 | 834.6667 | 883.0000 | 848.9167 | 29.6488 | 3.4925 |
| 50 | 815.5000 | 830.3333 | 882.6667 | 842.8333 | 35.2850 | 4.1865 |
| 55 | 813.6667 | 824.3333 | 877.1667 | 838.3889 | 34.0034 | 4.0558 |
| 60 | 813.5000 | 823.8333 | 875.1667 | 837.5000 | 33.0269 | 3.9435 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Kinematic Viscosity, 10−6 (m2/s) | ||||||
| 22 | 12.2316 | 11.4171 | 10.5893 | 11.4127 | 0.8211 | 7.1950 |
| 40 | 9.7459 | 9.4609 | 9.4609 | 9.5559 | 0.1645 | 1.7218 |
| 45 | 8.8845 | 8.5929 | 8.8845 | 8.7873 | 0.1684 | 1.9163 |
| 50 | 8.0020 | 8.0020 | 8.2988 | 8.1009 | 0.1713 | 2.1150 |
| 55 | 7.4000 | 7.0944 | 7.4000 | 7.2981 | 0.1764 | 2.4175 |
| 60 | 6.1569 | 6.4731 | 6.7855 | 6.4718 | 0.3143 | 4.8567 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Dynamic Viscosity, kgm−1s−1 or Pa·s | ||||||
| 22 | 0.0106 | 0.0098 | 0.0095 | 0.0100 | 0.0005 | 5.4505 |
| 40 | 0.0081 | 0.0082 | 0.0084 | 0.0082 | 0.0001 | 1.5864 |
| 45 | 0.0074 | 0.0072 | 0.0078 | 0.0075 | 0.0003 | 4.6421 |
| 50 | 0.0065 | 0.0066 | 0.0073 | 0.0068 | 0.0004 | 6.3143 |
| 55 | 0.0060 | 0.0058 | 0.0065 | 0.0061 | 0.0003 | 5.4357 |
| 60 | 0.0050 | 0.0053 | 0.0059 | 0.0054 | 0.0005 | 8.6973 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Flow Rate (mL/s) | ||||||
| 22 | 0.8955 | 0.9375 | 0.9836 | 0.9389 | 0.0441 | 4.6927 |
| 40 | 1.0345 | 1.0526 | 1.0526 | 1.0466 | 0.0105 | 1.0012 |
| 45 | 1.0909 | 1.1111 | 1.0909 | 1.0976 | 0.0117 | 1.0626 |
| 50 | 1.1538 | 1.1538 | 1.1321 | 1.1466 | 0.0126 | 1.0962 |
| 55 | 1.2000 | 1.2245 | 1.2000 | 1.2082 | 0.0141 | 1.1703 |
| 60 | 1.3043 | 1.2766 | 1.2500 | 1.2770 | 0.0272 | 2.1281 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
|---|---|---|---|---|---|---|
| (%) | ||||||
| 22 | 13.270 | 10.279 | 11.069 | 11.539 | 1.550 | 13.432 |
| 40 | 10.279 | 11.069 | 22.227 | 20.985 | 1.349 | 6.427 |
| 45 | 11.069 | 22.227 | 21.179 | 22.315 | 1.540 | 6.901 |
| 50 | 22.227 | 21.179 | 19.550 | 22.031 | 0.782 | 3.550 |
| 55 | 21.179 | 19.550 | 23.710 | 23.877 | 0.355 | 1.485 |
| 60 | 19.550 | 23.710 | 22.573 | 24.178 | 1.495 | 6.182 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Oil Expression Efficiency (%) | ||||||
| 22 | 32.909 | 25.491 | 27.451 | 28.617 | 3.844 | 13.432 |
| 40 | 25.491 | 27.451 | 55.121 | 52.042 | 3.345 | 6.427 |
| 45 | 27.451 | 55.121 | 52.522 | 55.341 | 3.819 | 6.901 |
| 50 | 55.121 | 52.522 | 48.483 | 54.634 | 1.939 | 3.550 |
| 55 | 52.522 | 48.483 | 58.800 | 59.213 | 0.879 | 1.485 |
| 60 | 48.483 | 58.800 | 55.981 | 59.959 | 3.707 | 6.182 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
|---|---|---|---|---|---|---|
| (kN) | ||||||
| 22 | 117.385 | 111.121 | 108.845 | 112.450 | 4.422 | 3.933 |
| 40 | 111.121 | 108.845 | 165.632 | 169.928 | 9.276 | 5.459 |
| 45 | 108.845 | 165.632 | 180.574 | 172.446 | 9.722 | 5.637 |
| 50 | 165.632 | 180.574 | 163.580 | 170.306 | 6.378 | 3.745 |
| 55 | 180.574 | 163.580 | 175.825 | 181.711 | 8.106 | 4.461 |
| 60 | 163.580 | 175.825 | 180.028 | 176.064 | 1.335 | 0.758 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Deformation, (mm) | ||||||
| 22 | 27.27 | 27.83 | 28.61 | 27.903 | 0.673 | 2.412 |
| 40 | 27.83 | 28.61 | 31.05 | 32.063 | 0.886 | 2.762 |
| 45 | 28.61 | 31.05 | 32.69 | 32.393 | 0.199 | 0.613 |
| 50 | 31.05 | 32.69 | 32.45 | 33.040 | 0.670 | 2.028 |
| 55 | 32.69 | 32.45 | 32.61 | 33.130 | 0.466 | 1.406 |
| 60 | 32.45 | 32.61 | 32.35 | 33.083 | 0.777 | 2.347 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Deformation Energy, (kJ) | ||||||
| 22 | 0.429 | 0.429 | 0.394 | 0.410 | 0.018 | 4.408 |
| 40 | 0.406 | 0.406 | 0.636 | 0.666 | 0.047 | 7.096 |
| 45 | 0.394 | 0.394 | 0.721 | 0.676 | 0.045 | 6.603 |
| 50 | 0.636 | 0.636 | 0.642 | 0.676 | 0.029 | 4.266 |
| 55 | 0.721 | 0.721 | 0.706 | 0.723 | 0.029 | 4.016 |
| 60 | 0.642 | 0.642 | 0.696 | 0.698 | 0.011 | 1.531 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Hardness, (kN/mm) | ||||||
| 22 | 4.305 | 3.993 | 3.804 | 4.034 | 0.253 | 6.261 |
| 40 | 3.993 | 3.804 | 5.334 | 5.300 | 0.243 | 4.590 |
| 45 | 3.804 | 5.334 | 5.524 | 5.323 | 0.283 | 5.314 |
| 50 | 5.334 | 5.524 | 5.041 | 5.156 | 0.204 | 3.959 |
| 55 | 5.524 | 5.041 | 5.392 | 5.483 | 0.175 | 3.194 |
| 60 | 5.041 | 5.392 | 5.565 | 5.324 | 0.117 | 2.190 |
| Temperature (°C) | Test 1 | Test 2 | Test 3 | Mean | SD | % CV |
| Compressive Stress, (MPa) | ||||||
| 22 | 41.516 | 39.301 | 38.496 | 39.771 | 1.564 | 3.933 |
| 40 | 39.301 | 38.496 | 58.580 | 60.100 | 3.281 | 5.459 |
| 45 | 38.496 | 58.580 | 63.865 | 60.990 | 3.438 | 5.637 |
| 50 | 58.580 | 63.865 | 57.854 | 60.233 | 2.256 | 3.745 |
| 55 | 63.865 | 57.854 | 62.185 | 64.267 | 2.867 | 4.461 |
| 60 | 57.854 | 62.185 | 63.672 | 62.270 | 0.472 | 0.758 |
| TPR (°C) | Absorbance (-) | Transmittance (%) | ||||
|---|---|---|---|---|---|---|
| Weighted Mean | SD | % CV | Weighted Mean | SD | % CV | |
| 20 | 0.022760 | 0.000931 | 4.08999 | 95.22982 | 0.18343 | 0.19262 |
| 40 | 0.022844 | 0.000934 | 4.08820 | 95.21360 | 0.18402 | 0.19327 |
| 45 | 0.023351 | 0.000928 | 3.97589 | 95.09936 | 0.18330 | 0.19275 |
| 50 | 0.022228 | 0.000911 | 4.09782 | 95.33333 | 0.18047 | 0.18930 |
| 55 | 0.023373 | 0.000911 | 3.89930 | 95.08333 | 0.18073 | 0.19007 |
| 60 | 0.020082 | 0.000827 | 4.11931 | 95.75060 | 0.16643 | 0.17382 |
| Effect A | Degrees of Freedom | Sum of Squares | Mean Squares | F-Value | p-Value |
|---|---|---|---|---|---|
| TPR (°C) | 5 | 0.01253 | 0.002505 | 1.837 | >0.102 |
| Error | 9924 | 13.53710 | 0.001364 | ||
| Total | 9929 | 13.54963 | |||
| Effect T | Degrees of Freedom | Sum of Squares | Mean Squares | F-Value | p-Value |
| TPR (°C) | 5 | 500 | 100 | 2 | >0.102 |
| Error | 9924 | 531,161 | 54 | ||
| Total | 9929 | 531,661 |
| Calculated Parameters | Porosity (%) | Density (%) | Kinematic Viscosity (m2/s) | Dynamic Viscosity (Pas) |
|---|---|---|---|---|
| TPR (°C) | 0.729 | 0.787 | 0.043 | 0.168 |
| p-value | <0.05 | <0.05 | >0.05 | >0.05 |
| Calculated Parameters | Compressive Stress (MPa) | Hardness (kN/mm) | Deformation Energy (kJ) | Oil Yield (%) | Oil Expression Efficiency (%) |
|---|---|---|---|---|---|
| TPR (°C) | 0.401 | 0.146 | 0.451 | 0.729 | 0.729 |
| p-value | >0.05 | >0.05 | >0.05 | <0.05 | <0.05 |
| Effect | Porosity (%) Model (Equation (12)) | Standard Error | t-Value | p-Value |
|---|---|---|---|---|
| Intercept | 41.323 | 1.438 | 28.745 | <0.05 |
| TPR (°C) | 0.109 | 0.028 | 3.842 | <0.05 |
| Effect | Density (kg/m3) Model (Equation (13)) | Standard Error | t-Value | p-Value |
| Intercept | 687.922 | 35.973 | 19.123 | <0.05 |
| TPR (°C) | 3.281 | 0.712 | 4.606 | <0.05 |
| Effect | Oil yield (%) Model (Equation (14)) | Standard Error | t-Value | p-Value |
| Intercept | 14.731 | 2.089 | 7.051 | <0.05 |
| TPR (°C) | 0.159 | 0.041 | 3.842 | <0.05 |
| Effect | Oil expression efficiency (%) Model (Equation (15)) | Standard Error | t-Value | p-Value |
| Intercept | 36.531 | 5.181 | 7.051 | <0.05 |
| TPR (°C) | 0.394 | 0.103 | 3.842 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabutey, A.; Soe, S.S.; Musayev, M.; Kibret, S.H. Effect of Moderate Heating Temperatures on Physical, Mechanical and Spectral Properties of Flaxseeds and Pressed Oils. Analytica 2025, 6, 48. https://doi.org/10.3390/analytica6040048
Kabutey A, Soe SS, Musayev M, Kibret SH. Effect of Moderate Heating Temperatures on Physical, Mechanical and Spectral Properties of Flaxseeds and Pressed Oils. Analytica. 2025; 6(4):48. https://doi.org/10.3390/analytica6040048
Chicago/Turabian StyleKabutey, Abraham, Su Su Soe, Mahmud Musayev, and Sonia Habtamu Kibret. 2025. "Effect of Moderate Heating Temperatures on Physical, Mechanical and Spectral Properties of Flaxseeds and Pressed Oils" Analytica 6, no. 4: 48. https://doi.org/10.3390/analytica6040048
APA StyleKabutey, A., Soe, S. S., Musayev, M., & Kibret, S. H. (2025). Effect of Moderate Heating Temperatures on Physical, Mechanical and Spectral Properties of Flaxseeds and Pressed Oils. Analytica, 6(4), 48. https://doi.org/10.3390/analytica6040048

