Multi-Element Determination in Wild and Cultivated Edible Mushrooms from the Brazilian Atlantic Forest Using Microwave-Induced Plasma Optical Emission Spectrometry (MIP OES)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Sampling and Preparation
2.2. Reagents, Solutions, and Decontamination of Materials
2.3. Instrumentation and Operational Parameters
2.4. Wet Digestion Optimization and Factorial Design
2.5. Analytical Validation Parameters
2.6. Recommended Daily Intake (RDI) and Adequate Intake (AI)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Wet Digestion Optimization and Factorial Design Based on Auricularia cornea
3.2. Analytical Validation Parameters
3.3. Multi-Element Analysis and Nutritional Potential of Wild Edible and Medicinal Commercial Mushrooms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANVISA | National Health Surveillance Agency |
BEC | Background Equivalent Concentration |
EFSA | European Food Safety Authority |
AI | Adequate Intake |
ICP OES | Inductively Coupled Plasma Optical Emission Spectrometry |
LOD | Limit of Detection |
LOQ | Limit of Quaantification |
IUPAC | International Union of Pure and Applied Chemistry |
MIP OES | Microwave-Induced Plasma Optical Emission Spectrometry |
NIH | National Institutes of Health |
RDS | Relative Standard Deviation |
RDI | Recommended Daily Intake |
MR | Multiple Response |
SBR | Signal-to-noise Ratio |
References
- Niskanen, T.; Lucking, R.; Dahlberg, A.; Gaya, E.; Suz, L.M.; Mikryukov, V.; Liimatainen, K.; Druzhinina, I.; Westrip, J.R.S.; Mueller, G.M.; et al. Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 2023, 48, 149–176. [Google Scholar] [CrossRef]
- Hawksworth, D.L. Mushrooms: The extent of the unexplored potential. Int. J. Med. Mushr. 2001, 3, 333–337. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017, 5, 4. [Google Scholar] [CrossRef]
- Cardoso, D.O.S.; Queiroz, L.P.; Bandeira, F.P.; Góes-Neto, A. Correlations between Indigenous Brazilian Folk Classifications of Fungi and Their Systematics. J. Ethnobiol. 2010, 30, 252–264. [Google Scholar] [CrossRef]
- Elsayed, E.A.; Enshasy, H.E.; Wadaan, M.A.M.; Aziz, R. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Helm, C.V.; Coradin, J.H.; Rigoni, D. Evaluation of the Chemical Composition of the Edible Mushrooms Agaricus bisporus, Agaricus brasiliensis, Agaricus bisporus Portobello, Lentinula edodes and Pleurotus ostreatus; Embrapa: Colombo, Brazil, 2009; Technical communication 234. [Google Scholar]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms; Wiley: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar] [CrossRef]
- Brazil Flora Group; Gomes-da-Silva, J.; Filardi, F.L.; Barbosa, M.R.V.; Baumgratz, J.F.A.; Bicudo, C.E.; Cavalcanti, T.B.; Coelho, M.A.N.; Costa, A.F.; Costa, D.P.; et al. Brazilian Flora 2020: Leveraging the power of a collaborative scientific network. Taxon 2022, 71, 178–198. [Google Scholar]
- Drewinski, M.P.; Corrêa-Santos, M.P.; Lima, V.X.; Lima, F.T.; Palacio, M.; Borges, M.E.A.; Trierveiler-Pereira, L.; Magnago, A.C.; Furtado, A.N.M.; Lenz, A.R.; et al. Over 400 food resources from Brazil: Evidence-based records of wild edible mushrooms. IMA Fungus 2024, 15, 40. [Google Scholar] [CrossRef]
- Santos Júnior, A.F.; Matos, R.A.; Andrade, E.M.J.; Santos, W.N.L.; Magalhães, H.I.F.; Costa, F.N.; Korn, M.D.G.A. Multielement determination of macro and micro contents in medicinal plants and phytomedicines from Brazil by ICP OES. J. Braz. Chem. Soc. 2017, 28, 376–384. [Google Scholar] [CrossRef]
- Fontoura, B.M.; Jofré, F.C.; Williams, T.; Savio, M.; Donati, G.L.; Nóbrega, J.A. Is MIP-OES a suitable alternative to ICP-OES for trace element analysis? J. Anal. At. Spectrom. 2022, 37, 966–984. [Google Scholar] [CrossRef]
- Niedzielski, P.; Kozak, L.; Wachelka, M.; Jakubowski, K.; Wybieralska, J. The microwave induced plasma with optical emission spectrometry (MIP–OES) in 23 elements determination in geological samples. Talanta 2015, 132, 591–599. [Google Scholar] [CrossRef]
- de Paula Drewinski, M.; Zied, D.C.; Menolli, N. First successful cultivation of wild strains of Irpex rosettiformis from the Brazilian Atlantic Rainforest. Mycol. Progress 2025, 24, 17. [Google Scholar] [CrossRef]
- Drewinski, M.P.; Zied, D.C.; Gomes, E.P.C.; Menolli, N., Jr. Cultivation of a wild strain of wood ear Auricularia cornea from Brazil. Curr. Microbiol. 2024, 81, 390. [Google Scholar] [CrossRef] [PubMed]
- International Union of Pure and Applied Chemistry (IUPAC). Harmonized guidelines for validation of methods of analysis in a single laboratory (IUPAC Technical Report). Pure Appl. Chem. 1995, 74, 835–855. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium. Dietary Reference Intakes for Sodium and Potassium; Oria, M., Harrison, M., Stallings, V.A., Eds.; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- National Institutes of Health. Dietary Supplement Fact Sheets: List of All Nutrients. Office of Dietary Supplements. 2025. Available online: https://ods.od.nih.gov/factsheets/list-all/ (accessed on 17 March 2025).
- Zakaria, M.K.; Matanjun, P.; George, R.; Pindi, W.; Mamat, H.; Surugau, N.; Seelan, J.S.S. Nutrient Composition, Antioxidant Activities and Glycaemic Response of Instant Noodles with Wood Ear Mushroom (Auricularia cornea) Powder. Appl. Sci. 2022, 12, 12671. [Google Scholar] [CrossRef]
- Scherdien, S.H. Development of Analytical Methods for Elemental Determination and Bioaccessible Fraction in Edible Mushrooms by MIP OES. Master’s Thesis, Federal University of Pelotas, Pelotas, Brazil, 2022. [Google Scholar]
- Altıntığ, E.; Hişir, M.E.; Altundağ, H. Türkiye, Sakarya, Mantar Örneklerinde ICP-OES ile Cr, Cu, Fe, Ni, Pb ve Zn’nun Belirlenmesi. Saü Fen Bilim. Enstit. Derg. 2017, 21, 1. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, R. A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues. J. Future Foods 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Silva, C.G.; Teixeira-Silva, M.A.; Santos, I.N.P.; Silveira, M.; Oliveira, M.H. Richness of edible fungi in the Lago do Amapá Environmental Protection Area. Rev. Multidiscip. Educ. Meio Ambiente 2022, 3, 20–27. [Google Scholar] [CrossRef]
- Balaram, V. Microwave plasma atomic emission spectrometry (MP-AES) and its applications—A critical review. Microchem. J. 2020, 159, 105483. [Google Scholar] [CrossRef]
- Jasinska, A.; Prasad, R.; Lisiecka, J.; Roszak, M.; Stoknes, K.; Mleczek, M.; Niedzielski, P. Combined dairy manure-food waste digestate as a medium for Pleurotus djamor—Mineral composition in substrate and bioaccumulation of elements in fruiting bodies. Horticulturae 2022, 8, 934. [Google Scholar] [CrossRef]
- Mleczek, M.; Siwulski, M.; Budka, A.; Niedzielski, P.; Mleczek, P.; Kuczyńska-Kippen, N.; Budzyńska, S.; Karolewski, Z.; Kalač, P.; Jędryczka, M. Can the concentration of elements in wild-growing mushrooms be deduced from the taxonomic rank? Environ. Res. 2024, 252, 119079. [Google Scholar] [CrossRef]
- Olechno, E.; Puśćion-Jakubik, A.; Socha, K.; Zujko, M.E. Coffee brews: Are they a source of macroelements in human nutrition? Foods 2021, 10, 1328. [Google Scholar] [CrossRef]
- Yadav, S.; Yadav, J.; Kumar, S.; Singh, P. Metabolism of macro-elements (calcium, magnesium, sodium, potassium, chloride and phosphorus) and associated disorders. In Clinical Applications of Biomolecules in Disease Diagnosis, 1st ed.; Yadav, S., Kumar, S., Singh, P., Eds.; Springer: Singapore, 2024; pp. 177–203. [Google Scholar] [CrossRef]
- Golian, M.; Hegedűsová, A.; Mezeyová, I.; Chlebová, Z.; Hegedűs, O.; Urminská, D.; Vollmannová, A.; Chlebo, P. Accumulation of selected metal elements in fruiting bodies of oyster mushroom. Foods 2021, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Budka, A.; Siwulski, M.; Mleczek, P.; Budzyńska, S.; Proch, J.; Gąsecka, M.; Niedzielski, P.; Rzymski, P. A comparison of toxic and essential elements in edible wild and cultivated mushroom species. Eur. Food Res. Technol. 2021, 247, 1249–1262. [Google Scholar] [CrossRef]
- Tang, Z.X.; Shi, L.E.; Jiang, Z.B.; Bai, X.L.; Ying, R.F. Calcium enrichment in edible mushrooms: A review. J. Fungi 2023, 9, 338. [Google Scholar] [CrossRef]
- Arnold, M.; Rajagukguk, Y.V.; Gramza-Michałowska, A. Functional food for elderly high in antioxidant and chicken eggshell calcium to reduce the risk of osteoporosis—A narrative review. Foods 2021, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- Anzolin, A.P.; Fagundes, S.C.; Fagundes, M.A.; Pizzol, G.D.; Spassim, M.R.; Bertol, C.D. Therapeutic management in calcium deficiency: A systematic review. Rev. Bras. Ciênc. Envelhec. Hum. 2020, 17, 114115612. [Google Scholar] [CrossRef]
- Cozzolino, S.M.F. Biodisponibilidade de Nutrientes, 6th ed.; Manole: Barueri, Brazil, 2020; E-book; p. 345. ISBN 9786555761115. Available online: https://integrada.minhabiblioteca.com.br/reader/books/9786555761115/ (accessed on 17 March 2025).
- McLean, R.M.; Wang, N.X. Potassium. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2021; pp. 89–121. [Google Scholar] [CrossRef]
- Kiani, A.K.; Dhuli, K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; et al. Main nutritional deficiencies. J. Prev. Med. Hyg. 2022, 63, 93–101. [Google Scholar] [CrossRef]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef] [PubMed]
- Mente, A.; O’Donnell, M.; Yusuf, S. Sodium intake and health: What should we recommend based on the current evidence? Nutrients 2021, 13, 3232. [Google Scholar] [CrossRef]
- Šnirc, M.; Jančo, I.; Hauptvogl, M.; Jakabová, S.; Demková, L.; Árvay, J. Risk Assessment of the Wild Edible Leccinum Mushrooms Consumption According to the Total Mercury Content. J. Fungi 2023, 9, 287. [Google Scholar] [CrossRef]
- Marshall, W.J. Bioquímica Clínica—Aspectos Clínicos e Metabólicos, 3rd ed.; GEN Guanabara Koogan: Rio de Janeiro, Brazil, 2016; E-book; p. 192. ISBN 9788595151918. Available online: https://integrada.minhabiblioteca.com.br/reader/books/9788595151918/ (accessed on 17 March 2025).
- Vincent, J.B. New evidence against chromium as an essential trace element. J. Nutr. 2017, 147, 2212–2219. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.J.; He, S.X.; Li, X.Y.; Zeng, J.Y.; Li, M.Y.; Guan, D.X.; Ma, L.Q. Chromium contents, distribution and bioaccessibility in cultivated mushrooms from market: Health implications for human consumption. J. Hazard. Mater. 2024, 461, 132643. [Google Scholar] [CrossRef]
- Brazil National Health Surveillance Agency. Normative Instruction no. 160, of July 1, 2022. Establishes the Maximum Tolerated Limits (MRL) for Contaminants in Food. Diário Oficial da União: Seção 1. Brasília, DF, 2022. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-160-de-1-de-julho-de-2022-413367081 (accessed on 17 March 2025).
- Ĺirić, I.; Rukavina, K.; Mioč, B.; Držaić, V.; Kumar, P.; Taher, M.A.; Eid, E.M. Bioaccumulation and health risk assessment of nickel uptake by five wild edible saprotrophic mushroom species collected from Croatia. Forests 2023, 14, 879. [Google Scholar] [CrossRef]
- National Institutes of Health. Chromium: Fact Sheet for Health Professionals. Office of Dietary Supplements. 2025. Available online: https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/ (accessed on 17 March 2025).
- Liu, S.; Liu, H.; Li, J.; Wang, Y. Research progress on elements of wild edible mushrooms. J. Fungi 2022, 8, 964. [Google Scholar] [CrossRef] [PubMed]
- Riaz, N.; Guerinot, M.L. All together now: Regulation of the iron deficiency response. J. Exp. Bot. 2021, 72, 2045–2055. [Google Scholar] [CrossRef]
- National Institutes of Health. Iron: Fact Sheet for Health Professionals. Office of Dietary Supplements. 2025. Available online: https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/ (accessed on 17 March 2025).
- Raman, J.; Jang, K.Y.; Oh, Y.L.; Oh, M.; Im, J.H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and nutritional value of prominent Pleurotus spp.: An overview. Mycobiology 2020, 49, 1–14. [Google Scholar] [CrossRef]
- National Institutes of Health. Manganese: Fact Sheet for Health Professionals. Office of Dietary Supplements. 2025. Available online: https://ods.od.nih.gov/factsheets/Manganese-HealthProfessional/ (accessed on 17 March 2025).
- Kumar, P.; Kumar, M.; Bedi, O.; Gupta, M.; Kumar, S.; Jaiswal, G.; Rahi, V.; Yedke, N.G.; Bijalwan, A.; Sharma, S.; et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology 2021, 29, 1001–1016. [Google Scholar] [CrossRef]
- National Institutes of Health. Zinc: Fact Sheet for Health Professionals. Office of Dietary Supplements. 2025. Available online: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (accessed on 17 March 2025).
- National Center for Biotechnology Information. Zinc. In Drugs and Lactation Database (LactMed); Lentz, A., Ed.; National Library of Medicine: Bethesda, MD, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK222310/ (accessed on 17 March 2025).
- Zięba, P.; Kała, K.; Włodarczyk, A.; Szewczyk, A.; Kunicki, E.; Sękara, A.; Muszyńska, B. Selenium and Zinc Biofortification of Pleurotus eryngii Mycelium and Fruiting Bodies as a Tool for Controlling Their Biological Activity. Molecules 2020, 25, 889. [Google Scholar] [CrossRef]
- Madaan, K.; Sharma, S.; Kalia, A. Effect of selenium and zinc biofortification on the biochemical parameters of Pleurotus spp. under submerged and solid-state fermentation. J. Trace Elem. Med. Biol. 2024, 82, 127365. [Google Scholar] [CrossRef]
Experiments | HNO3 (mL) | H2O2 (mL) | Time (Minutes) |
---|---|---|---|
1 | 2 (−) | 1 (−) | 30 (−) |
2 | 6 (+) | 1 (−) | 30 (−) |
3 | 2 (−) | 2 (+) | 30 (−) |
4 | 6 (+) | 2 (+) | 30 (−) |
5 | 2 (−) | 1 (−) | 120 (+) |
6 | 6 (+) | 1 (−) | 120 (+) |
7 | 2 (−) | 2 (+) | 120 (+) |
8 | 6 (+) | 2 (+) | 120 (+) |
9 | 4 (0) | 1.5 (0) | 75 (0) |
10 | 4 (0) | 1.5 (0) | 75 (0) |
11 | 4 (0) | 1.5 (0) | 75 (0) |
Experimets | Zn | Fe | Ni | Cu | Mn | Cr | Ca | K | Mg | RM |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.96 | 0.87 | 1 | 0.92 | 0.94 | 0.60 | 0.93 | 1 | 0.98 | 8.22 |
2 | 0.53 | 0.56 | 0.23 | 0.63 | 0.55 | 0.32 | 0.59 | 0.72 | 0.79 | 4.96 |
3 | 1 | 0.89 | 0.81 | 0.87 | 1 | 0.94 | 1 | 0.98 | 1 | 8.51 |
4 | 0.59 | 0.61 | 0.29 | 0.65 | 0.55 | 1 | 0.61 | 0.71 | 0.79 | 5.84 |
5 | 0.87 | 0.98 | 0.54 | 0.83 | 0.94 | 0.57 | 0.91 | 0.96 | 0.98 | 7.63 |
6 | 0.55 | 0.59 | 0.11 | 0.68 | 0.50 | 0.56 | 0.52 | 0.72 | 0.78 | 5.05 |
7 | 0.97 | 1 | 0.55 | 1 | 0.93 | 0.98 | 0.96 | 0.97 | 0.97 | 8.37 |
8 | 0.64 | 0.60 | 0.11 | 0.73 | 0.55 | 0.60 | 0.64 | 0.73 | 0.82 | 5.47 |
9 | 0.74 | 0.78 | 0.35 | 0.82 | 0.67 | 0.84 | 0.70 | 0.84 | 0.88 | 6.67 |
10 | 0.73 | 0.69 | 0.39 | 0.66 | 0.70 | 0.66 | 0.71 | 0.82 | 0.88 | 6.28 |
11 | 0.77 | 0.67 | 0.47 | 0.63 | 0.69 | 0.56 | 0.72 | 0.84 | 0.,87 | 6.27 |
Factor | ANOVA; Var.: RM; R2 = 0.97274; Adj.: 93,184.2**(3-0) Design; MS Pure Error = 0.0527999 DV: RM | ||||
---|---|---|---|---|---|
ṢS | df | MS | F | p | |
| 16.28801 | 1 | 16.28801 | 308.4856 | 0.003226 |
| 0.66478 | 1 | 0.66478 | 12.5905 | 0.071063 |
| 0.12545 | 1 | 0.12545 | 2.3759 | 0.263147 |
1 by 2 | 0.00892 | 1 | 0.00892 | 0.1689 | 0.720936 |
1 by 3 | 0.02551 | 1 | 0.02551 | 0.4831 | 0.558924 |
2 by 3 | 0.00002 | 1 | 0.00002 | 0.0003 | 0.987472 |
Lack of Fit | 0.37404 | 2 | 0.18702 | 3.5420 | 0.220166 |
Pure Error | 0.10560 | 2 | 0.05280 | ||
Total SS | 17.59231 | 10 |
Multi-Element Analysis by MP OES | Equation of the Analytical Curve | Determination Coefficient (R2) | LOD (µg g−1) | LOQ (µg g−1) | RSD (%) (Inter-Day) | RSD (%) (Intra-Day) | Accuracy% (Addition and Recovery) Levels | ||
---|---|---|---|---|---|---|---|---|---|
0.5 (µg L−1) | 3.0 (µg L−1) | 6.0 (µg L−1) | |||||||
Zn | 0.99940 | 0.550979 | 1.836597 | 5.22 | 2.59 | 105.92 ± 2.61 | 94.40 ± 0.61 | 90.98 ± 1.61 | |
Fe | 0.99959 | 1.049505 | 3.498353 | 0.32 | 5.14 | 113.31 ± 7.75 | 102.72 ± 2.77 | 106.04 ± 2.58 | |
Cu | 0.99920 | 0.478667 | 1.59555 | 2.45 | 2.50 | 99.82 ± 2.72 | 95.71 ± 2.09 | 96.64 ± 2.20 | |
Ni | 0.99923 | 0.443340 | 1.477800 | 1.83 | 2.79 | 107.19 ± 3.26 | 97.21 ± 2.56 | 99.11 ± 1.90 | |
Mn | 0.99988 | 0.030062 | 0.100209 | 1.01 | 3.19 | 109.65 ± 1.97 | 110.18 ± 3.02 | 110.59 ± 3.51 | |
Cr | 0.99982 | 0.458534 | 1.528447 | 5.43 | 2.94 | 124.42 ± 4.45 | 114.08 ± 2.78 | 113.98 ± 3.47 | |
Ca | 0.99935 | 1.817926 | 6.059755 | 1.09 | 1.52 | 105.02 ± 3.53 | 96.72 ± 2.67 | 97.20 ± 2.17 | |
K | 0.99977 | 9.999893 | 33.332976 | 1.70 | 2.41 | 101.63 ± 2.21 | 99.79 ± 1.00 | 96.63 ± 1.18 | |
Mg | 0.99900 | 10.954761 | 36.515870 | 1.52 | 3.29 | 98.83 ± 0.60 | 91.51 ± 0.52 | 84.55 ± 0.45 |
Elements | Equation (Standard Curve—Acid Medium) | Equation (Curve with Sample) | Matrix Effect |
---|---|---|---|
Ca | 1.1 | ||
Cr | 0.9 | ||
Cu | 1.2 | ||
Fe | 1.0 | ||
K | 2.5 | ||
Mg | 1.1 | ||
Mn | 1.0 | ||
Ni | 1.0 | ||
Zn | 0.9 |
Mushroom Species | Ca | Cr | Cu | Fe | K | Mg | Mn | Na | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Auricularia cornea | 440.34 12.82 | 0.27 0.04 | 3.51 0.13 | 6.46 0.28 | 11,582.26 103.14 | 1320.86 35.14 | 15.39 0.06 | 393.06 18.03 | 1.64 0.04 | 11.71 0.24 |
Auricularia fuscosuccinea | 486.29 20.92 | 0.97 0.19 | 0.99 0.18 | 8.45 0.54 | 10,209.38 305.08 | 1403.97 98.87 | 13.03 0.70 | 357.84 25.24 | 0.57 0.03 | 12.07 0.94 |
Favolus brasiliensis | 4028.26 180.84 | 2.84 0.45 | 13.50 0.86 | 51.92 0.42 | 8691.96 480.72 | 1035.84 43.48 | 3.44 0.01 | 283.49 45.68 | 0.41 0.04 | 100.87 2.72 |
Irpex rosettiformis | 100.57 23.02 | 0.32 0.07 | 4.05 0.47 | 9.58 1.18 | 18,416.97 719.68 | 1243.47 81.19 | 6.59 0.37 | 306.56 39.80 | 0.62 0.04 | 24.64 1.16 |
Lentinus berteroi | 464.88 32.19 | 0.22 0.08 | 3.94 0.24 | 13.21 0.87 | 12,481.72 988.28 | 1722.79 87.81 | 24.12 0.94 | 315.38 26.78 | 1.12 0.36 | 34.23 1.51 |
Laetiporus gilbertsonii | 338.52 19.26 | 1.45 0.06 | 3.23 0.17 | 109.72 2.59 | 16,924.99 2032.25 | 1026.04 60.85 | 7.99 0.11 | 292.04 20.72 | 1.61 0.01 | 14.44 0.72 |
Oudemansiella cubensis | 120.78 10.32 | 0.61 0.18 | 5.11 0.09 | 14.71 0.46 | 37,572.40 317.35 | 1447.59 40.82 | 10.11 0.53 | 618.83 36.85 | 1.22 0.05 | 22.57 1.61 |
Oudemansiella platensis | 63.07 12.98 | 0.47 0.28 | 0.17 0.09 | 26.95 2.04 | 32,437.01 2445.66 | 1644.04 20.08 | 5.63 0.68 | 724.38 52.73 | 1.77 0.07 | 10.34 0.32 |
Pleurotus albidus | 27.07 1.61 | 0.34 | 0.62 0.32 | 5.44 0.60 | 9498.07 33.61 | 1311.98 11.49 | 5.66 0.34 | 21.68 7.47 | 0.27 0.05 | 56.71 4.44 |
Cordyceps militaris | 122.63 6.75 | 0.49 ± 0.08 | 4.31 ± 0.32 | 5.51 ± 0.60 | 2051.10 46.85 | 1013.99 41.77 | 6.26 ± 0.22 | 301.15 1.70 | 0.42 ± 0.06 | 42.12 ± 3.31 |
Cordyceps sinensis | 1568.45 4.13 | 2.12 ± 0.01 | 3.65 ± 0.01 | 17.14 ± 0.03 | 834.60 10.24 | 1576.82 8.22 | 15.67 ± 0.02 | 819.53 6.32 | 3.27 ± 0.01 | 30.06 ± 0.04 |
Mean concentration (mg kg−1) | 705.26 | 0.92 | 3.92 | 24.46 | 11,660.31 | 1340.67 | 10.35 | 403.09 | 1.17 | 32.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, E.S.; Freitas, J.M., Jr.; Brandão, J.P.C.; Simões, I.F.; Lenz, A.R.; Drewinski, M.d.P.; Morais, Á.C.; Menolli, N., Jr.; de Freitas Santos, A., Jr. Multi-Element Determination in Wild and Cultivated Edible Mushrooms from the Brazilian Atlantic Forest Using Microwave-Induced Plasma Optical Emission Spectrometry (MIP OES). Analytica 2025, 6, 21. https://doi.org/10.3390/analytica6020021
da Silva ES, Freitas JM Jr., Brandão JPC, Simões IF, Lenz AR, Drewinski MdP, Morais ÁC, Menolli N Jr., de Freitas Santos A Jr. Multi-Element Determination in Wild and Cultivated Edible Mushrooms from the Brazilian Atlantic Forest Using Microwave-Induced Plasma Optical Emission Spectrometry (MIP OES). Analytica. 2025; 6(2):21. https://doi.org/10.3390/analytica6020021
Chicago/Turabian Styleda Silva, Eliabe Sousa, Jorge Machado Freitas, Jr., João Pedro Cezário Brandão, Ivana Ferreira Simões, Alexandre Rafael Lenz, Mariana de Paula Drewinski, Ágata Carvalho Morais, Nelson Menolli, Jr., and Aníbal de Freitas Santos, Jr. 2025. "Multi-Element Determination in Wild and Cultivated Edible Mushrooms from the Brazilian Atlantic Forest Using Microwave-Induced Plasma Optical Emission Spectrometry (MIP OES)" Analytica 6, no. 2: 21. https://doi.org/10.3390/analytica6020021
APA Styleda Silva, E. S., Freitas, J. M., Jr., Brandão, J. P. C., Simões, I. F., Lenz, A. R., Drewinski, M. d. P., Morais, Á. C., Menolli, N., Jr., & de Freitas Santos, A., Jr. (2025). Multi-Element Determination in Wild and Cultivated Edible Mushrooms from the Brazilian Atlantic Forest Using Microwave-Induced Plasma Optical Emission Spectrometry (MIP OES). Analytica, 6(2), 21. https://doi.org/10.3390/analytica6020021