Oxidative Stability of Virgin and Refined Argan [Argania spinosa L. (Skeels)] Oil under Accelerated Aging Conditions and Shelf-Life Prediction at Room Temperature: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Standards and Reagents
2.3. Analytical Methods
2.3.1. Quality Indices
2.3.2. Fatty Acid Composition Determination and Iodine Value
2.3.3. Saponification Value
2.3.4. Tocopherol Content Determination
2.3.5. Rancimat Test
2.4. Statistical Analysis
3. Results and Discussion
3.1. Free Fatty Acid Content
3.2. Primary Oxidation
3.3. Secondary Oxidation
3.4. Variations in Chemical Composition
3.4.1. Variation in Fatty Acid Content, Iodine Value, and Saponification Value
3.4.2. Tocopherols
3.5. Rancimat Test
3.6. Shelf-Life Prediction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharby, S.; Charrouf, Z. Argan Oil: Chemical Composition, Extraction Process, and Quality Control. Front. Nutr. 2022, 8, 804587. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Nicoli, S.F.; Raffo, A.; Santini, A.; Novellino, E.; Souto, E.B.; Romani, A.; Belcaro, M.F.; Vita, C. Chapter 41-Cold Pressed Argan (Argania spinose) Oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 459–465. ISBN 978-0-12-818188-1. [Google Scholar]
- Charrouf, Z.; Guillaume, D. The Argan Oil Project: Going from Utopia to Reality in 20 Years. OCL 2018, 25, D209. [Google Scholar] [CrossRef]
- El Monfalouti, H.; Guillaume, D.; Denhez, C.; Charrouf, Z. Therapeutic Potential of Argan Oil: A Review. J. Pharm. Pharmacol. 2010, 62, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Idrissi, Y.E.; Moudden, H.E.; El-Guezzane, C.; Bouayoun, T.; Dahrouch, A.; Chahboun, N.; Zarrouk, A.; Tabyaoui, M. The Influence of the Forms on the Quality, Chemical Composition and Antioxidant Activity of Argan Oil Grown in Morocco. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e5794. [Google Scholar] [CrossRef]
- Oubannin, S.; Bijla, L.; Gagour, J.; Hajir, J.; Aabd, N.A.; Sakar, E.H.; Salama, M.A.; Gharby, S. A Comparative Evaluation of Proximate Composition, Elemental Profiling and Oil Physicochemical Properties of Black Cumin (Nigella sativa L.) Seeds and Argan (Argania spinosa L. Skeels) Kernels. Chem. Data Collect. 2022, 41, 100920. [Google Scholar] [CrossRef]
- Norme Marocaine NM08.5.090; SNIMA Corps Gras D’Origine Animale et Végétale-Huilesd’Argane. Spéci‚ Cations. Snima: Rabat, Morocco, 2003. Available online: https://Moam.Info/Catalogue-Des-Normes-Marocaines_5a2ff7ad1723dd18ec3869b9.Html (accessed on 28 September 2022).
- Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 2022, e6627013. [Google Scholar] [CrossRef] [PubMed]
- Susik, J.; Ptasznik, S. Effect of Bleaching with Different Clay on the Final Composition of Post-Fermentation Corn Oil with High Content of β-Sitosterol. LWT 2023, 184, 114958. [Google Scholar] [CrossRef]
- Tasan, M.; Demirci, M. Total and Individual Tocopherol Contents of Sunflower Oil at Different Steps of Refining. Eur. Food Res. Technol. 2005, 220, 251–254. [Google Scholar] [CrossRef]
- Gharby, S.; Hajib, A.; Ibourki, M.; Sakar, E.H.; Nounah, I.; Moudden, H.E.; Elibrahimi, M.; Harhar, H. Induced Changes in Olive Oil Subjected to Various Chemical Refining Steps: A Comparative Study of Quality Indices, Fatty Acids, Bioactive Minor Components, and Oxidation Stability Kinetic Parameters. Chem. Data Collect. 2021, 33, 100702. [Google Scholar] [CrossRef]
- Ergönül, P.G.; Köseoğlu, O. Changes in α-, β-, γ- and δ-Tocopherol Contents of Mostly Consumed Vegetable Oils during Refining Process. CyTA-J. Food 2014, 12, 199–202. [Google Scholar] [CrossRef]
- Fang, B.; Zhang, M.; Shen, Y.M. Importance of the Higher Retention of Tocopherols and Sterols for the Oxidative Stability of Soybean and Rapeseed Oils. J. Food Sci. Technol. 2017, 54, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Ortega-García, J.; Gámez-Meza, N.; Noriega-Rodriguez, J.A.; Dennis-Quiñonez, O.; García-Galindo, H.S.; Angulo-Guerrero, J.O.; Medina-Juárez, L.A. Refining of High Oleic Safflower Oil: Effect on the Sterols and Tocopherols Content. Eur. Food Res. Technol. 2006, 223, 775–779. [Google Scholar] [CrossRef]
- Hilali, M.; Charrouf, Z.; Soulhi, A.E.A.; Hachimi, L.; Guillaume, D. Influence of Origin and Extraction Method on Argan Oil Physico-Chemical Characteristics and Composition. J. Agric. Food Chem. 2005, 53, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Hussain Sherazi, S.T.; Mahesar, S.A. Sirajuddin, null Vegetable Oil Deodorizer Distillate: A Rich Source of the Natural Bioactive Components. J. Oleo Sci. 2016, 65, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Elaasser, M.M.; Morsi, M.K.S.; Galal, S.M.; El-Rahman, M.K.A.; Katry, M.A. Antioxidant, Anti-Inflammatory and Cytotoxic Activities of the Unsaponifiable Fraction of Extra Virgin Olive Oil. Grasas Y Aceites 2020, 71, e386. [Google Scholar] [CrossRef]
- ISO 660; Corps Gras D’Origines Animale et Végétale—Détermination de L’Indice D’Acide et de L’Acidité. ISO: Geneva, Switzerland, 2009.
- ISO 3960; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determi-Nation. ISO: Geneva, Switzerland, 2017.
- ISO 6885; Corps Gras d’origines Animale et Végétale—Détermination de L’Indice D’Anisidine. ISO: Geneva, Switzerland, 2006.
- ISO 3656; Corps Gras D’Origines Animale et Végétale—Détermination de L’Absorbance Dans L’Ultraviolet, Exprimée Sous la Forme D’Extinction Spécifique en Lumière Ultraviolette. ISO: Geneva, Switzerland, 2011.
- Bouzid, H.A.; Bijla, L.; Ibourki, M.; Oubannin, S.; Elgadi, S.; Koubachi, J.; Sakar, E.H.; Gharby, S. Ziziphus lotus (L.) Lam. Almonds Nutritional Potential: Evidence from Proximate Composition, Mineral, Antioxidant Activity, and Lipid Profiling Reveals a Great Potential for Valorization. Biomass Conv. Bioref. 2023, 1–15. [Google Scholar] [CrossRef]
- Samira, O.; Abderrahim, A.; Laila, B.; Hasna, A.B.; Jamila, G.; Otmane, H.; El Hassan, S.; Said, G. Co-Processed [Argania spinosa L. (Skeels)] Oil with Thyme (Thymus vulgaris L.) Leaves—New Product Optimization. Food Chem. Adv. 2023, 3, 100474. [Google Scholar] [CrossRef]
- Chira, N.-A.; Nicolescu, A. Gabriela Determination of the Technical Quality Indices of Vegetable Oils by Modern Physical Techniques. UPB Sci. Bull. Ser. B 2009, 71, 3–12. [Google Scholar]
- ISO 6886; Corps Gras D’Origines Animale et Végétale—Détermination de la Stabilité à L’Oxydation (Essai D’Oxydation Accéléré). ISO: Geneva, Switzerland, 2016.
- Tavakoli, H.R.; Naderi, M.; Jafari, S.M.; Naeli, M.H. Postmarketing Surveillance of the Oxidative Stability for Cooking Oils, Frying Oils, and Vanaspati Supplied in the Retail Market. Food Sci. Nutr. 2019, 7, 1455–1465. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Veloso, A.C.A.; Rodrigues, N.; Ouarouer, Y.; Zaghdoudi, K.; Pereira, J.A.; Peres, A.M. A Kinetic-Thermodynamic Study of the Effect of the Cultivar/Total Phenols on the Oxidative Stability of Olive Oils. J. Am. Oil Chem. Soc. 2020, 97, 625–636. [Google Scholar] [CrossRef]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Yan, B.; Meng, L.; Huang, J.; Liu, R.; Zhang, N.; Jiao, X.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. Changes in Oxidative Stability of Rapeseed Oils under Microwave Irradiation: The Crucial Role of Polar Bioactive Components. LWT 2023, 185, 115100. [Google Scholar] [CrossRef]
- Cong, S.; Dong, W.; Zhao, J.; Hu, R.; Long, Y.; Chi, X. Characterization of the Lipid Oxidation Process of Robusta Green Coffee Beans and Shelf Life Prediction during Accelerated Storage. Molecules 2020, 25, 1157. [Google Scholar] [CrossRef]
- Vidal, N.P.; Rahimi, J.; Kroetsch, B.; Martinez, M.M. Quality and Chemical Stability of Long-Term Stored Soy, Canola, and Sunflower Cold-Pressed Cake Lipids before and after Thermomechanical Processing: A 1H NMR Study. LWT 2023, 173, 114409. [Google Scholar] [CrossRef]
- Adlouni, A. L’huile d’argan, de la nutrition à la santé. Phytothérapie 2010, 8, 89–97. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; El Monfalouti, H.; Kartah, B.; Maata, N.; Guillaume, D.; Charrouf, Z. Chemical and oxidative properties of olive and argan oils sold on the Moroccan market. A comparative study. Medit. J. Nutr. Metab. 2012, 5, 31–38. [Google Scholar] [CrossRef]
- Lecerf, J.-M. Les Huiles Végétales: Particularités et Utilités: Vegetable Oils: Particularities and Usefulness. Méd. Mal. Métab. 2011, 5, 257–262. [Google Scholar] [CrossRef]
- Duman, E.; Özcan, M.M. The Influence of Industrial Refining Stages on the Physico-Chemical Properties, Fatty Acid Composition and Sterol Contents in Hazelnut Oil. J. Food Sci. Technol. 2020, 57, 2501–2506. [Google Scholar] [CrossRef]
- Zhu, M.; Wen, X.; Zhao, J.; Liu, F.; Ni, Y.; Ma, L.; Li, J. Effect of Industrial Chemical Refining on the Physicochemical Properties and the Bioactive Minor Components of Peanut Oil. J. Am. Oil Chem. Soc. 2016, 93, 285–294. [Google Scholar] [CrossRef]
- Chew, S.-C.; Tan, C.-P.; Long, K.; Nyam, K.-L. Effect of Chemical Refining on the Quality of Kenaf (Hibiscus cannabinus) Seed Oil. Ind. Crops Prod. 2016, 89, 59–65. [Google Scholar] [CrossRef]
- Gagour, J.; Oubannin, S.; Ait Bouzid, H.; Bijla, L.; El Moudden, H.; Sakar, E.H.; Koubachi, J.; Laknifli, A.; Gharby, S. Physicochemical characterization, kinetic parameters, shelf life and its prediction models of virgin olive oil from two cultivars (“ Arbequina” and “Moroccan Picholine”) grown in Morocco. OCL 2022, 29, 1–17. [Google Scholar] [CrossRef]
- Gharby, S.; Ravi, H.K.; Guillaume, D.; Vian, M.A.; Chemat, F.; Charrouf, Z. 2-methyloxolane as alternative solvent for lipid extraction and its effect on the cactus (Opuntia ficus-indica L.) seed oil fractions. OCL 2020, 27, 27. [Google Scholar] [CrossRef]
- Rossi, M.; Gianazza, M.; Alamprese, C.; Stanga, F. The Effect of Bleaching and Physical Refining on Color and Minor Components of Palm Oil. J. Amer. Oil Chem. Soc. 2001, 78, 1051–1055. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, R.; Wang, Z.; Wang, B.; Yang, Y.; Ju, X.; He, R. The Effect of Refining Process on the Physicochemical Properties and Micronutrients of Rapeseed Oils. PLoS ONE 2019, 14, e0212879. [Google Scholar] [CrossRef] [PubMed]
- Kurtulbaş, E.; Bilgin, M.; Şahin, S. Assessment of Lipid Oxidation in Cottonseed Oil Treated with Phytonutrients: Kinetic and Thermodynamic Studies. Ind. Crops Prod. 2018, 124, 593–599. [Google Scholar] [CrossRef]
- Elisia, I.; Young, J.W.; Yuan, Y.V.; Kitts, D.D. Association between Tocopherol Isoform Composition and Lipid Oxidation in Selected Multiple Edible Oils. Food Res. Int. 2013, 52, 508–514. [Google Scholar] [CrossRef]
- Farhoosh, R. Shelf-Life Prediction of Edible Fats and Oils Using Rancimat. Lipid Technol. 2007, 19, 232–234. [Google Scholar] [CrossRef]
- Sigwela, V.; De Wit, M.; du Toit, A.; Osthoff, G.; Hugo, A. Bioactive Betalain Extracts from Cactus Pear Fruit Pulp, Beetroot Tubers, and Amaranth Leaves. Molecules 2021, 26, 5012. [Google Scholar] [CrossRef]
W0 | W4 | W8 | W12 | ||||||
---|---|---|---|---|---|---|---|---|---|
RAO | VAO | RAO | VAO | RAO | VAO | RAO | VAO | NORM [7] | |
C14:0 (Myristic acid) | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | ≤0.2 |
C16:0 (Palmitic acid) | 12.5 a ± 0.2 | 12.3 a ± 0.2 | 12.3 a ± 0.3 | 12.4 a ± 0.2 | 12.7 a ± 0.1 | 12.6 a ± 0.2 | 12.7 a ± 0.1 | 12.7 a ± 0.1 | 11.5–15.0 |
C16:1 (Palmitoleic acid) | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | 0.1 a ± 0.0 | ≤0.2 |
C18:0 (Stearic acid) | 6.01 a ± 0.1 | 5.8 a ± 0.0 | 6.2 a ± 0.1 | 5.8 a ± 0.0 | 6.0 a ± 0.0 | 5.8 a ± 0.0 | 5.9 a ± 0.1 | 5.8 a ± 0.0 | 4.3–7.2 |
C18:1 (Oleic acid) | 47.6 a ± 0.1 | 47.8 a ± 0.1 | 48.0 a ± 0.1 | 47.8 a ± 0.1 | 48.0 a ± 0.1 | 47.67 a ± 0.1 | 48.5 a ± 0.1 | 48.5 a ± 0.1 | 43.0–49.1 |
C18:2 (Linoleic acid) | 30.2 a ± 0.1 | 32.2 a ± 0.1 | 30.1 a ± 0.1 | 32.1 a ± 0.1 | 29.2 a ± 0.1 | 31.5 a ± 0.1 | 29.56 a ± 0.1 | 31.2 a ± 0.1 | 29.3–36.0 |
C18:3 (Linolenic acid) | 0.14 a ± 0.1 | 0.27 a ± 0.1 | 0.15 a ± 0.1 | 0.22 a ± 0.1 | 0.25 a ± 0.1 | 0.12 a ± 0.1 | 0.24 a ± 0.1 | 0.2 a ± 0.1 | ≤0.3 |
C20:0 (Arachidic acid) | 0.4 a ± 0.1 | 0.4 a ± 0.0 | 0.4 a ± 0.0 | 0.4 b ± 0.1 | 0.4 a ± 0.0 | 0.4 a ± 0.0 | 0.4 a ± 0.0 | 0.2 b ± 0.0 | ≤0.5 |
SFA * | 19.01 | 18.6 | 19 | 19 | 19.2 | 18.9 | 19.1 | 18.8 | - |
USFA ** | 78.17 | 80.37 | 78.35 | 77.55 | 77.55 | 79.39 | 78.4 | 80 | - |
IV (gI2/100 g) | 98.06 | 102.22 | 98.26 | 101.90 | 96.91 | 100.42 | 97.98 | 100.85 | 91–110 |
SV | 198.11 | 194.38 | 197.48 | 194.49 | 198.73 | 195.72 | 197.25 | 194.80 | 189–199.1 |
RAO | VAO | |||
---|---|---|---|---|
W0 | W12 | W0 | W12 | |
α-Tocopherol | 35 a ± 1 | <LQ | 37 c ± 0 | <LQ |
γ-Tocopherol | 262 a ± 2 | 15 b ± 2 | 369 c ± 1 | 33 d ± 0 |
δ- Tocopherol | 15 a ± 1 | 8 b ± 0 | 24 c ± 2 | 11 d ± 1 |
Total Tocopherols | 312 a ± 2 | 23 b ± 1 | 430 c ± 0 | 44 d ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aissa, R.; Asbbane, A.; Oubannin, S.; Bijla, L.; Bousaid, Z.; Hallouch, O.; El Harkaoui, S.; Matthäus, B.; Sakar, E.H.; Gharby, S. Oxidative Stability of Virgin and Refined Argan [Argania spinosa L. (Skeels)] Oil under Accelerated Aging Conditions and Shelf-Life Prediction at Room Temperature: A Comparative Study. Analytica 2023, 4, 500-512. https://doi.org/10.3390/analytica4040034
Aissa R, Asbbane A, Oubannin S, Bijla L, Bousaid Z, Hallouch O, El Harkaoui S, Matthäus B, Sakar EH, Gharby S. Oxidative Stability of Virgin and Refined Argan [Argania spinosa L. (Skeels)] Oil under Accelerated Aging Conditions and Shelf-Life Prediction at Room Temperature: A Comparative Study. Analytica. 2023; 4(4):500-512. https://doi.org/10.3390/analytica4040034
Chicago/Turabian StyleAissa, Rabha, Abderrahim Asbbane, Samira Oubannin, Laila Bijla, Zahra Bousaid, Otmane Hallouch, Said El Harkaoui, Bertrand Matthäus, El Hassan Sakar, and Saïd Gharby. 2023. "Oxidative Stability of Virgin and Refined Argan [Argania spinosa L. (Skeels)] Oil under Accelerated Aging Conditions and Shelf-Life Prediction at Room Temperature: A Comparative Study" Analytica 4, no. 4: 500-512. https://doi.org/10.3390/analytica4040034
APA StyleAissa, R., Asbbane, A., Oubannin, S., Bijla, L., Bousaid, Z., Hallouch, O., El Harkaoui, S., Matthäus, B., Sakar, E. H., & Gharby, S. (2023). Oxidative Stability of Virgin and Refined Argan [Argania spinosa L. (Skeels)] Oil under Accelerated Aging Conditions and Shelf-Life Prediction at Room Temperature: A Comparative Study. Analytica, 4(4), 500-512. https://doi.org/10.3390/analytica4040034