Application of Comprehensive 2D Gas Chromatography Coupled with Mass Spectrometry in Beer and Wine VOC Analysis
Abstract
:1. Introduction
2. Sample Extraction
2.1. Dynamic Headspace
2.2. Headspace-Solid Phase Microextraction
2.3. Dispersive Liquid-Liquid Microextraction
2.4. Stir Bar Sorptive Extraction
2.5. Solid-Phase Extraction
3. GC×GC Separation
3.1. Modulator
3.2. Column Setup
3.3. Separation Optimization
4. Data Processing
4.1. Background Correction
4.2. Peak Detection
4.3. Peak Annotation
4.4. Between-Class Comparison
4.4.1. Typical Compounds of Interest during Wine and Beer Studies
4.4.2. Chromatographic Alignment
4.4.3. Statistical Exploration
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasannan, A. Alcoholic Beverages Market by Type (Beer, Distilled Spirits, Wine, and Others) and Distribution Channel (Convenience Stores, On Premises, Liquor Stores, Grocery Shops, Internet Retailing, and Supermarkets): Global Opportunity Analysis and Industry Forecast, 2018–2025; Allied Market Research: Pune, India, 2018. [Google Scholar]
- Fortune Business Insights. Wine Market Size, Share & Industry Analysis; Fortune Business Insights: Pune, India, 2020. [Google Scholar]
- Jaeger, S.R.; Worch, T.; Phelps, T.; Jin, D.; Cardello, A.V. Preference segments among declared craft beer drinkers: Perceptual, attitudinal and behavioral responses underlying craft-style vs. traditional-style flavor preferences. Food Qual. Prefer. 2020, 82, 103884. [Google Scholar] [CrossRef]
- Paiva, A.C.; Hantao, L.W. Exploring a public database to evaluate consumer preference and aroma profile of lager beers by comprehensive two-dimensional gas chromatography and partial least squares regression discriminant analysis. J. Chromatogr. A 2020, 1630, 461529. [Google Scholar] [CrossRef] [PubMed]
- Pons, A.; Allamy, L.; Schüttler, A.; Rauhut, D.; Thibon, C.; Darriet, P. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 2017, 51, 141. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; de la Fuente, A.; Sáenz-Navajas, M.P. 1—Wine aroma vectors and sensory attributes. In Managing Wine Quality, 2nd ed.; Reynolds, A.G., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2022; pp. 3–39. ISBN 978-0-08-102067-8. [Google Scholar]
- Ravasio, D.; Carlin, S.; Boekhout, T.; Groenewald, M.; Vrhovsek, U.; Walther, A.; Wendland, J. Adding Flavor to Beverages with Non-Conventional Yeasts. Fermentation 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Shimizu, H.; Shioya, S. Beer Volatile Compounds and Their Application to Low-Malt Beer Fermentation. J. Biosci. Bioeng. 2008, 106, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Cordero, C.; Kiefl, J.; Schieberle, P.; Reichenbach, S.E.; Bicchi, C. Comprehensive two-dimensional gas chromatography and food sensory properties: Potential and challenges. Anal. Bioanal. Chem. 2015, 407, 169–191. [Google Scholar] [CrossRef]
- Feizi, N.; Hashemi-Nasab, F.S.; Golpelichi, F.; Saburouh, N.; Parastar, H. Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies. TrAC Trends Anal. Chem. 2021, 138, 116239. [Google Scholar] [CrossRef]
- Ryan, D.; Morrison, P.; Marriott, P. Orthogonality considerations in comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2005, 1071, 47–53. [Google Scholar] [CrossRef]
- Mayadunne, R.; Nguyen, T.-T.; Marriott, P.J. Amino acid analysis by using comprehensive two-dimensional gas chromatography. Anal. Bioanal. Chem. 2005, 382, 836–847. [Google Scholar] [CrossRef]
- Junge, M.; Bieri, S.; Huegel, H.; Marriott, P. Fast comprehensive two-dimensional gas chromatography with cryogenic modulation. Anal. Chem. 2007, 79, 4448–4454. [Google Scholar] [CrossRef]
- Rocha, S.M.; Coelho, E.; Zrostlíková, J.; Delgadillo, I.; Coimbra, M.A. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. J. Chromatogr. A 2007, 1161, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Schmarr, H.-G.; Bernhardt, J.; Fischer, U.; Stephan, A.; Müller, P.; Durner, D. Two-dimensional gas chromatographic profiling as a tool for a rapid screening of the changes in volatile composition occurring due to microoxygenation of red wines. Anal. Chim. Acta 2010, 672, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Petronilho, S.; Câmara, J.S.; Rocha, S.M. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction as a powerful tool for quantification of ethyl carbamate in fortified wines. The case study of Madeira wine. J. Chromatogr. A 2010, 1217, 3441–3445. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 504–517. [Google Scholar] [CrossRef]
- Robinson, A.L.; Adams, D.O.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D. The relationship between sensory attributes and wine composition for Australian Cabernet Sauvignon wines. Aust. J. Grape Wine Res. 2011, 17, 327–340. [Google Scholar] [CrossRef]
- Vestner, J.; Malherbe, S.; Du Toit, M.; Nieuwoudt, H.H.; Mostafa, A.; Górecki, T.; Tredoux, A.G.J.; de Villiers, A. Investigation of the volatile composition of pinotage wines fermented with different malolactic starter cultures using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOF-MS). J. Agric. Food Chem. 2011, 59, 12732–12744. [Google Scholar] [CrossRef]
- Weldegergis, B.T.; Villiers, A.d.; McNeish, C.; Seethapathy, S.; Mostafa, A.; Górecki, T.; Crouch, A.M. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC–TOFMS). Food Chem. 2011, 129, 188–199. [Google Scholar] [CrossRef]
- Sun, Q.; Gates, M.J.; Lavin, E.H.; Acree, T.E.; Sacks, G.L. Comparison of Odor-Active Compounds in Grapes and Wines from Vitis vinifera and Non-Foxy American Grape Species. J. Agric. Food Chem. 2011, 59, 10657–10664. [Google Scholar] [CrossRef]
- Chin, S.-T.; Eyres, G.T.; Marriott, P.J. Identification of potent odourants in wine and brewed coffee using gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2011, 1218, 7487–7498. [Google Scholar] [CrossRef]
- Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta 2011, 85, 1483–1493. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.C.; Lazzarotto, M.; Zini, C.A. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J. Chromatogr. A 2012, 1266, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Falcao, L.D.; Lytra, G.; Darriet, P.; Barbe, J.-C. Identification of ethyl 2-hydroxy-4-methylpentanoate in red wines, a compound involved in blackberry aroma. Food Chem. 2012, 132, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chem. 2013, 141, 3897–3905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordiga, M.; Rinaldi, M.; Locatelli, M.; Piana, G.; Travaglia, F.; Coïsson, J.D.; Arlorio, M. Characterization of Muscat wines aroma evolution using comprehensive gas chromatography followed by a post-analytic approach to 2D contour plots comparison. Food Chem. 2013, 140, 57–67. [Google Scholar] [CrossRef]
- Jeleń, H.H.; Dziadas, M.; Majcher, M. Different headspace solid phase microextraction—Gas chromatography/mass spectrometry approaches to haloanisoles analysis in wine. J. Chromatogr. A 2013, 1313, 185–193. [Google Scholar] [CrossRef]
- Dugo, G.; Franchina, F.A.; Scandinaro, M.R.; Bonaccorsi, I.; Cicero, N.; Tranchida, P.Q.; Mondello, L. Elucidation of the volatile composition of Marsala wines by using comprehensive two-dimensional gas chromatography. Food Chem. 2014, 142, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Zini, C.A. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Soares, R.D.; Welke, J.E.; Nicolli, K.P.; Zanus, M.; Caramão, E.B.; Manfroi, V.; Zini, C.A. Monitoring the evolution of volatile compounds using gas chromatography during the stages of production of Moscatel sparkling wine. Food Chem. 2015, 183, 291–304. [Google Scholar] [CrossRef]
- Chin, S.-T.; Eyres, G.T.; Marriott, P.J. Application of integrated comprehensive/multidimensional gas chromatography with mass spectrometry and olfactometry for aroma analysis in wine and coffee. Food Chem. 2015, 185, 355–361. [Google Scholar] [CrossRef]
- Yan, D.; Wong, Y.F.; Tedone, L.; Shellie, R.A.; Marriott, P.J.; Whittock, S.P.; Koutoulis, A. Chemotyping of new hop (Humulus lupulus L.) genotypes using comprehensive two-dimensional gas chromatography with quadrupole accurate mass time-of-flight mass spectrometry. J. Chromatogr. A 2018, 1536, 110–121. [Google Scholar] [CrossRef]
- Carlin, S.; Vrhovsek, U.; Franceschi, P.; Lotti, C.; Bontempo, L.; Camin, F.; Toubiana, D.; Zottele, F.; Toller, G.; Fait, A.; et al. Regional features of northern Italian sparkling wines, identified using solid-phase micro extraction and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Food Chem. 2016, 208, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Whitener, M.E.B.; Stanstrup, J.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Effect of non- Saccharomyces yeasts on the volatile chemical profile of Shiraz wine: Shiraz wines fermented by non- Saccharomyces yeasts. Aust. J. Grape Wine Res. 2017, 23, 179–192. [Google Scholar] [CrossRef]
- Stefanuto, P.-H.; Perrault, K.A.; Dubois, L.M.; L’Homme, B.; Allen, C.; Loughnane, C.; Ochiai, N.; Focant, J.-F. Advanced method optimization for volatile aroma profiling of beer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2017, 1507, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Furdíková, K.; Bajnociová, L.; Malík, F.; Špánik, I. Investigation of volatile profile of varietal Gewürztraminer wines using two-dimensional gas chromatography. J. Food Nutr. Res. 2017, 56, 73–85. [Google Scholar]
- Lago, L.O.; Nicolli, K.P.; Marques, A.B.; Zini, C.A.; Welke, J.E. Influence of ripeness and maceration of the grapes on levels of furan and carbonyl compounds in wine—Simultaneous quantitative determination and assessment of the exposure risk to these compounds. Food Chem. 2017, 230, 594–603. [Google Scholar] [CrossRef]
- Nicolli, K.P.; Biasoto, A.C.T.; Souza-Silva, É.A.; Guerra, C.C.; dos Santos, H.P.; Welke, J.E.; Zini, C.A. Sensory, olfactometry and comprehensive two-dimensional gas chromatography analyses as appropriate tools to characterize the effects of vine management on wine aroma. Food Chem. 2018, 243, 103–117. [Google Scholar] [CrossRef]
- Crucello, J.; Miron, L.F.O.; Ferreira, V.H.C.; Nan, H.; Marques, M.O.M.; Ritschel, P.S.; Zanus, M.C.; Anderson, J.L.; Poppi, R.J.; Hantao, L.W. Characterization of the aroma profile of novel Brazilian wines by solid-phase microextraction using polymeric ionic liquid sorbent coatings. Anal. Bioanal. Chem. 2018, 410, 4749–4762. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Enlarging Knowledge on Lager Beer Volatile Metabolites Using Multidimensional Gas Chromatography. Foods 2020, 9, 1276. [Google Scholar] [CrossRef]
- Reichenbach, S.E.; Zini, C.A.; Nicolli, K.P.; Welke, J.E.; Cordero, C.; Tao, Q. Benchmarking machine learning methods for comprehensive chemical fingerprinting and pattern recognition. J. Chromatogr. A 2019, 1595, 158–167. [Google Scholar] [CrossRef]
- Šuklje, K.; Carlin, S.; Antalick, G.; Blackman, J.W.; Deloire, A.; Vrhovsek, U.; Schmidtke, L.M. Regional Discrimination of Australian Shiraz Wine Volatome by Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 10273–10284. [Google Scholar] [CrossRef]
- Šuklje, K.; Carlin, S.; Stanstrup, J.; Antalick, G.; Blackman, J.W.; Meeks, C.; Deloire, A.; Schmidtke, L.M.; Vrhovsek, U. Unravelling wine volatile evolution during Shiraz grape ripening by untargeted HS-SPME-GC×GC-TOFMS. Food Chem. 2019, 277, 753–765. [Google Scholar] [CrossRef]
- Schoenauer, S.; Schieberle, P. Screening for Novel Mercaptans in 26 Fruits and 20 Wines Using a Thiol-Selective Isolation Procedure in Combination with Three Detection Methods. J. Agric. Food Chem. 2019, 67, 4553–4559. [Google Scholar] [CrossRef]
- Nicolotti, L.; Mall, V.; Schieberle, P. Characterization of Key Aroma Compounds in a Commercial Rum and an Australian Red Wine by Means of a New Sensomics-Based Expert System (SEBES)—An Approach to Use Artificial Intelligence in Determining Food Odor Codes. J. Agric. Food Chem. 2019, 67, 4011–4022. [Google Scholar] [CrossRef]
- Paiva, A.C.; Simões Oliveira, D.; Hantao, L.W. A Bottom-Up Approach for Data Mining in Bioaromatization of Beers Using Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry. Separations 2019, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Furdíková, K.; Machyňáková, A.; Drtilová, T.; Špánik, I. Comparison of Different Categories of Slovak Tokaj Wines in Terms of Profiles of Volatile Organic Compounds. Molecules 2020, 25, 669. [Google Scholar] [CrossRef] [Green Version]
- Aith Barbará, J.; Primieri Nicolli, K.; Souza-Silva, É.A.; Camarão Telles Biasoto, A.; Welke, J.E.; Alcaraz Zini, C. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Food Chem. 2020, 308, 125552. [Google Scholar] [CrossRef] [PubMed]
- Vyviurska, O.; Špánik, I. Assessment of Tokaj varietal wines with comprehensive two-dimensional gas chromatography coupled to high resolution mass spectrometry. Microchem. J. 2020, 152, 104385. [Google Scholar] [CrossRef]
- Zhang, P.; Carlin, S.; Lotti, C.; Mattivi, F.; Vrhovsek, U. On sample preparation methods for fermented beverage VOCs profiling by GCxGC-TOFMS. Metabolomics 2020, 16, 102. [Google Scholar] [CrossRef]
- Lukić, I.; Carlin, S.; Vrhovsek, U. Comprehensive 2D gas chromatography with TOF-MS detection confirms the matchless discriminatory power of monoterpenes and provides in-depth volatile profile information for highly efficient white wine varietal differentiation. Foods 2020, 9, 1787. [Google Scholar] [CrossRef] [PubMed]
- Machyňáková, A.; Khvalbota, L.; Špánik, I. Enantiomer distribution of major chiral volatile organic compounds in botrytized grapes and wines. Eur. Food Res. Technol. 2021, 247, 2321–2331. [Google Scholar] [CrossRef]
- Furdíková, K.; Khvalbota, L.; Machyňáková, A.; Špánik, I. Volatile composition and enantioselective analysis of chiral terpenoids in Tokaj varietal wines. J. Chromatogr. B 2021, 1167, 122565. [Google Scholar] [CrossRef] [PubMed]
- Welke, J.E.; Nicolli, K.P.; Hernandes, K.C.; Biasoto, A.C.T.; Zini, C.A. Adaptation of an olfactometric system in a GC-FID in combination with GCxGC/MS to evaluate odor-active compounds of wine. Food Chem. 2022, 370, 131004. [Google Scholar] [CrossRef]
- Sudol, P.E.; Gough, D.V.; Prebihalo, S.E.; Synovec, R.E. Impact of data bin size on the classification of diesel fuels using comprehensive two-dimensional gas chromatography with principal component analysis. Talanta 2020, 206, 120239. [Google Scholar] [CrossRef]
- Lukić, I.; Carlin, S.; Vrhovsek, U. Utility of Comprehensive GC×GC Gas Chromatography in Finding Varietal Markers among Volatile Compounds in Non-Aromatic Red Wines. Agronomy 2022, 12, 2512. [Google Scholar] [CrossRef]
- Carlin, S.; Mattivi, F.; Durantini, V.; Dalledonne, S.; Arapitsas, P. Flint glass bottles cause white wine aroma identity degradation. Proc. Natl. Acad. Sci. USA 2022, 119, e2121940119. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Iglesias, C.; Montero, O.; Sancho, D.; Blanco, C.A. New trends in beer flavour compound analysis. J. Sci. Food Agric. 2015, 95, 1571–1576. [Google Scholar] [CrossRef]
- Horák, T.; Čulík, J.; Jurková, M.; Čejka, P.; Kellner, V. Determination of free medium-chain fatty acids in beer by stir bar sorptive extraction. J. Chromatogr. A 2008, 1196–1197, 96–99. [Google Scholar] [CrossRef]
- Liu, Y.; Su, H.; Song, H.-L. Comparison of Four Extraction Methods, SPME, DHS, SAFE, Versus SDE, for the Analysis of Flavor Compounds in Natto. Food Anal. Methods 2018, 11, 343–354. [Google Scholar] [CrossRef]
- Kolb, B.; Ettre, L.S. Static Headspace-Gas Chromatography: Theory and Practice, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-471-74944-8. [Google Scholar]
- Dunn, W.B.; Townshend, A.; Dunn, W.B.; Green, J.D. Comparison of total vaporisation and dynamic headspace techniques combined with direct mass spectrometric detection for the on-line analysis of liquid process streams. Analyst 1998, 123, 343–348. [Google Scholar] [CrossRef]
- Kolb, B.; Auer, M.; Pospisil, P. Angewandte Chromatographie–Applied Chromatography; Bodenseewerk Perkin-Elmer & Co.: Überlingen, Germany, 1981. [Google Scholar]
- Vyviurska, O.; Hanobiková, M.; Gomes, A.A.; Špánik, I. Multivariate optimization of dual-sorbent dynamic headspace extraction of volatiles in wine analysis. Food Chem. 2021, 365, 130449. [Google Scholar] [CrossRef]
- Ross, C.F. Headspace Analysis. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; pp. 27–50. ISBN 978-0-12-381374-9. [Google Scholar]
- Soria, A.C.; García-Sarrió, M.J.; Sanz, M.L. Volatile sampling by headspace techniques. TrAC Trends Anal. Chem. 2015, 71, 85–99. [Google Scholar] [CrossRef]
- Liu, J.; Toldam-Andersen, T.B.; Petersen, M.A.; Zhang, S.; Arneborg, N.; Bredie, W.L.P. Instrumental and sensory characterisation of Solaris white wines in Denmark. Food Chem. 2015, 166, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Lopez, R.; Ferreira, V. An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine. J. Chromatogr. A 2018, 1534, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aberl, A.; Coelhan, M. Determination of Volatile Compounds in Different Hop Varieties by Headspace-Trap GC/MS—In Comparison with Conventional Hop Essential Oil Analysis. J. Agric. Food Chem. 2012, 60, 2785–2792. [Google Scholar] [CrossRef]
- Franchina, F.A.; Purcaro, G. Sample preparation strategies for comprehensive volatile fingerprinting. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; Volume 96, pp. 155–184. ISBN 978-0-323-98881-0. [Google Scholar]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G.A.; Alam, M.N.; Boyacı, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. [Google Scholar] [CrossRef]
- Zhu, J.; Chai, X. Some Recent Developments in Headspace Gas Chromatography. Curr. Anal. Chem. 2005, 1, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Piri-Moghadam, H.; Alam, M.N.; Pawliszyn, J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal. Chim. Acta 2017, 984, 42–65. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.; Caldeira, M.; Câmara, J.S. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC–qMSD for evaluation the chemical profile in alcoholic beverages. Anal. Chim. Acta 2008, 609, 82–104. [Google Scholar] [CrossRef]
- Lashgari, M.; Yamini, Y. An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 2019, 191, 283–306. [Google Scholar] [CrossRef]
- Xu, J.; Ouyang, G. Extraction: Solid-Phase Microextraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; p. B9780124095472146000. ISBN 978-0-12-409547-2. [Google Scholar]
- Pawliszyn, J. Handbook of Solid Phase Microextraction; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-12-416017-0. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wang, J.-L.; Shu, Y.-Y. Purge-assisted and temperature-controlled headspace solid-phase microextraction combined with gas chromatography–mass spectrometry for determination of six common phthalate esters in aqueous samples. J. Food Meas. Charact. 2020, 14, 1833–1841. [Google Scholar] [CrossRef]
- Mihaljević Žulj, M.; Maslov, L.; Tomaz, I.; Jeromel, A. Determination of 2-aminoacetophenone in white wines using ultrasound assisted SPME coupled with GC-MS. J. Anal. Chem. 2015, 70, 814–818. [Google Scholar] [CrossRef]
- Orazbayeva, D.; Kenessov, B.; Psillakis, E.; Nassyrova, D.; Bektassov, M. Determination of transformation products of unsymmetrical dimethylhydrazine in water using vacuum-assisted headspace solid-phase microextraction. J. Chromatogr. A 2018, 1555, 30–36. [Google Scholar] [CrossRef]
- Vakinti, M.; Mela, S.-M.; Fernández, E.; Psillakis, E. Room temperature and sensitive determination of haloanisoles in wine using vacuum-assisted headspace solid-phase microextraction. J. Chromatogr. A 2019, 1602, 142–149. [Google Scholar] [CrossRef]
- Yang, Y.; Chu, G.; Zhou, G.; Jiang, J.; Yuan, K.; Pan, Y.; Song, Z.; Li, Z.; Xia, Q.; Lu, X.; et al. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry: Sample Preparation. J. Sep. Sci. 2016, 39, 1173–1181. [Google Scholar] [CrossRef]
- Psillakis, E. Vacuum-assisted headspace solid-phase microextraction: A tutorial review. Anal. Chim. Acta 2017, 986, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Burzynski-Chang, E.A.; Ryona, I.; Reisch, B.I.; Gonda, I.; Foolad, M.R.; Giovannoni, J.J.; Sacks, G.L. HS-SPME-GC-MS Analyses of Volatiles in Plant Populations—Quantitating Compound × Individual Matrix Effects. Molecules 2018, 23, 2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piergiovanni, M.; Carlin, S.; Lotti, C.; Vrhovsek, U.; Mattivi, F. Development of a Fully Automated Method HS-SPME-GC-MS/MS for the Determination of Odor-Active Carbonyls in Wines: A “Green” Approach to Improve Robustness and Productivity in the Oenological Analytical Chemistry. J. Agric. Food Chem. 2023. [Google Scholar] [CrossRef]
- Piergiovanni, M.; Termopoli, V. Derivatization Strategies in Flavor Analysis: An Overview over the Wine and Beer Scenario. Chemistry 2022, 4, 1679–1695. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.-R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Yiantzi, E.; Psillakis, E.; Tyrovola, K.; Kalogerakis, N. Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 2010, 80, 2057–2062. [Google Scholar] [CrossRef] [PubMed]
- Psillakis, E.; Kalogerakis, N. Developments in single-drop microextraction. TrAC Trends Anal. Chem. 2002, 21, 54–64. [Google Scholar] [CrossRef]
- Davies, J.T. Turbulence Phenomena; Elsevier: Amsterdam, The Netherlands, 1972; ISBN 978-0-12-206070-0. [Google Scholar]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farajzadeh, R.; Eftekhari, A.A.; Dafnomilis, G.; Lake, L.W.; Bruining, J. On the sustainability of CO2 storage through CO2—Enhanced oil recovery. Appl. Energy 2020, 261, 114467. [Google Scholar] [CrossRef]
- Jessop, P.G.; Heldebrant, D.J.; Li, X.; Eckert, C.A.; Liotta, C.L. Reversible nonpolar-to-polar solvent. Nature 2005, 436, 1102. [Google Scholar] [CrossRef]
- Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999, 11, 737–747. [Google Scholar] [CrossRef]
- Berrou, K.; Dunyach-Remy, C.; Lavigne, J.-P.; Roig, B.; Cadiere, A. Multiple stir bar sorptive extraction combined with gas chromatography-mass spectrometry analysis for a tentative identification of bacterial volatile and/or semi-volatile metabolites. Talanta 2019, 195, 245–250. [Google Scholar] [CrossRef]
- Castro, L.F.; Ross, C.F. Determination of flavour compounds in beer using stir-bar sorptive extraction and solid-phase microextraction: Determination of flavor compounds in beer. J. Inst. Brew. 2015, 121, 197–203. [Google Scholar] [CrossRef]
- Gilart, N.; Marcé, R.M.; Borrull, F.; Fontanals, N. New coatings for stir-bar sorptive extraction of polar emerging organic contaminants. TrAC Trends Anal. Chem. 2014, 54, 11–23. [Google Scholar] [CrossRef]
- David, F.; Sandra, P. Stir bar sorptive extraction for trace analysis. J. Chromatogr. A 2007, 1152, 54–69. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Adsorption mechanism in reversed-phase liquid chromatography. J. Chromatogr. A 2006, 1115, 142–163. [Google Scholar] [CrossRef] [PubMed]
- Martire, D.E.; Boehm, R.E. Unified theory of retention and selectivity in liquid chromatography. 2. Reversed-phase liquid chromatography with chemically bonded phases. J. Phys. Chem. 1983, 87, 1045–1062. [Google Scholar] [CrossRef]
- Pap, T.; Horváth, V.; Tolokán, A.; Horvai, G.; Sellergren, B. Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction. J. Chromatogr. A 2002, 973, 1–12. [Google Scholar] [CrossRef]
- Babaee, S.; Daneshfar, A.; Khezeli, T. Determination of carboxylic acids in non-alcoholic beer samples by an ultrasonic-assisted dispersive micro-solid phase extraction based on Ni/Cu-Al layered double hydroxide nanocomposites followed by gas chromatography. Ultrason. Sonochem. 2017, 34, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Hu, K.; Zhang, Y.; Zhao, W.; Wang, F.; Guo, L.; Zhang, W.; He, J.; Huang, Y.; Zhang, S. On-cartridge derivatisation using a calixarene solid-phase extraction sorbent for facile, sensitive and fast determination of formaldehyde in beer. Food Chem. 2016, 211, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.-J.; Wang, Y.-L.; Liu, P.; Zhang, Z.; Yu, L.; Yuan, B.-F.; Feng, Y.-Q. Stable isotope labeling-solid phase extraction-mass spectrometry analysis for profiling of thiols and aldehydes in beer. Food Chem. 2017, 237, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Carrascon, V.; Escudero, A.; Ferreira, V.; Lopez, R. Characterisation of the key odorants in a squid broth (Illex argentinus). LWT Food Sci. Technol. 2014, 57, 656–662. [Google Scholar] [CrossRef]
- Milheiro, J.; Ferreira, L.C.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. A simple dispersive solid phase extraction clean-up/concentration method for selective and sensitive quantification of biogenic amines in wines using benzoyl chloride derivatisation. Food Chem. 2019, 274, 110–117. [Google Scholar] [CrossRef]
- Pichon, V.; Chapuis-Hugon, F. Role of Molecularly Imprinted Polymers for Selective Determination of Environmental Pollutants—A Review. Anal. Chim. Acta 2008, 622, 48–61. [Google Scholar] [CrossRef]
- Pisaniello, L.; Watson, F.; Siebert, T.; Francis, L.; Hixson, J.L. The Varietal Influence of Flavour Precursors from Grape Marc on Monoterpene and C13-Norisoprenoid Profiles in Wine as Determined by Membrane-Assisted Solvent Extraction (MASE) GC-MS. Molecules 2022, 27, 2046. [Google Scholar] [CrossRef]
- Zoccali, M.; Tranchida, P.Q.; Mondello, L. Fast gas chromatography-mass spectrometry: A review of the last decade. TrAC Trends Anal. Chem. 2019, 118, 444–452. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Reyes-De-Corcuera, J.I.; Etxeberria, E.; Danyluk, M.D.; Rodrick, G.E. Metabolomic analysis in food science: A review. Trends Food Sci. Technol. 2009, 20, 557–566. [Google Scholar] [CrossRef]
- Liu, Z.; Phillips, J.B. Comprehensive Two-Dimensional Gas Chromatography using an On-Column Thermal Modulator Interface. J. Chromatogr. Sci. 1991, 29, 227–231. [Google Scholar] [CrossRef]
- Adahchour, M.; Beens, J.; Vreuls, R.J.J.; Brinkman, U.A.T. Recent developments in comprehensive two-dimensional gas chromatography (GC×GC). TrAC Trends Anal. Chem. 2006, 25, 438–454. [Google Scholar] [CrossRef]
- Edwards, M.; Mostafa, A.; Górecki, T. Modulation in comprehensive two-dimensional gas chromatography: 20 years of innovation. Anal. Bioanal. Chem. 2011, 401, 2335–2349. [Google Scholar] [CrossRef]
- Prebihalo, S.E.; Berrier, K.L.; Freye, C.E.; Bahaghighat, H.D.; Moore, N.R.; Pinkerton, D.K.; Synovec, R.E. Multidimensional Gas Chromatography: Advances in Instrumentation, Chemometrics, and Applications. Anal. Chem. 2018, 90, 505–532. [Google Scholar] [CrossRef] [PubMed]
- Beens, J.; Boelens, H.; Tijssen, R.; Blomberg, J. Quantitative Aspects of Comprehensive Two-Dimensional Gas Chromatography (GC×GC). J. High Resolut. Chromatogr. 1998, 21, 47–54. [Google Scholar] [CrossRef]
- Bahaghighat, H.D.; Freye, C.E.; Synovec, R.E. Recent advances in modulator technology for comprehensive two dimensional gas chromatography. TrAC Trends Anal. Chem. 2019, 113, 379–391. [Google Scholar] [CrossRef]
- Sharif, K.M.; Chin, S.-T.; Kulsing, C.; Marriott, P.J. The microfluidic Deans switch: 50 years of progress, innovation and application. TrAC Trends Anal. Chem. 2016, 82, 35–54. [Google Scholar] [CrossRef]
- Seeley, J.V.; Micyus, N.J.; Bandurski, S.V.; Seeley, S.K.; McCurry, J.D. Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem. 2007, 79, 1840–1847. [Google Scholar] [CrossRef]
- Duhamel, C.; Cardinael, P.; Peulon-Agasse, V.; Firor, R.; Pascaud, L.; Semard-Jousset, G.; Giusti, P.; Livadaris, V. Comparison of cryogenic and differential flow (forward and reverse fill/flush) modulators and applications to the analysis of heavy petroleum cuts by high-temperature comprehensive gas chromatography. J. Chromatogr. A 2015, 1387, 95–103. [Google Scholar] [CrossRef]
- Boswell, H.; Chow, H.-Y.; Gorecki, T. Modulators. In Separation Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 12, pp. 89–140. ISBN 978-0-12-813745-1. [Google Scholar]
- Giddings, J.C. Concepts and comparisons in multidimensional separation. J. High Resolut. Chromatogr. 1987, 10, 319–323. [Google Scholar] [CrossRef]
- Giddings, J.C. Sample dimensionality: A predictor of order-disorder in component peak distribution in multidimensional separation. J. Chromatogr. A 1995, 703, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Stefanuto, P.-H.; Focant, J.-F. Columns and column configurations. In Separation Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 12, pp. 69–88. ISBN 978-0-12-813745-1. [Google Scholar]
- Zhu, S. Effect of column combinations on two-dimensional separation in comprehensive two-dimensional gas chromatography: Estimation of orthogonality and exploring of mechanism. J. Chromatogr. A 2009, 1216, 3312–3317. [Google Scholar] [CrossRef]
- Golay, M.J.E. Height Equivalent to a Theoretical Plate of Tubular Gas Chromatographic Columns lined with a Porous Layer. Nature 1963, 199, 370–371. [Google Scholar] [CrossRef]
- Peroni, D.; Janssen, H.-G. Comprehensive two-dimensional gas chromatography under high outlet pressure conditions: A new approach to correct the flow-mismatch issue in the two dimensions. J. Chromatogr. A 2014, 1332, 57–63. [Google Scholar] [CrossRef]
- Liu, Z.; Patterson, D.G.; Lee, M.L. Geometric Approach to Factor Analysis for the Estimation of Orthogonality and Practical Peak Capacity in Comprehensive Two-Dimensional Separations. Anal. Chem. 1995, 67, 3840–3845. [Google Scholar] [CrossRef]
- Camenzuli, M.; Schoenmakers, P.J. A new measure of orthogonality for multi-dimensional chromatography. Anal. Chim. Acta 2014, 838, 93–101. [Google Scholar] [CrossRef]
- Gilar, M.; Olivova, P.; Daly, A.E.; Gebler, J.C. Orthogonality of Separation in Two-Dimensional Liquid Chromatography. Anal. Chem. 2005, 77, 6426–6434. [Google Scholar] [CrossRef]
- Davis, J.M.; Stoll, D.R.; Carr, P.W. Dependence of Effective Peak Capacity in Comprehensive Two-Dimensional Separations on the Distribution of Peak Capacity between the Two Dimensions. Anal. Chem. 2008, 80, 8122–8134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semard, G.; Peulon-Agasse, V.; Bruchet, A.; Bouillon, J.-P.; Cardinaël, P. Convex hull: A new method to determine the separation space used and to optimize operating conditions for comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2010, 1217, 5449–5454. [Google Scholar] [CrossRef]
- Nowik, W.; Héron, S.; Bonose, M.; Nowik, M.; Tchapla, A. Assessment of Two-Dimensional Separative Systems Using Nearest-Neighbor Distances Approach. Part 1: Orthogonality Aspects. Anal. Chem. 2013, 85, 9449–9458. [Google Scholar] [CrossRef]
- Nowik, W.; Bonose, M.; Héron, S.; Nowik, M.; Tchapla, A. Assessment of Two-Dimensional Separative Systems Using the Nearest Neighbor Distances Approach. Part 2: Separation Quality Aspects. Anal. Chem. 2013, 85, 9459–9468. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Muñoz-González, C.; Pozo-Bayón, M.Á. Specificity of Saliva Esterases by Wine Carboxylic Esters and Inhibition by Wine Phenolic Compounds Under Simulated Oral Conditions. Front. Nutr. 2021, 8, 761830. [Google Scholar] [CrossRef]
- Herrero, M.; Cacciola, F.; Donato, P.; Giuffrida, D.; Dugo, G.; Dugo, P.; Mondello, L. Serial coupled columns reversed-phase separations in high-performance liquid chromatography. J. Chromatogr. A 2008, 1188, 208–215. [Google Scholar] [CrossRef]
- Piergiovanni, M.; Gosetti, F.; Rocío-Bautista, P.; Termopoli, V. Aroma determination in alcoholic beverages: Green MS-based sample preparation approaches. Mass Spectrom. Rev. 2022, e21802. [Google Scholar] [CrossRef] [PubMed]
- Vyviurska, O.; Khvalbota, L.; Koljančić, N.; Špánik, I.; Gomes, A.A. Wine age prediction using digital images and multivariate calibration. Microchem. J. 2023, 190, 108738. [Google Scholar] [CrossRef]
- Pollo, B.J.; Teixeira, C.A.; Belinato, J.R.; Furlan, M.F.; Cunha, I.C.D.M.; Vaz, C.R.; Volpato, G.V.; Augusto, F. Chemometrics, Comprehensive Two-Dimensional gas chromatography and “omics” sciences: Basic tools and recent applications. TrAC Trends Anal. Chem. 2021, 134, 116111. [Google Scholar] [CrossRef]
- Pérez-Cova, M.; Tauler, R.; Jaumot, J. Chemometrics in comprehensive two-dimensional liquid chromatography: A study of the data structure and its multilinear behavior. Chemom. Intell. Lab. Syst. 2020, 201, 104009. [Google Scholar] [CrossRef]
- Stilo, F.; Bicchi, C.; Robbat, A.; Reichenbach, S.E.; Cordero, C. Untargeted approaches in food-omics: The potential of comprehensive two-dimensional gas chromatography/mass spectrometry. TrAC Trends Anal. Chem. 2021, 135, 116162. [Google Scholar] [CrossRef]
- De Juan, A.; Tauler, R. Comparison of three-way resolution methods for non-trilinear chemical data sets. J. Chemom. 2001, 15, 749–771. [Google Scholar] [CrossRef]
- Stilo, F.; Bicchi, C.; Jimenez-Carvelo, A.M.; Cuadros-Rodriguez, L.; Reichenbach, S.E.; Cordero, C. Chromatographic fingerprinting by comprehensive two-dimensional chromatography: Fundamentals and tools. TrAC Trends Anal. Chem. 2021, 134, 116133. [Google Scholar] [CrossRef]
- Stefanuto, P.-H.; Smolinska, A.; Focant, J.-F. Advanced chemometric and data handling tools for GC×GC-TOF-MS. TrAC Trends Anal. Chem. 2021, 139, 116251. [Google Scholar] [CrossRef]
- Wilde, M.J.; Zhao, B.; Cordell, R.L.; Ibrahim, W.; Singapuri, A.; Greening, N.J.; Brightling, C.E.; Siddiqui, S.; Monks, P.S.; Free, R.C. Automating and Extending Comprehensive Two-Dimensional Gas Chromatography Data Processing by Interfacing Open-Source and Commercial Software. Anal. Chem. 2020, 92, 13953–13960. [Google Scholar] [CrossRef]
- Wilson, J.D.; McInnes, C.A.J. The elimination of errors due to baseline drift in the measurement of peak areas in gas chromatography. J. Chromatogr. A 1965, 19, 486–494. [Google Scholar] [CrossRef]
- Eilers, P.H.C. A Perfect Smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef]
- Lopatka, M.; Barcaru, A.; Sjerps, M.J.; Vivó-Truyols, G. Leveraging probabilistic peak detection to estimate baseline drift in complex chromatographic samples. J. Chromatogr. A 2016, 1431, 122–130. [Google Scholar] [CrossRef]
- Zhang, P.; Carlin, S.; Franceschi, P.; Mattivi, F.; Vrhovsek, U. Application of a Target-Guided Data Processing Approach in Saturated Peak Correction of GC×GC Analysis. Anal. Chem. 2022, 94, 1941–1948. [Google Scholar] [CrossRef]
- Korytár, P.; van Stee, L.L.P.; Leonards, P.E.G.; de Boer, J.; Brinkman, U.A.T. Attempt to unravel the composition of toxaphene by comprehensive two-dimensional gas chromatography with selective detection. J. Chromatogr. A 2003, 994, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Vivó-Truyols, G.; Marriott, P.J.; Schoenmakers, P.J. Development of an algorithm for peak detection in comprehensive two-dimensional chromatography. J. Chromatogr. A 2007, 1156, 14–24. [Google Scholar] [CrossRef]
- Vivó-Truyols, G. Bayesian Approach for Peak Detection in Two-Dimensional Chromatography. Anal. Chem. 2012, 84, 2622–2630. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Reichenbach, S.E.; Shi, J. Automated Unmixing of Comprehensive Two-Dimensional Chemical Separations with Mass Spectrometry. In Proceedings of the 2005 IEEE International Conference on Electro Information Technology, Lincoln, NE, USA, 22–25 May 2005; pp. 1–6. [Google Scholar]
- Reichenbach, S.E.; Ni, M.; Kottapalli, V.; Visvanathan, A. Information technologies for comprehensive two-dimensional gas chromatography. Chemom. Intell. Lab. Syst. 2004, 71, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Ouyang, M.; Jeong, J.; Shen, C.; Zhang, X. A new method of peak detection for analysis of comprehensive two-dimensional gas chromatography mass spectrometry data. Ann. Appl. Stat. 2014, 8, 1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa, G.S.; Prebihalo, S.E.; Reaser, B.C.; Marney, L.C.; Synovec, R.E. Statistical inference of mass channel purity from Fisher ratio analysis using comprehensive two-dimensional gas chromatography with time of flight mass spectrometry data. J. Chromatogr. A 2020, 1627, 461401. [Google Scholar] [CrossRef]
- Viant, M.R.; Kurland, I.J.; Jones, M.R.; Dunn, W.B. How close are we to complete annotation of metabolomes? Curr. Opin. Chem. Biol. 2017, 36, 64–69. [Google Scholar] [CrossRef]
- Veenaas, C.; Haglund, P. A retention index system for comprehensive two-dimensional gas chromatography using polyethylene glycols. J. Chromatogr. A 2018, 1536, 67–74. [Google Scholar] [CrossRef]
- De Cripan, S.M.; Cereto-Massagué, A.; Herrero, P.; Barcaru, A.; Canela, N.; Domingo-Almenara, X. Machine Learning-Based Retention Time Prediction of Trimethylsilyl Derivatives of Metabolites. Biomedicines 2022, 10, 879. [Google Scholar] [CrossRef]
- Boegelsack, N.; Sandau, C.; McMartin, D.W.; Withey, J.M.; O’Sullivan, G. Development of retention time indices for comprehensive multidimensional gas chromatography and application to ignitable liquid residue mapping in wildfire investigations. J. Chromatogr. A 2021, 1635, 461717. [Google Scholar] [CrossRef]
- Jiang, M.; Kulsing, C.; Nolvachai, Y.; Marriott, P.J. Two-Dimensional Retention Indices Improve Component Identification in Comprehensive Two-Dimensional Gas Chromatography of Saffron. Anal. Chem. 2015, 87, 5753–5761. [Google Scholar] [CrossRef]
- Abramson, F.P. Automated identification of mass spectra by the reverse search. Anal. Chem. 1975, 47, 45–49. [Google Scholar] [CrossRef]
- Stein, S.E.; Scott, D.R. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 1994, 5, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Koo, I.; Jeong, J.; Wu, S.; Shi, X.; Zhang, X. Compound Identification Using Partial and Semipartial Correlations for Gas Chromatography–Mass Spectrometry Data. Anal. Chem. 2012, 84, 6477–6487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Zhang, X. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry. Comput. Math. Methods Med. 2013, 2013, 509761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samokhin, A.; Sotnezova, K.; Lashin, V.; Revelsky, I. Evaluation of mass spectral library search algorithms implemented in commercial software: Evaluation of library search algorithms. J. Mass Spectrom. 2015, 50, 820–825. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, Y.; Zheng, C.H.; Wang, B.; Zhang, X.; Chen, P. Combine multiple mass spectral similarity measures for compound identification. Int. J. Data Min. Bioinform. 2016, 15, 84. [Google Scholar] [CrossRef]
- Reichenbach, S.E.; Carr, P.W.; Stoll, D.R.; Tao, Q. Smart Templates for peak pattern matching with comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 2009, 1216, 3458–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbat, A.; Kfoury, N.; Baydakov, E.; Gankin, Y. Optimizing targeted/untargeted metabolomics by automating gas chromatography/mass spectrometry workflows. J. Chromatogr. A 2017, 1505, 96–105. [Google Scholar] [CrossRef]
- Marney, L.C.; Christopher Siegler, W.; Parsons, B.A.; Hoggard, J.C.; Wright, B.W.; Synovec, R.E. Tile-based Fisher-ratio software for improved feature selection analysis of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry data. Talanta 2013, 115, 887–895. [Google Scholar] [CrossRef]
- Tao, Q.; Reichenbach, S.E.; Heble, C.; Wu, Z. New investigator tools for finding unique and common components in multiple samples with comprehensive two-dimensional chromatography. In Chromatography Today; International Labmate Limited: Hertfordshire, UK, 2018. [Google Scholar]
- Bendik, J.; Kalia, R.; Sukumaran, J.; Richardot, W.H.; Hoh, E.; Kelley, S.T. Automated high confidence compound identification of electron ionization mass spectra for nontargeted analysis. J. Chromatogr. A 2021, 1660, 462656. [Google Scholar] [CrossRef]
- Mommers, J.; Ritzen, E.; Dutriez, T.; van der Wal, S. A procedure for comprehensive two-dimensional gas chromatography retention time locked dual detection. J. Chromatogr. A 2016, 1461, 153–160. [Google Scholar] [CrossRef]
- Lee, S.-J.; Noble, A.C. Use of Partial Least Squares Regression and Multidimensional Scaling on Aroma Models of California Chardonnay Wines. Am. J. Enol. Vitic. 2006, 57, 363. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review: Humulus lupulus—A story that begs to be told. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Gawel, R. Red wine astringency: A review. Aust. J. Grape Wine Res. 1998, 4, 74–95. [Google Scholar] [CrossRef]
- Bindon, K.A.; Smith, P.A.; Kennedy, J.A. Interaction between Grape-Derived Proanthocyanidins and Cell Wall Material. 1. Effect on Proanthocyanidin Composition and Molecular Mass. J. Agric. Food Chem. 2010, 58, 2520–2528. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A Review of the Effect of Winemaking Techniques on Phenolic Extraction in Red Wines. Am. J. Enol. Vitic. 2005, 56, 197. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Cadahía, E.; del Álamo, M.; Nevares, I. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal. Chim. Acta 2010, 660, 211–220. [Google Scholar] [CrossRef]
- Pons, A.; Lavigne, V.; Landais, Y.; Darriet, P.; Dubourdieu, D. Identification of a Sotolon Pathway in Dry White Wines. J. Agric. Food Chem. 2010, 58, 7273–7279. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran, J.M.; Van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 3920. [Google Scholar] [CrossRef] [Green Version]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Brandão, T.; Vicente, A.A. Continuous beer fermentation—Diacetyl as a villain: Diacetyl as a villain. J. Inst. Brew. 2015, 121, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Berrier, K.L.; Prebihalo, S.E.; Synovec, R.E. Advanced data handling in comprehensive two-dimensional gas chromatography. In Separation Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 12, pp. 229–268. ISBN 978-0-12-813745-1. [Google Scholar]
- Mommers, J.; Knooren, J.; Mengerink, Y.; Wilbers, A.; Vreuls, R.; van der Wal, S. Retention time locking procedure for comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2011, 1218, 3159–3165. [Google Scholar] [CrossRef] [PubMed]
- Skov, T.; Hoggard, J.C.; Bro, R.; Synovec, R.E. Handling within run retention time shifts in two-dimensional chromatography data using shift correction and modeling. J. Chromatogr. A 2009, 1216, 4020–4029. [Google Scholar] [CrossRef]
- Johnson, K.J.; Prazen, B.J.; Young, D.C.; Synovec, R.E. Quantification of naphthalenes in jet fuel with GC×GC/Tri-PLS and windowed rank minimization retention time alignment. J. Sep. Sci. 2004, 27, 410–416. [Google Scholar] [CrossRef]
- Pierce, K.M.; Wood, L.F.; Wright, B.W.; Synovec, R.E. A Comprehensive Two-Dimensional Retention Time Alignment Algorithm to Enhance Chemometric Analysis of Comprehensive Two-Dimensional Separation Data. Anal. Chem. 2005, 77, 7735–7743. [Google Scholar] [CrossRef] [PubMed]
- Weusten, J.J.A.M.; Derks, E.P.P.A.; Mommers, J.H.M.; van der Wal, S. Alignment and clustering strategies for GC×GC–MS features using a cylindrical mapping. Anal. Chim. Acta 2012, 726, 9–21. [Google Scholar] [CrossRef]
- Harvey, P.M.; Shellie, R.A. Data Reduction in Comprehensive Two-Dimensional Gas Chromatography for Rapid and Repeatable Automated Data Analysis. Anal. Chem. 2012, 84, 6501–6507. [Google Scholar] [CrossRef] [PubMed]
- Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Reichenbach, S.E.; Tian, X.; Tao, Q. Targeted and Non-Targeted Approaches for Complex Natural Sample Profiling by GCxGC-qMS. J. Chromatogr. Sci. 2010, 48, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Stadler, S.; Stefanuto, P.-H.; Brokl, M.; Forbes, S.L.; Focant, J.-F. Characterization of Volatile Organic Compounds from Human Analogue Decomposition Using Thermal Desorption Coupled to Comprehensive Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry. Anal. Chem. 2013, 85, 998–1005. [Google Scholar] [CrossRef]
- Bean, H.D.; Hill, J.E.; Dimandja, J.-M.D. Improving the quality of biomarker candidates in untargeted metabolomics via peak table-based alignment of comprehensive two-dimensional gas chromatography–mass spectrometry data. J. Chromatogr. A 2015, 1394, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Pierce, K.M.; Hoggard, J.C.; Hope, J.L.; Rainey, P.M.; Hoofnagle, A.N.; Jack, R.M.; Wright, B.W.; Synovec, R.E. Fisher Ratio Method Applied to Third-Order Separation Data to Identify Significant Chemical Components of Metabolite Extracts. Anal. Chem. 2006, 78, 5068–5075. [Google Scholar] [CrossRef]
- Sudol, P.E.; Ochoa, G.S.; Synovec, R.E. Investigation of the limit of discovery using tile-based Fisher ratio analysis with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2021, 1644, 462092. [Google Scholar] [CrossRef]
- De-la-Fuente-Blanco, A.; Sáenz-Navajas, M.-P.; Valentin, D.; Ferreira, V. Fourteen ethyl esters of wine can be replaced by simpler ester vectors without compromising quality but at the expense of increasing aroma concentration. Food Chem. 2020, 307, 125553. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Petrick, L.M.; Shomron, N. AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications. Cell Rep. Phys. Sci. 2022, 3, 100978. [Google Scholar] [CrossRef] [PubMed]
- Sudol, P.E.; Schöneich, S.; Synovec, R.E. Principal component analysis of comprehensive three-dimensional gas chromatog-raphy time-of-flight mass spectrometry data. J. Chromatogr. Open 2022, 2, 100043. [Google Scholar] [CrossRef]
Year | Sample | Sampling | Modulator | Column Setup | Reference |
---|---|---|---|---|---|
2005 | wine | HS-SPME | thermal modulator | BPX5, BP20 | [11] |
2005 | wine, beer | SPE (derivatization) | thermal modulator | BPX5, BP20 and Solgel Wax, BP1 | [12] |
2007 | beer | derivatization | thermal modulator | Chirasil-L-Val, BPX50 and Chirasil-L-Val, BPX50 | [13] |
2007 | wine | HS-SPME | thermal modulator | Equity-5, Supelcowax-10 | [14] |
2010 | wine | HS-SPME | thermal modulator | ZB-Wax, BPX-5 | [15] |
2010 | wine | HS-SPME | thermal modulator | HP-5, DB-FFAP | [16] |
2011 | wine | HS-SPME | thermal modulator | VF-5MS, VF-17 MS | [17,18] |
2011 | wine | HS-SPME | thermal modulator | VF1-MS, SolGel-Wax | [19] |
2011 | wine | HS-SPME | thermal modulator | VF-1, SolGel–Wax | [20] |
2011 | wine | HS-SPME | thermal modulator | RTX5, VF-WAXms | [21] |
2011 | wine | SPE | thermal modulator | DB-FFAP, DB-5 | [22] |
2011 | wine | HS-SPME | thermal modulator | HP-5, DB-FFAP | [23] |
2012 | wine | HS-SPME | thermal modulator | DB-5, DB-Wax; DB-Wax, dimethylpolysiloxane; and DB-Wax, DB-17ms | [24] |
2012 | wine | LLE | thermal modulator | BPX5, BP20 | [25] |
2013 | wine | HS-SPME | thermal modulator | DB-Wax, DB-17ms | [26] |
2013 | wine | HS-SPME | thermal modulator | DB-5, DB-225 | [27] |
2013 | wine | HS-SPME | thermal modulator | DB-5 MS, Supelcowax-10 | [28] |
2014 | wine | HS-SPME | flow modulator | SLB-5, Supelcowax-10 | [29] |
2014 | wine | HS-SPME | thermal modulator | Carbowax, DB-17ms | [30] |
2015 | wine | HS-SPME | thermal modulator | DB-5, DB-17ms | [31] |
2015 | wine | Cumulative SPME | thermal modulator | DB-FFAP, BPX5 | [32] |
2016 | hop | hydro-distillation | thermal modulator | MEGA-Wax MS, BPX5 | [33] |
2016 | wine | HS-SPME | thermal modulator | VF-Wax, RTX-200 MS | [34] |
2017 | wine | HS-SPME | thermal modulator | VF-Wax, Rxi 17Sil MS | [35] |
2017 | beer | mSBSE, DHS, SBSE, HS-SPME, SHS | thermal modulator | Stabil Wax, RTX-200 | [36] |
2017 | wine | HS-SPME | thermal modulator | DB-FFAP, BPX-50 | [37] |
2017 | wine | HS-SPME (after derivatization) | thermal modulator | DB-Wax, DB-17ms | [38] |
2018 | wine | HS-SPME | thermal modulator | DB-Wax, DB-17ms | [39] |
2018 | wine | HS-SPME | Flow modulator | HP-5MS, HP-50 | [40] |
2018 | beer | HS-SPME | not mentioned | Equity-5, DB-FFAP | [41] |
2019 | wine | HS-SPME | thermal modulator | DB-Wax, DB-17ms | [42] |
2019 | wine | HS-SPME | thermal modulator | VF-Wax, Rxi 17 Sil MS | [43] |
2019 | wine | HS-SPME | thermal modulator | VF-Wax, Rxi 17 Sil MS | [44] |
2019 | wine | LLE | thermal modulator | DB-FFAP, DB-17ms | [45] |
2019 | wine | LLE | thermal modulator | DB-FFAP, DB-5 | [46] |
2019 | beer | HS-SPME | flow modulator | MEGA-5HT, HP-50+ | [47] |
2020 | beer | HS-SPME | flow modulator | MEGA-5HT, HP-50+ | [4] |
2020 | wine | HS-SPME, LLE | thermal modulator | DB-FFAP, Rxi-17Sil MS | [48] |
2020 | wine | HS-SPME | thermal modulator | DB-Wax, DB-17ms | [49] |
2020 | wine | SBSE | thermal modulator | DB-FFAP, Rxi-17Sil MS | [50] |
2020 | wine | mSBSE, DHS, LLE, HS-SPME, SPE | thermal modulator | VF-Wax, Rxi-17Sil MS | [51] |
2020 | wine | HS-SPME | thermal modulator | VF-Wax, Rxi-17Sil MS | [52] |
2021 | wine | HS-SPME | flow modulator | DB-FFAP, chiral cyclodextrin | [53] |
2021 | wine | HS-SPME | flow modulator | DB-FFAP, Chirasil-β-Dex | [54] |
2022 | wine | HS-SPME | thermal modulator | DB-Wax, DB-17ms | [55] |
2022 | wine | HS-SPME | flow modulator | Supelcowax 10, SLB-35 MS | [56] |
2022 | wine | HS-SPME | thermal modulator | VF-Wax, Rxi-17Sil MS | [57] |
2022 | wine | HS-SPME | thermal modulator | VF-Wax, Rxi-17Sil MS | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Piergiovanni, M.; Franceschi, P.; Mattivi, F.; Vrhovsek, U.; Carlin, S. Application of Comprehensive 2D Gas Chromatography Coupled with Mass Spectrometry in Beer and Wine VOC Analysis. Analytica 2023, 4, 347-373. https://doi.org/10.3390/analytica4030026
Zhang P, Piergiovanni M, Franceschi P, Mattivi F, Vrhovsek U, Carlin S. Application of Comprehensive 2D Gas Chromatography Coupled with Mass Spectrometry in Beer and Wine VOC Analysis. Analytica. 2023; 4(3):347-373. https://doi.org/10.3390/analytica4030026
Chicago/Turabian StyleZhang, Penghan, Maurizio Piergiovanni, Pietro Franceschi, Fulvio Mattivi, Urska Vrhovsek, and Silvia Carlin. 2023. "Application of Comprehensive 2D Gas Chromatography Coupled with Mass Spectrometry in Beer and Wine VOC Analysis" Analytica 4, no. 3: 347-373. https://doi.org/10.3390/analytica4030026
APA StyleZhang, P., Piergiovanni, M., Franceschi, P., Mattivi, F., Vrhovsek, U., & Carlin, S. (2023). Application of Comprehensive 2D Gas Chromatography Coupled with Mass Spectrometry in Beer and Wine VOC Analysis. Analytica, 4(3), 347-373. https://doi.org/10.3390/analytica4030026