Relationships between Soluble Solids and Dry Matter in the Flesh of Stone Fruit at Harvest
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delgado, C.; Crisosto, G.M.; Heymann, H.; Crisosto, C.H. Determining the Primary Drivers of Liking to Predict Consumers’ Acceptance of Fresh Nectarines and Peaches. J. Food Sci. 2013, 78. [Google Scholar] [CrossRef] [PubMed]
- Cirilli, M.; Bassi, D.; Ciacciulli, A. Sugars in peach fruit: A breeding perspective. Hortic. Res. 2016, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.; Echeverria, G.; Bellvert, J.; Mata, M.; Behboudian, M.H.; Girona, J.; Marsal, J. Water stress for a short period before harvest in nectarine: Yield, fruit composition, sensory quality, and consumer acceptance of fruit. Sci. Hortic. (Amsterdam) 2016, 211. [Google Scholar] [CrossRef]
- Bae, H.; Yun, S.K.; Jun, J.H.; Yoon, I.K.; Nam, E.Y.; Kwon, J.H. Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J. Appl. Bot. Food Qual. 2014, 87, 24–29. [Google Scholar] [CrossRef]
- Lopresti, J.; Goodwin, I.; McGlasson, B.; Holford, P.; Golding, J. Variability in size and soluble solids concentration in peaches and nectarines. Hortic. Rev. (Am. Soc. Hortic. Sci.) 2014, 42, 253–311. [Google Scholar] [CrossRef]
- Lopresti, J.; Goodwin, I.; Stefanelli, D.; Holford, P.; McGlasson, B.; Golding, J. Understanding the factors affecting within-tree variation in soluble solids concentration in peaches and nectarines. Acta Hortic. 2016, 1130, 249–256. [Google Scholar] [CrossRef]
- Borsani, J.; Budde, C.O.; Porrini, L.; Lauxmann, M.A.; Lombardo, V.A.; Murray, R.; Andreo, C.S.; Drincovich, M.F.; Lara, M.V. Carbon metabolism of peach fruit after harvest: Changes in enzymes involved in organic acid and sugar level modifications. J. Exp. Bot. 2009, 60, 1823–1837. [Google Scholar] [CrossRef]
- Crisosto, C.H. Stone fruit maturity indices: A descriptive review. Postharvest News Inf. 1994, 5, 65N–68N. [Google Scholar]
- Subedi, P.P.; Walsh, K.B.; Owens, G. Prediction of mango eating quality at harvest using short-wave near infrared spectrometry. Postharvest Biol. Technol. 2007, 43. [Google Scholar] [CrossRef]
- Gamble, J.; Harker, F.R.; Jaeger, S.R.; White, A.; Bava, C.; Beresford, M.; Stubbings, B.; Wohlers, M.; Hofman, P.J.; Marques, R.; et al. The impact of dry matter, ripeness and internal defects on consumer perceptions of avocado quality and intentions to purchase. Postharvest Biol. Technol. 2010, 57. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Day, K.R. Stone Fruit. In Crop Post-Harvest: Science and Technology; Rees, D., Farrell, G., Orchard, J., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2012; pp. 212–225. ISBN 9780632057252. [Google Scholar]
- McGlone, V.A.; Jordan, R.B.; Seelye, R.; Clark, C.J. Dry-matter—A better predictor of the post-storage soluble solids in apples? Postharvest Biol. Technol. 2003, 28. [Google Scholar] [CrossRef]
- Palmer, J.W.; Harker, F.R.; Tustin, D.S.; Johnston, J. Fruit dry matter concentration: A new quality metric for apples. J. Sci. Food Agric. 2010. [Google Scholar] [CrossRef] [PubMed]
- Goke, A.; Serra, S.; Musacchi, S. Postharvest dry matter and soluble solids content prediction in d’anjou and bartlett pear using near-infrared spectroscopy. HortScience 2018. [Google Scholar] [CrossRef]
- Scalisi, A.; O’Connell, M.G.; Lo Bianco, R. Field non-destructive determination of nectarine quality under deficit irrigation. Acta Hortic. accepted.
- Wills, R.B.H.; Scriven, F.M.; Greenfield, H. Nutrient composition of stone fruit (Prunus spp.) cultivars: Apricot, cherry, nectarine, peach and plum. J. Sci. Food Agric. 1983, 34, 1383–1389. [Google Scholar] [CrossRef]
- Jones, G.P.; Briggs, D.R.; Wahlquvist, L.M.; Flentje, S.B.J. Dietary fibre content of Australian foods. 3. Fruits and fruit products. Food Aust. 1990, 42, 143–145. [Google Scholar]
- Quilot, B.; Kervella, J.; Génard, M. Shape, mass and dry matter content of peaches of varieties with different domestication levels. Sci. Hortic. (Amsterdam) 2004, 99. [Google Scholar] [CrossRef]
- Lintas, C.; Cappelloni, M. Dietary fiber content of italian fruit and nuts. J. Food Compos. Anal. 1992, 5, 146–151. [Google Scholar] [CrossRef]
- Englyst, H.N.; Bingham, S.A.; Runswick, S.A.; Collinson, E.; Cummings, J.H. Dietary fibre (non-starch polysaccharides) in fruit, vegetables and nuts. J. Hum. Nutr. Diet. 1988, 1, 247–286. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef]
- Wu, B.; Quilot, B.; Kervella, J.; Génard, M.; Li, S. Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the Principle Component Analysis. Euphytica 2003, 132. [Google Scholar] [CrossRef]
- Peiris, K.H.S.; Dull, G.G.; Leffler, R.G.; Kays, S.J. Spatial variability of soluble solids or dry-matter content within individual fruits, bulbs, or tubers: Implications for the development and use of NIR spectrometric techniques. HortScience 1999, 34. [Google Scholar] [CrossRef]
- Kobashi, K.; Gemma, H.; Iwahori, S. Abscisic acid content and sugar metabolism of peaches grown under water stress. J. Am. Soc. Hortic. Sci. 2000, 125, 425–428. [Google Scholar] [CrossRef]
- Naor, A. Irrigation Scheduling and Evaluation of Tree Water Status in Deciduous Orchards. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 111–166. ISBN 9780470767986. [Google Scholar]
- Mills, T.M.; Behboudian, M.H.; Tan, P.Y.; Clothier, B.E. Plant water status and fruit quality in Braeburn’ apples. HortScience 1994, 29. [Google Scholar] [CrossRef]
- Kilili, A.W.; Behboudian, M.H.; Mills, T.M. Composition and quality of ‘Braeburn’ apples under reduced irrigation. Sci. Hortic. (Amsterdam) 1996, 67. [Google Scholar] [CrossRef]
- Mpelasoka, B.S.; Behboudian, M.H.; Green, S.R. Water use, yield and fruit quality of lysimeter-grown apple trees: Responses to deficit irrigation and to crop load. Irrig. Sci. 2001, 20. [Google Scholar] [CrossRef]
- Ruiz, D.; Egea, J. Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 2008, 163, 143–158. [Google Scholar] [CrossRef]
- Socquet-Juglard, D.; Christen, D.; Devènes, G.; Gessler, C.; Duffy, B.; Patocchi, A. Mapping Architectural, Phenological, and Fruit Quality QTLs in Apricot. Plant Mol. Biol. Report. 2013, 31. [Google Scholar] [CrossRef]
- Escribano, S.; Biasi, W.V.; Lerud, R.; Slaughter, D.C.; Mitcham, E.J. Non-destructive prediction of soluble solids and dry matter content using NIR spectroscopy and its relationship with sensory quality in sweet cherries. Postharvest Biol. Technol. 2017. [Google Scholar] [CrossRef]
- Donis-González, I.R.; Valero, C.; Momin, M.A.; Kaur, A.; Slaughter, D.C. Performance evaluation of two commercially available portable spectrometers to non-invasively determine table grape and peach quality attributes. Agronomy 2020, 10, 148. [Google Scholar] [CrossRef]
- Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amadò, R. Development of a model for quality assessment of tomatoes and apricots. LWT Food Sci. Technol. 2003, 36, 223–233. [Google Scholar] [CrossRef]
- Iglesias, I.; Echeverría, G. Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Sci. Hortic. (Amsterdam) 2009, 120, 41–50. [Google Scholar] [CrossRef]
- O’Connell, M.; Stefanelli, D. Effect of crop load management and canopy architecture on yield and fruit quality of late-season plum ‘Angeleno’. Acta Hortic. 2020, 1281, 227–233. [Google Scholar] [CrossRef]
- O’Connell, M.; Stefanelli, D. Effects of rootstock and crop load management on yield and fruit quality of early-season nectarine ‘Rose Bright’ and late-season peach ‘September Sun’. Acta Hortic. 2020, 1281, 121–129. [Google Scholar] [CrossRef]
- O’Connell, M.G.; Scalisi, A. Sensing fruit and tree performance under deficit irrigation in ‘September Bright’ nectarine. Acta Hortic. accepted.
Crop | Cultivar | Best-Fit Linear Regression Coefficients | R2 | ANOVA | RMSE for Best-Fit Model | RMSE for DMC = SSC Model | ΔRMSE | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | Intercept SE | Slope | Slope SE | Intercept (p) | Slope (p) | ||||||
Nectarine | ‘August Bright’ | 1.92 | 0.31 | 0.87 | 0.02 | 0.899 | <0.05 | <0.05 | 0.747 | 0.829 | 0.082 |
‘Autumn Bright’ | 0.19 | 0.18 | 0.99 | 0.02 | 0.952 | 0.305 | 0.527 | 0.377 | 0.385 | 0.008 | |
‘Rose Bright’ | 2.09 | 0.29 | 0.85 | 0.02 | 0.888 | <0.05 | <0.05 | 0.710 | 0.798 | 0.088 | |
‘September Bright’ | 0.25 | 1.03 | 0.02 | 0.952 | 0.050 | 0.061 | 0.502 | 0.507 | 0.005 | ||
Yellow peach | ‘August Flame’ | 2.25 | 0.31 | 0.81 | 0.02 | 0.862 | <0.05 | <0.05 | 0.726 | 0.918 | 0.192 |
‘O’Henry’ | 2.58 | 0.35 | 0.82 | 0.02 | 0.868 | <0.05 | <0.05 | 0.748 | 0.854 | 0.106 | |
‘Redhaven’ | 1.25 | 0.39 | 0.88 | 0.03 | 0.778 | <0.05 | <0.05 | 0.621 | 0.657 | 0.036 | |
‘September Sun’ | 1.18 | 0.25 | 0.95 | 0.02 | 0.933 | <0.05 | <0.05 | 0.567 | 0.818 | 0.251 | |
White peach | ‘Ice Princess’ | 1.28 | 0.29 | 0.91 | 0.02 | 0.900 | <0.05 | <0.05 | 0.746 | 0.782 | 0.036 |
‘Snow Fall’ | 1.16 | 0.43 | 0.98 | 0.02 | 0.894 | <0.05 | 0.351 | 0.642 | 0.998 | 0.356 | |
‘Snow Flame 23’ | 1.93 | 0.31 | 0.88 | 0.02 | 0.900 | <0.05 | <0.05 | 0.684 | 0.752 | 0.068 | |
‘Snow Flame 25’ | 3.04 | 0.41 | 0.81 | 0.03 | 0.835 | <0.05 | <0.05 | 0.638 | 0.720 | 0.082 | |
Apricot | ‘Golden May’ | 5.72 | 0.32 | 0.55 | 0.03 | 0.699 | <0.05 | <0.05 | 1.328 | 2.144 | 0.816 |
Plum | ‘Angeleno’ | 0.46 | 0.40 | 0.96 | 0.02 | 0.918 | 0.254 | 0.074 | 0.388 | 0.470 | 0.082 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalisi, A.; O’Connell, M.G. Relationships between Soluble Solids and Dry Matter in the Flesh of Stone Fruit at Harvest. Analytica 2021, 2, 14-24. https://doi.org/10.3390/analytica2010002
Scalisi A, O’Connell MG. Relationships between Soluble Solids and Dry Matter in the Flesh of Stone Fruit at Harvest. Analytica. 2021; 2(1):14-24. https://doi.org/10.3390/analytica2010002
Chicago/Turabian StyleScalisi, Alessio, and Mark Glenn O’Connell. 2021. "Relationships between Soluble Solids and Dry Matter in the Flesh of Stone Fruit at Harvest" Analytica 2, no. 1: 14-24. https://doi.org/10.3390/analytica2010002
APA StyleScalisi, A., & O’Connell, M. G. (2021). Relationships between Soluble Solids and Dry Matter in the Flesh of Stone Fruit at Harvest. Analytica, 2(1), 14-24. https://doi.org/10.3390/analytica2010002