The Clinical Management of Leukocytospermia in Male Infertility: A Narrative Review
Abstract
:1. Introduction
Male Infertility
2. Methods
2.1. Defining Leukocytospermia
2.2. Leukocytospermia Effect on Male Infertility
2.3. Etiologies and Causes
3. Diagnosing Leukocytospermia
4. Clinical Management of Leukocytospermia
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Kretser, D. Male infertility. Lancet 1997, 349, 787–790. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(96)08341-9/fulltext (accessed on 20 January 2024). [CrossRef]
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Sun, H.; Gong, T.T.; Jiang, Y.T.; Zhang, S.; Zhao, Y.H.; Wu, Q.J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging 2019, 11, 10952–10991. [Google Scholar] [CrossRef]
- Hart, R.J. Physiological Aspects of Female Fertility: Role of the Environment, Modern Lifestyle, and Genetics. Physiol. Rev. 2016, 96, 873–909. [Google Scholar] [CrossRef] [PubMed]
- Sharlip, I.D.; Jarow, J.P.; Belker, A.M.; Lipshultz, L.I.; Sigman, M.; Thomas, A.J.; Schlegel, P.N.; Howards, S.S.; Nehra, A.; Damewood, M.D.; et al. Best practice policies for male infertility. Fertil. Steril. 2002, 77, 873–882. [Google Scholar] [CrossRef]
- Leslie, S.; Soon-Sutton, T.; Khan, M.A. Male Infertility; StatPearls: St. Petersburg, FL, USA, 2023. Available online: https://www.statpearls.com/point-of-care/23503 (accessed on 20 January 2024).
- Babakhanzadeh, E.; Nazari, M.; Ghasemifar, S.; Khodadadian, A. Some of the Factors Involved in Male Infertility: A Prospective Review. Int. J. Gen. Med. 2020, 13, 29–41. [Google Scholar] [CrossRef]
- Report on varicocele and infertility: A committee opinion. Fertil. Steril. 2014, 102, 1556–1560. [CrossRef] [PubMed]
- Krausz, C. Male infertility: Pathogenesis and clinical diagnosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Chehab, M.; Madala, A.; Trussell, J.C. On-label and off-label drugs used in the treatment of male infertility. Fertil. Steril. 2015, 103, 595–604. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Capogrosso, P.; Boeri, L.; Cazzaniga, W.; Matloob, R.; Pozzi, E.; Chierigo, F.; Abbate, C.; Viganò, P.; Montorsi, F.; et al. Leukocytospermia is not an informative predictor of positive semen culture in infertile men: Results from a validation study of available guidelines. Hum. Reprod. Open 2020, 2020, hoaa039. [Google Scholar] [CrossRef]
- Moubasher, A.; Sayed, H.; Mosaad, E.; Mahmoud, A.; Farag, F.; Taha, E.A. Impact of leukocytospermia on sperm dynamic motility parameters, DNA and chromosomal integrity. Cent. Eur. J. Urol. 2018, 71, 470–475. [Google Scholar] [CrossRef]
- WHO Laboratory Manual for the Examination and Processing of Human Semen. Available online: https://fctc.who.int/publications/i/item/9789241547789 (accessed on 25 January 2024).
- Gambera, L.; Serafini, F.; Morgante, G.; Focarelli, R.; De Leo, V.; Piomboni, P. Sperm quality and pregnancy rate after COX-2 inhibitor therapy of infertile males with abacterial leukocytospermia. Hum. Reprod. 2007, 22, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Barratt, C.L.R.; Bolton, A.E.; Cooke, I.D. Functional significance of white blood cells in the male and female reproductive tract. Hum. Reprod. 1990, 5, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Domes, T.; Lo, K.C.; Grober, E.D.; Mullen, J.B.M.; Mazzulli, T.; Jarvi, K. The incidence and effect of bacteriospermia and elevated seminal leukocytes on semen parameters. Fertil. Steril. 2012, 97, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Close, C.E.; Roberts, P.L.; Berger, R.E. Cigarettes, Alcohol and Marijuana are Related to Pyospermia in Infertile Men. J. Urol. 1990, 144, 900–903. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.M. Phagocytic leukocytes and reactive oxygen species. Histochem. Cell Biol. 2009, 131, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, J.S.; Raburn, D.; Muasher, S. Leukocytospermia: Overview of diagnosis, implications, and management of a controversial finding. Middle East Fertil. Soc. J. 2013, 18, 129–134. [Google Scholar] [CrossRef]
- Kovalski, N.N.; de Lamirande, E.; Gagnon, C. Reactive oxygen species generated by human neutrophils inhibit sperm motility: Protective effect of seminal plasma and scavengers. Fertil. Steril. 1992, 58, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Pasqualotto, F.F.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship Between Seminal White Blood Cell Counts and Oxidative Stress in Men Treated at an Infertility Clinic. J. Androl. 2001, 22, 575–583. [Google Scholar] [CrossRef]
- Saleh, R.A.; Agarwal, A.; Kandirali, E.; Sharma, R.K.; Thomas, A.J.; Nada, E.A.; Evenson, D.P.; Alvarez, J.G. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil. Steril. 2002, 78, 1215–1224. [Google Scholar] [CrossRef]
- De Jonge, C. Biological basis for human capacitation. Hum. Reprod. Update 2005, 11, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Attaran, M.; Pasqualotto, E.; Falcone, T.; Goldberg, J.M.; Miller, K.F.; Agarwal, A.; Sharma, R.K. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int. J. Fertil. Womens Med. 2000, 45, 314–320. [Google Scholar] [PubMed]
- Aitken, J.; Buckingham, D.; Krausz, C. Relationships between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol. Reprod. Dev. 1994, 39, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; West, K.M. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int. J. Androl. 1990, 13, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Huszar, G.; Sbracia, M.; Vigue, L.; Miller, D.J.; Shur, B.D. Sperm Plasma Membrane Remodeling during Spermiogenetic Maturation in Men: Relationship among Plasma Membrane β 1,4-Galactosyltransferase, Cytoplasmic Creatine Phosphokinase, and Creatine Phosphokinase Isoform Ratios1. Biol. Reprod. 1997, 56, 1020–1024. [Google Scholar] [CrossRef]
- Alvarez, J.G.; Storey, B.T. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev. 1995, 42, 334–346. [Google Scholar] [CrossRef]
- Storey, B.T.; Alvarez, J.G.; Thompson, K.A. Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH. Mol. Reprod. Dev. 1998, 49, 400–407. [Google Scholar] [CrossRef]
- Iwasaki, A.; Gagnon, C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 1992, 57, 409–416. [Google Scholar] [CrossRef]
- Fariello, R.M.; Del Giudice, P.T.; Spaine, D.M.; Fraietta, R.; Bertolla, R.P.; Cedenho, A.P. Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity. J. Assist. Reprod. Genet. 2009, 26, 151–157. [Google Scholar] [CrossRef]
- Koppers, A.J.; De Iuliis, G.N.; Finnie, J.M.; McLaughlin, E.A.; Aitken, R.J. Significance of Mitochondrial Reactive Oxygen Species in the Generation of Oxidative Stress in Spermatozoa. J. Clin. Endocrinol. Metab. 2008, 93, 3199–3207. [Google Scholar] [CrossRef]
- Kasai, T.; Ogawa, K.; Mizuno, K.; Nagai, S.; Uchida, Y.; Ohta, S.; Fujie, M.; Suzuki, K.; Hirata, S.; Hoshi, K. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian J. Androl. 2002, 4, 97–103. [Google Scholar]
- O’Donnell, L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 2014, 4, e979623. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Saleh, R.A.; Bedaiwy, M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003, 79, 829–843. [Google Scholar] [CrossRef]
- Mak, V.; Jarvi, K.; Buckspan, M.; Freeman, M.; Hechter, S.; Zini, A. Smoking is associated with the retention of cytoplasm by human spermatozoa. Urology 2000, 56, 463–466. [Google Scholar] [CrossRef]
- Baker, M.A.; Aitken, R.J. Reactive oxygen species in spermatozoa: Methods for monitoring and significance for the origins of genetic disease and infertility. Reprod. Biol. Endocrinol. 2005, 3, 67. [Google Scholar] [CrossRef]
- Aziz, N.; Agarwal, A.; Lewis-Jones, I.; Sharma, R.K.; Thomas, A.J. Novel associations between specific sperm morphological defects and leukocytospermia. Fertil. Steril. 2004, 82, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Kemal Duru, N.; Morshedi, M.; Oehninger, S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 2000, 74, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Mahfouz, R.; Sharma, R.; Thiyagarajan, A.; Kale, V.; Gupta, S.; Sabanegh, E.; Agarwal, A. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil. Steril. 2010, 94, 2141–2146. [Google Scholar] [CrossRef]
- Spano, M.; Seli, E.; Bizzaro, D.; Manicardi, G.C.; Sakkas, D. The significance of sperm nuclear DNA strand breaks on reproductive outcome. Curr. Opin. Obstet. Gynecol. 2005, 17, 255. [Google Scholar] [CrossRef]
- Seli, E.; Sakkas, D. Spermatozoal Nuclear Determinants of Reproductive Outcome: Implications for ART. Hum. Reprod. Update 2005, 11, 337–349. [Google Scholar] [CrossRef]
- Carrell, D.T.; Liu, L.; Peterson, C.M.; Jones, K.P.; Hatasaka, H.H.; Erickson, L.; Campbell, B. Sperm DNA Fragmentation Is Increased in Couples with Unexplained Recurrent Pregnancy Loss. Arch. Androl. 2003, 49, 49–55. [Google Scholar] [CrossRef]
- Parida, R. Human MOSPD2: A bacterial Lmb mimicked auto-antigen is involved in immune infertility. J. Transl. Autoimmun. 2019, 1, 100002. [Google Scholar] [CrossRef]
- Dimitrova-Dikanarova, D.K.; Lazarov, V.V.; Tafradjiiska-Hadjiolova, R.; Dimova, I.I.; Petkova, N.U.; Krastev, Z.A. Association between Helicobacter pylori infection and the presence of anti-sperm antibodies. Biotechnol. Biotechnol. Equip. 2017, 31, 1–8. [Google Scholar] [CrossRef]
- Kalaydjiev, S.; Dimitrova, D.; Mitov, I.; Dikov, I.; Nakov, L. Serum sperm antibodies after diarrhoeal diseases. Andrologia 2007, 39, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, H.G.; von Graevenitz, A. Clinical Microbiology. In Andrology for the Clinician; Schill, W.B., Comhaire, F., Hargreave, T.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 401–407. [Google Scholar] [CrossRef]
- Weidner, W.; Krause, W.; Ludwig, M. Relevance of Male Accessory Gland Infection for Subsequent Fertility with Special Focus on Prostatitis. Human Reprod. Update 1999, 5, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Trum, J.W.; Mol, B.W.J.; Pannekoek, Y.; Spanjaard, L.; Wertheim, P.; Bleker, O.P.; van der Veen, F. Value of detecting leukocytospermia in the diagnosis of genital tract infection in subfertile men. Fertil. Steril. 1998, 70, 315–319. [Google Scholar] [CrossRef]
- Nistal Martín de Serrano, M.; Paniagua Gómez-Alvarez, R. Testicular and Epididymal Pathology; Thieme-Stratton: New York, NY, USA, 1984. [Google Scholar]
- Hedger, M.P. Immunophysiology and Pathology of Inflammation in the Testis and Epididymis. J. Androl. 2011, 32, 625–640. [Google Scholar] [CrossRef]
- Demir, A.; Türker, P.; Önol, F.F.; Sirvanci, S.; Findik, A.; Tarcan, T. Effect of experimentally induced Escherichia coli epididymo-orchitis and ciprofloxacin treatment on rat spermatogenesis. Int. J. Urol. 2007, 14, 268–272. [Google Scholar] [CrossRef]
- Alshahrani, S.; McGill, J.; Agarwal, A. Prostatitis and male infertility. J. Reprod. Immunol. 2013, 100, 30–36. [Google Scholar] [CrossRef]
- Potts, J.M.; Pasqualotto, F.F. Seminal oxidative stress in patients with chronic prostatitis. Andrologia 2003, 35, 304–308. [Google Scholar] [CrossRef]
- Branigan, E.F.; Muller, C.H. Efficacy of treatment and recurrence rate of leukocytospermia in infertile men with prostatitis. Fertil. Steril. 1994, 62, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, F.F.; Sharma, R.K.; Potts, J.M.; Nelson, D.R.; Thomas, A.J.; Agarwal, A. Seminal oxidative stress in patients with chronic prostatitis. Urology 2000, 55, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Zhu, H.B.; Li, L.L.; Yu, Y.; Zhang, H.G.; Liu, R.Z. Decline of semen quality and increase of leukocytes with cigarette smoking in infertile men. Iran. J. Reprod. Med. 2013, 11, 589–596. [Google Scholar] [PubMed]
- Agarwal, A.; Rana, M.; Qiu, E.; AlBunni, H.; Bui, A.D.; Henkel, R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia 2018, 50, e13126. [Google Scholar] [CrossRef] [PubMed]
- Trummer, H.; Habermann, H.; Haas, J.; Pummer, K. The impact of cigarette smoking on human semen parameters and hormones. Hum. Reprod. 2002, 17, 1554–1559. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.G.; Hofmann, N.; Passia, D. Morphological and Enzyme Histochemical Observations on Alcohol induced Disturbances in Testis of two Patients. Andrologia 1985, 17, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.G. Incidence of varicocele in normal men and among men of different ages. JAMA 1966, 198, 1121–1122. [Google Scholar] [CrossRef]
- Mongioì, L.M.; Alamo, A.; Calogero, A.E.; Compagnone, M.; Giacone, F.; Cannarella, R.; La Vignera, S.; Condorelli, R.A. Evaluation of seminal fluid leukocyte subpopulations in patients with varicocele. Int. J. Immunopathol. Pharmacol. 2020, 34, 2058738420925719. [Google Scholar] [CrossRef]
- Hassanin, A.M.; Ahmed, H.H.; Kaddah, A.N. A global view of the pathophysiology of varicocele. Andrology 2018, 6, 654–661. [Google Scholar] [CrossRef]
- Demirer, Z.; Karademir, I.; Uslu, A.; Güragac, A.; Aksu, Y. The relationship between inflammation and mean platelet volume in varicocele pathophysiology. Rev. Int. Andrología 2017, 16, 137–142. [Google Scholar] [CrossRef]
- Trabulsi, E.J.; Shupp-Byrne, D.; Sedor, J.; Hirsch, I.H. Leukocyte subtypes in electroejaculates of spinal cord injured men. Arch. Phys. Med. Rehabil. 2002, 83, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Baquero, E.; Johnston, S.; Sánchez-Ramos, A.; Arévalo-Martín, A.; Wilson, R.; Gosálvez, J. The incidence and etiology of sperm DNA fragmentation in the ejaculates of males with spinal cord injuries. Spinal Cord 2020, 58, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Aird, I.A.; Vince, G.S.; Bates, M.D.; Johnson, P.M.; Lewis-Jones, I.D. Leukocytes in semen from men with spinal cord injuries. Fertil. Steril. 1999, 72, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ricci, G.; Presani, G.; Guaschino, S.; Simeone, R.; Perticarari, S. Leukocyte detection in human semen using flow cytometry. Hum. Reprod. 2000, 15, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Brunner, R.J.; Demeter, J.H.; Sindhwani, P. Review of Guidelines for the Evaluation and Treatment of Leukocytospermia in Male Infertility. World J. Men’s Health 2018, 37, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Gupta, S.; Agarwal, A.; Henkel, R.; Finelli, R.; Parekh, N.; Saleh, R.; Arafa, M.; Ko, E.; Zini, A.; et al. Relevance of Leukocytospermia and Semen Culture and Its True Place in Diagnosing and Treating Male Infertility. World J. Men’s Health 2022, 40, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Villegas, J.; Schulz, M.; Vallejos, V.; Henkel, R.; Miska, W.; Sánchez, R. Indirect immunofluorescence using monoclonal antibodies for the detection of leukocytospermia: Comparison with peroxidase staining. Andrologia 2002, 34, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Jochum, M.; Pabst, W.; Schill, W.-B. Granulocyte Elastase as a Sensitive Diagnostic Parameter of Silent Male Genital Tract Inflammation. Andrologia 1986, 18, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Kopa, Z.; Wenzel, J.; Papp, G.K.; Haidl, G. Role of granulocyte elastase and interleukin-6 in the diagnosis of male genital tract inflammation. Andrologia 2005, 37, 188–194. [Google Scholar] [CrossRef]
- Zorn, B.; Sešek-Briški, A.; Osredkar, J.; Meden-Vrtovec, H. Semen Polymorphonuclear Neutrophil Leukocyte Elastase as a Diagnostic and Prognostic Marker of Genital Tract Inflammation—A Review. Clin. Chem. Lab. Med. 2003, 41, 2–12. [Google Scholar] [CrossRef]
- Wolff, H. Methods for the Detection of Male Genital Tract Inflammation. Andrologia 1998, 30, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Khodamoradi, K.; Kuchakulla, M.; Narasimman, M.; Khosravizadeh, Z.; Ali, A.; Brackett, N.; Ibrahim, E.; Ramasamy, R. Laboratory and clinical management of leukocytospermia and hematospermia: A review. Ther. Adv. Reprod. Health 2020, 14, 2633494120922511. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Kim, M.H.; Kim, J.; Baik, S.K.; Koh, S.-B.; Park, H.J.; Seo, J.T. Treatment of Leukocytospermia in Male Infertility: A Systematic Review. World J. Men’s Health 2016, 34, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Hamada, A.; Agarwal, A.; Sharma, R.; French, D.B.; Ragheb, A.; Sabanegh, E.S. Empirical treatment of low-level leukocytospermia with doxycycline in male infertility patients. Urology 2011, 78, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Vicari, E. Effectiveness and limits of antimicrobial treatment on seminal leukocyte concentration and related reactive oxygen species production in patients with male accessory gland infection. Hum. Reprod. 2000, 15, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, P.N.; Chang, T.S.; Marshall, F.F. Antibiotics: Potential hazards to male fertility. Fertil. Steril. 1991, 55, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Krisp, A.; Hörster, S.; Skrzypek, J.; Krause, W. Treatment with levofloxacin does not resolve asymptomatic leucocytospermia—A randomized controlled study. Andrologia 2003, 35, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Oeda, T.; Henkel, R.; Ohmori, H.; Schill, W.-B. Scavenging effect of N-acetyl-L-cysteine against reactive oxygen species in human semen: A possible therapeutic modality for male factor infertility? Andrologia 1997, 29, 125–131. [Google Scholar] [CrossRef]
- Aitken, R.J.; Clarkson, J.S. Significance of Reactive Oxygen Species and Antioxidants in Defining the Efficacy of Sperm Preparation Techniques. J. Androl. 1988, 9, 367–376. [Google Scholar] [CrossRef]
- Lewin, A.; Lavon, H. The effect of coenzyme Q10 on sperm motility and function. Mol. Asp. Med. 1997, 18, 213–219. [Google Scholar] [CrossRef]
- Diao, R.; Gan, H.; Tian, F.; Cai, X.; Zhen, W.; Song, X.; Duan, Y.-G. In vitro antioxidation effect of Quercetin on sperm function from the infertile patients with leukocytospermia. Am. J. Reprod. Immunol. 2019, 82, e13155. [Google Scholar] [CrossRef] [PubMed]
- Johinke, D.; de Graaf, S.P.; Bathgate, R. Quercetin reduces the in vitro production of H2O2 during chilled storage of rabbit spermatozoa. Anim. Reprod. Sci. 2014, 151, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Multigner, L. Ketotifen improves sperm motility and sperm morphology in male patients with leukocytospermia and unexplained infertility. Fertil. Steril. 2006, 85, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Milardi, D.; Luca, G.; Grande, G.; Ghezzi, M.; Caretta, N.; Brusco, G.; De Filpo, G.; Marana, R.; Pontecorvi, A.; Calafiore, R.; et al. Prednisone treatment in infertile patients with oligozoospermia and accessory gland inflammatory alterations. Andrology 2017, 5, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Lackner, J.E.; Herwig, R.; Schmidbauer, J.; Schatzl, G.; Kratzik, C.; Marberger, M. Correlation of leukocytospermia with clinical infection and the positive effect of antiinflammatory treatment on semen quality. Fertil. Steril. 2006, 86, 601–605. [Google Scholar] [CrossRef]
- Tomlinson, M.J.; Naeem, A. CASA in the medical laboratory: CASA in diagnostic andrology and assisted conception. Reprod. Fertil. Dev. 2018, 30, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.P.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17. [Google Scholar] [CrossRef]
- Finelli, R.; Leisegang, K.; Tumallapalli, S.; Henkel, R.; Agarwal, A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: A systematic review. Transl. Androl. Urol. 2021, 10, 3069–3079. [Google Scholar] [CrossRef]
Study | Year | Sample Size (n) | Patient Characteristics | Study Design | Intervention | Study Results |
---|---|---|---|---|---|---|
Hamada et al. [78] | 2011 | 34 | Patients with diagnosed level of leukocytopsermia who were not previously treated | Retrospective study | Doxycycline | Treatment of low-level leukocytospermia with doxycycline did not significantly change semen parameters but led to a higher resolution rate (56%) compared to historical controls (25%), with a significantly greater natural pregnancy rate (47% vs. 20%) and an odds ratio for pregnancy outcome of 3.7 (95% CI 1.1–11.7; p = 0.04). |
Krisp et al. [81] | 2003 | 36 | Idiopathic Infertility | Uncontrolled clinical trial | 250 mg levofloxacin PO QD for 10 days | Decrease in leucocyte count of 45.8 ± 72.2% compared with a decrease of only 3 ± 109.2% in the untreated group was observed. |
Oeda et al. [82] | 1997 | n/a (semen samples) | Semen samples | Laboratory Study | N-acetyl-L-cysteine (NAG) | Reactive Oxygen Species levels decreased significantly after 20 min incubation with NAG |
Oliva and Multigner [87] | 2006 | 55 | Idiopathic Infertility | Uncontrolled clinical trial | Ketotifen 1 mg PO BID for 12 weeks | Significant reduction in leukocyte concentration by 4 weeks |
Milardi et al. [88] | 2017 | 90 | Oligozoospermia with accessory gland inflammation on genital ultrasound | Randomized, uncontrolled clinical trial | Prednisone 5 mg, 12.5 mg, or 25 mg PO QD | Improved sperm count and percent with forward motility but no significant differences within leukocytospermia within the groups |
Lackner et al. [89] | 2006 | 56 | Abacterial Leukocytospermia | Prospective nonrandomized study | Valdecoxib 20 mg PO QD for 14 days | Significant reduction in leukocyte concentration after treatment |
Gambera et al. [83] | 2007 | 47 | Idiopathic infertility | Uncontrolled clinical trial | Rofecoxib 25 mg PO QD for 30 days | Significant reduction in leukocyte concentration after 30 days of treatment; Pregnancy rate of 15.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, U.; Venishetty, N.; Alkassis, M.; Raheem, O. The Clinical Management of Leukocytospermia in Male Infertility: A Narrative Review. Uro 2024, 4, 36-49. https://doi.org/10.3390/uro4020004
Hussain U, Venishetty N, Alkassis M, Raheem O. The Clinical Management of Leukocytospermia in Male Infertility: A Narrative Review. Uro. 2024; 4(2):36-49. https://doi.org/10.3390/uro4020004
Chicago/Turabian StyleHussain, Usman, Nikit Venishetty, Marwan Alkassis, and Omer Raheem. 2024. "The Clinical Management of Leukocytospermia in Male Infertility: A Narrative Review" Uro 4, no. 2: 36-49. https://doi.org/10.3390/uro4020004
APA StyleHussain, U., Venishetty, N., Alkassis, M., & Raheem, O. (2024). The Clinical Management of Leukocytospermia in Male Infertility: A Narrative Review. Uro, 4(2), 36-49. https://doi.org/10.3390/uro4020004