From “MAFLD” to “MASLD”: Was This Revolution Worth It? A Head-to-Head Comparison of MAFLD and MASLD Criteria in Estimating Liver Disease Progression and Cardiovascular Risk in Real Life
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.1.1. Identification Phase
2.1.2. Extraction Phase
2.1.3. Selection Process
2.1.4. Identification of the Study Groups and Subgroups and Definition of Study Outcomes
2.2. MAFLD and MASLD Diagnostic Criteria
2.3. Data Collection
2.3.1. Abdominal Ultrasound-Based Diagnosis of SLD
2.3.2. Clinical and Biochemical Parameters
2.3.3. Transient Elastography: Definition of Cut-Offs for Fibrosis and Steatosis Severity
2.3.4. Determination of Noninvasive Tools (NITs): FIB-4, NFS, and BARD Scores
2.3.5. Recording of HCC and ACEs
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. MASLD and MAFLD Diagnostic Criteria in Estimating Liver Disease Progression Risk
3.2.1. Estimating the 3-Year Risk of AF Progression
3.2.2. Estimating 3-Year Risk of Hepatocellular Carcinoma Occurrence
3.3. MASLD and MAFLD Diagnostic Criteria in Estimating 3-Year Risk of ACEs’ Occurrence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACEs | Acute Cardiovascular Events |
| ACLD | Advanced Chronic Liver Disease |
| AF | Advanced Fibrosis |
| ALD | Alcohol-Related Liver Disease |
| ALP | Alkaline Phosphatase |
| ALT | Alanine Aminotransferase |
| AST | Aspartate Aminotransferase |
| BARD | BMI, AST/ALT Ratio, Diabetes |
| BMI | Body Mass Index |
| CAP | Controlled Attenuation Parameter |
| CLD | Chronic Liver Disease |
| CMRF | Cardiometabolic Risk Factor |
| CRF | Case Report Form |
| DBP | Diastolic Blood Pressure |
| EMRs | Electronic Medical Records |
| FPG | Fasting Plasma Glucose |
| GGT | Gamma-Glutamyl Transferase |
| HBV | Hepatitis B Virus |
| HCC | Hepatocellular Carcinoma |
| HCV | Hepatitis C Virus |
| HDDA | Health Documents Digitization Archive |
| HDL | High-Density Lipoprotein |
| HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
| Hs-CRP | High-Sensitivity C-Reactive Protein |
| IR | Insulin Resistance |
| L-MAFLD | Lean-Metabolic Dysfunction-Associated Fatty Liver Disease |
| L-MASLD | Lean-Metabolic Dysfunction-Associated Steatotic Liver Disease |
| LDL | Low-Density Lipoprotein |
| LSM | Liver Stiffness Measurement |
| LTE | Liver Transient Elastography |
| MAFLD | Metabolic Dysfunction-Associated Fatty Liver Disease |
| MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
| MD | Metabolic Dysfunction |
| NAFLD | Non-Alcoholic Fatty Liver Disease |
| NFS | NAFLD Fibrosis Score |
| NITs | Noninvasive Tools |
| NL | Not-Lean |
| SH | Steatohepatitis |
| SLD | Steatotic Liver Disease |
| T2DM | Type 2 Diabetes Mellitus |
| Whr | Waist-to-Hip Ratio |
References
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J. International Consensus Panel MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Emanuele, E.; Minoretti, P. Letter to the Editor: NAFLD, MAFLD or MASLD? Cut the Gordian Knot with “Ludwig Disease”. Hepatology 2024, 79, E4. [Google Scholar] [CrossRef]
- De, A.; Bhagat, N.; Mehta, M.; Taneja, S.; Duseja, A. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Definition Is Better than MAFLD Criteria for Lean Patients with NAFLD. J. Hepatol. 2024, 80, e61–e62. [Google Scholar] [CrossRef]
- Pennisi, G.; Enea, M.; Romero-Gomez, M.; Viganò, M.; Bugianesi, E.; Wong, V.W.-S.; Fracanzani, A.L.; Sebastiani, G.; Boursier, J.; Berzigotti, A.; et al. Liver-Related and Extrahepatic Events in Patients with Non-Alcoholic Fatty Liver Disease: A Retrospective Competing Risks Analysis. Aliment. Pharmacol. Ther. 2022, 55, 604–615. [Google Scholar] [CrossRef]
- Foerster, F.; Gairing, S.J.; Müller, L.; Galle, P.R. NAFLD-Driven HCC: Safety and Efficacy of Current and Emerging Treatment Options. J. Hepatol. 2022, 76, 446–457. [Google Scholar] [CrossRef]
- Ren, Z.; Wesselius, A.; Stehouwer, C.D.A.; Brouwers, M.C.G.J. Cardiovascular Implications of Metabolic Dysfunction-Associated Fatty Liver Disease. Endocrinol. Metab. Clin. N. Am. 2023, 52, 459–468. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A Systemic Metabolic Disorder with Cardiovascular and Malignant Complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef]
- Dallio, M.; Romeo, M.; Di Nardo, F.; Vaia, P.; Napolitano, C.; Ventriglia, L.; Coppola, A.; Silvestrin, A.; Olivieri, S.; Federico, A. FLAME: Training and Validating a Newly Conceived Model Incorporating Alpha-Glutathione-S-Transferase Serum Levels for Predicting Advanced Hepatic Fibrosis and Acute Cardiovascular Events in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Int. J. Mol. Sci. 2025, 26, 761. [Google Scholar] [CrossRef]
- Perazzo, H.; Pacheco, A.G.; Griep, R.H. Collaborators Changing from NAFLD through MAFLD to MASLD: Similar Prevalence and Risk Factors in a Large Brazilian Cohort. J. Hepatol. 2024, 80, e72–e74. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xie, W. Are There All-Cause Mortality Differences between Metabolic Dysfunction-Associated Steatotic Liver Disease Subtypes? J. Hepatol. 2024, 80, e53–e54. [Google Scholar] [CrossRef]
- Zhao, Q.; Deng, Y. Comparison of Mortality Outcomes in Individuals with MASLD and/or MAFLD. J. Hepatol. 2024, 80, e62–e64. [Google Scholar] [CrossRef]
- Ciardullo, S.; Carbone, M.; Invernizzi, P.; Perseghin, G. Exploring the Landscape of Steatotic Liver Disease in the General US Population. Liver Int. 2023, 43, 2425–2433. [Google Scholar] [CrossRef] [PubMed]
- Boursier, J.; Guillaume, M.; Bouzbib, C.; Lannes, A.; Pais, R.; Smatti, S.; Cariou, B.; Bureau, C.; Ganne-Carrié, N.; Bourlière, M.; et al. Non-Invasive Diagnosis and Follow-up of Non-Alcoholic Fatty Liver Disease. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101769. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef] [PubMed]
- de Franchis, R.; Bosch, J.; Garcia-Tsao, G.; Reiberger, T.; Ripoll, C. Baveno VII Faculty Baveno VII—Renewing Consensus in Portal Hypertension. J. Hepatol. 2022, 76, 959–974. [Google Scholar] [CrossRef]
- Mishra, P.; Younossi, Z.M. Abdominal Ultrasound for Diagnosis of Nonalcoholic Fatty Liver Disease (NAFLD). Am. J. Gastroenterol. 2007, 102, 2716–2717. [Google Scholar] [CrossRef]
- Salgado, A.L.F.D.A.; Carvalho, L.D.; Oliveira, A.C.; Santos, V.N.D.; Vieira, J.G.; Parise, E.R. Insulin Resistance Index (HOMA-IR) in the Differentiation of Patients with Non-Alcoholic Fatty Liver Disease and Healthy Individuals. Arq. Gastroenterol. 2010, 47, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Boursier, J.; Zarski, J.-P.; de Ledinghen, V.; Rousselet, M.-C.; Sturm, N.; Lebail, B.; Fouchard-Hubert, I.; Gallois, Y.; Oberti, F.; Bertrais, S.; et al. Determination of Reliability Criteria for Liver Stiffness Evaluation by Transient Elastography. Hepatology 2013, 57, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Eddowes Peter, J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Sasso, M.; Beaugrand, M.; de Ledinghen, V.; Douvin, C.; Marcellin, P.; Poupon, R.; Sandrin, L.; Miette, V. Controlled Attenuation Parameter (CAP): A Novel VCTETM Guided Ultrasonic Attenuation Measurement for the Evaluation of Hepatic Steatosis: Preliminary Study and Validation in a Cohort of Patients with Chronic Liver Disease from Various Causes. Ultrasound Med. Biol. 2010, 36, 1825–1835. [Google Scholar] [CrossRef]
- Sasso, M.; Miette, V.; Sandrin, L.; Beaugrand, M. The Controlled Attenuation Parameter (CAP): A Novel Tool for the Non-Invasive Evaluation of Steatosis Using Fibroscan. Clin. Res. Hepatol. Gastroenterol. 2012, 36, 13–20. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.S.; Sulkowski, M.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a Simple Noninvasive Index to Predict Significant Fibrosis in Patients with HIV/HCV Coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD Fibrosis Score: A Noninvasive System That Identifies Liver Fibrosis in Patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Harrison, S.A.; Oliver, D.; Arnold, H.L.; Gogia, S.; Neuschwander-Tetri, B.A. Development and Validation of a Simple NAFLD Clinical Scoring System for Identifying Patients without Advanced Disease. Gut 2008, 57, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Pennisi, G.; Enea, M.; Romero-Gomez, M.; Bugianesi, E.; Wai-Sun Wong, V.; Fracanzani, A.L.; de Ledinghen, V.; George, J.; Berzigotti, A.; Viganò, M.; et al. Risk of Liver-Related Events in Metabolic Dysfunction-Associated Steatohepatitis (MASH) Patients with Fibrosis: A Comparative Analysis of Various Risk Stratification Criteria. Hepatology 2024, 79, 912–925. [Google Scholar] [CrossRef]
- Zeng, J.; Fan, J.-G. From NAFLD to MAFLD: Not Just a Change in the Name. Hepatobiliary Pancreat. Dis. Int. 2022, 21, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, S.; Eslam, M.; Kawaguchi, T.; Tsutsumi, T.; Nakano, D.; Yoshinaga, S.; Takahashi, H.; Anzai, K.; George, J.; Torimura, T. MAFLD Identifies Patients with Significant Hepatic Fibrosis Better than NAFLD. Liver Int. 2020, 40, 3018–3030. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Huang, J.; Wang, M.; Kumar, R.; Liu, Y.; Liu, S.; Wu, Y.; Wang, X.; Zhu, Y. Comparison of MAFLD and NAFLD Diagnostic Criteria in Real World. Liver Int. 2020, 40, 2082–2089. [Google Scholar] [CrossRef]
- Rinella, M.E.; Sookoian, S. From NAFLD to MASLD: Updated Naming and Diagnosis Criteria for Fatty Liver Disease. J. Lipid Res. 2024, 65, 100485. [Google Scholar] [CrossRef] [PubMed]
- Sanal, M.G. Is the Change from NAFLD to MASLD Driven by Political Correctness? J. Hepatol. 2024, 80, e74–e76. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sarin, S.K.; Wong, V.W.-S.; Fan, J.-G.; Kawaguchi, T.; Ahn, S.H.; Zheng, M.-H.; Shiha, G.; Yilmaz, Y.; Gani, R.; et al. The Asian Pacific Association for the Study of the Liver Clinical Practice Guidelines for the Diagnosis and Management of Metabolic Associated Fatty Liver Disease. Hepatol. Int. 2020, 14, 889–919. [Google Scholar] [CrossRef]
- Song, R.; Li, Z.; Zhang, Y.; Tan, J.; Chen, Z. Comparison of NAFLD, MAFLD and MASLD Characteristics and Mortality Outcomes in United States Adults. Liver Int. 2024, 44, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Vesković, M.; Pejović, M.; Šutulović, N.; Hrnčić, D.; Rašić-Marković, A.; Stanojlović, O.; Mladenović, D. Exploring Fibrosis Pathophysiology in Lean and Obese Metabolic-Associated Fatty Liver Disease: An In-Depth Comparison. Int. J. Mol. Sci. 2024, 25, 7405. [Google Scholar] [CrossRef]
- Palma, R.; Pronio, A.; Romeo, M.; Scognamiglio, F.; Ventriglia, L.; Ormando, V.M.; Lamazza, A.; Pontone, S.; Federico, A.; Dallio, M. The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J. Clin. Med. 2022, 11, 3649. [Google Scholar] [CrossRef]
- Crocetto, F.; Barone, B.; Manfredi, C.; Trama, F.; Romano, L.; Romeo, M.; Russo, G.; Sicignano, E.; Persico, F.; Aveta, A.; et al. Are Insulin Resistance and Non-Alcoholic Fatty Liver Disease Associated with Peyronie’s Disease? A Pilot Study. J. Physiol. Pharmacol. 2022, 73, 53–62. [Google Scholar] [CrossRef]
- Tuleta, I.; Frangogiannis, N.G. Diabetic Fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166044. [Google Scholar] [CrossRef]
- Singh, A.; Garg, R.; Lopez, R.; Alkhouri, N. Diabetes Liver Fibrosis Score to Detect Advanced Fibrosis in Diabetics with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2022, 20, e624–e626. [Google Scholar] [CrossRef]
- Muriel, P.; Cardoso-Lezama, I.; Vargas-Pozada, E.E.; Ramos-Tovar, E. Mechanisms of Non-Alcoholic Fatty Liver Disease Development in Normal-Weight Individuals. Eur. J. Gastroenterol. Hepatol. 2023, 35, 521–529. [Google Scholar] [CrossRef]
- Dogru, T.; Genc, H.; Bagci, S. C Reactive Protein Levels in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2012, 56, 507–508, author reply 508–510. [Google Scholar] [CrossRef]
- Romeo, M.; Silvestrin, A.; Senese, G.; Di Nardo, F.; Napolitano, C.; Vaia, P.; Coppola, A.; Federico, P.; Dallio, M.; Federico, A. From “Traditional” to “Trained” Immunity: Exploring the Novel Frontiers of Immunopathogenesis in the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Biomedicines 2025, 13, 2004. [Google Scholar] [CrossRef]
- Dallio, M.; Sangineto, M.; Romeo, M.; Villani, R.; Romano, A.D.; Loguercio, C.; Serviddio, G.; Federico, A. Immunity as Cornerstone of Non-Alcoholic Fatty Liver Disease: The Contribution of Oxidative Stress in the Disease Progression. Int. J. Mol. Sci. 2021, 22, 436. [Google Scholar] [CrossRef]
- Dallio, M.; Romeo, M.; Coppola, A.; Martinelli, G.; Basile, C.; Di Nardo, F.; Napolitano, C.; Vaia, P.; De Gregorio, A.; Silvestrin, A.; et al. Phase Angle/C-Reactive Protein-Index as a Novel Combined Tool for Predicting Liver-Related Hospitalizations in MASLD-Decompensated Cirrhosis. Arch. Med. Res. 2025, 56, 103306. [Google Scholar] [CrossRef]
- Meroni, M.; Longo, M.; Dongiovanni, P. Cardiometabolic Risk Factors in MASLD Patients with HCC: The Other Side of the Coin. Front. Endocrinol. 2024, 15, 1411706. [Google Scholar] [CrossRef]
- Provera, A.; Vecchio, C.; Sheferaw, A.N.; Stoppa, I.; Pantham, D.; Dianzani, U.; Sutti, S. From MASLD to HCC: What’s in the Middle? Heliyon 2024, 10, e35338. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Dong, B. Molecular Mechanisms in MASLD/MASH-Related HCC. Hepatology 2025, 82, 1303–1324. [Google Scholar] [CrossRef]
- Cusi, K.; Abdelmalek, M.F.; Apovian, C.M.; Balapattabi, K.; Bannuru, R.R.; Barb, D.; Bardsley, J.K.; Beverly, E.A.; Corbin, K.D.; ElSayed, N.A.; et al. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in People With Diabetes: The Need for Screening and Early Intervention. A Consensus Report of the American Diabetes Association. Diabetes Care 2025, 48, 1057–1082. [Google Scholar] [CrossRef]
- Dallio, M.; Sangineto, M.; Romeo, M.; Cipullo, M.; Coppola, A.; Mammone, S.; Di Gioia, G.; Masarone, M.; Persico, M.; Serviddio, G.; et al. The Influence of Acute Lifestyle Changes on NAFLD Evolution in a Multicentre Cohort: A Matter of Body Composition. Nutr. Diabetes 2024, 14, 33. [Google Scholar] [CrossRef]
- Penmetsa, R.; Kapil, S.; VanWagner, L.B. Sex and Gender Differences in Metabolic Dysfunction-Associated Liver Disease. Indian J. Gastroenterol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Alpízar Salazar, M.; Olguín Reyes, S.E.; Medina Estévez, A.; Saturno Lobos, J.A.; De Aldecoa Castillo, J.M.; Carrera Aguas, J.C.; Alaniz Monreal, S.; Navarro Rodríguez, J.A.; Alpízar Sánchez, D.M.F. Natural History of Metabolic Dysfunction-Associated Steatotic Liver Disease: From Metabolic Syndrome to Hepatocellular Carcinoma. Medicina 2025, 61, 88. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.-T.; Liao, Q.-Q.; Tian, H.-Y.; Yu, D.-J.; Xie, T.; Sun, X.-L.; Zhou, X.-M.; Han, Y.-X.; Zhao, Y.-J.; El-Kassas, M.; et al. Estrogen: The Forgotten Player in Metaflammation. Front. Pharmacol. 2024, 15, 1478819. [Google Scholar] [CrossRef] [PubMed]
- Dallio, M.; Masarone, M.; Romeo, M.; Tuccillo, C.; Morisco, F.; Persico, M.; Loguercio, C.; Federico, A. PNPLA3, TM6SF2, and MBOAT7 Influence on Nutraceutical Therapy Response for Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Front. Med. 2021, 8, 734847. [Google Scholar] [CrossRef]
- Lin, H.; Wong, G.L.-H.; Whatling, C.; Chan, A.W.-H.; Leung, H.H.-W.; Tse, C.-H.; Shu, S.S.-T.; Chim, A.M.-L.; Lai, J.C.-T.; Yip, T.C.-F.; et al. Association of Genetic Variations with NAFLD in Lean Individuals. Liver Int. 2022, 42, 149–160. [Google Scholar] [CrossRef]
- Sookoian, S.; Pirola, C.J. Genetic Predisposition in Nonalcoholic Fatty Liver Disease. Clin. Mol. Hepatol. 2017, 23, 1–12. [Google Scholar] [CrossRef]






| Criterion | MASLD Diagnosis: Core Requirement + at Least One of the Following (A, B, C) | MAFLD Diagnosis: Core Requirement + at Least One of the Following (A, B, C) |
|---|---|---|
| Core requirement | Hepatic steatosis | Hepatic steatosis |
| (A) BMI threshold (NL patients) | >25 kg/m2 | >25 kg/m2 |
| (B) Type 2 Diabetes Mellitus (T2DM) | Included as a standalone criterion | Included as a standalone criterion |
| (C) Metabolic dysfunction | At least one of the following cardiometabolic (CMRF) criteria | At least two of the following cardiometabolic (CMRF) criteria |
| 1-CMRF: Waist circumference | ≥94 cm (males) ≥80 cm (females) | >102 cm (males) >88 cm (females) |
| 2-CMRF: Blood pressure (BP) | ≥130/85 mmHg or antihypertensive treatment | Systolic BP > 130 mmHg or antihypertensive treatment |
| 3-CMRF: Triglycerides (TGs) | ≥150 mg/dL or lipid-lowering treatment | ≥150 mg/dL or lipid-lowering treatment |
| 4-CMRF: HDL cholesterol | <40 mg/dL (males), <50 mg/dL (females) or treatment | <40 mg/dL (males), <50 mg/dL (females) or treatment |
| 5-CMRF: Hyperglycemia | FPG: 100–125 mg/dL or 2 h post-load 140–199 mg/dL or HbA1c > 5.7% | FPG: 100–125 mg/dL |
| 6-CMRF: Insulin resistance | Not included | HOMA-IR > 2.5 |
| 7-CMRF: Inflammatory marker | Not included | hs-CRP > 2 mg/L |
| Univariate * | Multivariate ** | |||
|---|---|---|---|---|
| Variable | Hazard Ratio [C.I. 95%] | p-Value | Adjusted HR [C.I. 95%] | p-Value |
| Age (years) | 0.683 [0.452–0.995] | 0.231 | - | - |
| BMI (kg/m2) | 0.142 [0.083–0.202] | 0.365 | - | - |
| Baseline LSM | 1.238 [1.196–1.301] | 0.994 | - | - |
| Baseline CAP | 1.102 [0.982–1.331] | 0.081 | - | - |
| Delta CAP | 1.221 [1.884–1.432] | 0.077 | - | - |
| Hypertension | 1.070 [0.756–1.301] | 0.421 | - | - |
| Type 2 diabetes mellitus | 2.572 [2.403–2.933] | <0.0001 | 2.113 [1.981–2.434] | 0.001 |
| Dyslipidemia | 1.683 [1.503–1.921] | 0.002 | - | n.s. |
| Physical exercise | 0.349 [0.231–0.621] | 0.03 | - | n.s. |
| MedDiet compliance | 0.491 [0.361–0.542] | 0.02 | - | n.s. |
| HOMA-IR | 1.721 [1.249–1.993] | <0.0001 | 1.228 [1.152–1.893] | 0.02 |
| High-sensitivity C-reactive protein | 1.543 [1.332–1.759] | <0.0001 | 1.441 [1.232–1.775] | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallio, M.; Romeo, M.; Di Nardo, F.; Napolitano, C.; Vaia, P.; Basile, C.; Coppola, A.; Silvestrin, A.; Senese, G.; Niosi, M.; et al. From “MAFLD” to “MASLD”: Was This Revolution Worth It? A Head-to-Head Comparison of MAFLD and MASLD Criteria in Estimating Liver Disease Progression and Cardiovascular Risk in Real Life. Livers 2025, 5, 58. https://doi.org/10.3390/livers5040058
Dallio M, Romeo M, Di Nardo F, Napolitano C, Vaia P, Basile C, Coppola A, Silvestrin A, Senese G, Niosi M, et al. From “MAFLD” to “MASLD”: Was This Revolution Worth It? A Head-to-Head Comparison of MAFLD and MASLD Criteria in Estimating Liver Disease Progression and Cardiovascular Risk in Real Life. Livers. 2025; 5(4):58. https://doi.org/10.3390/livers5040058
Chicago/Turabian StyleDallio, Marcello, Mario Romeo, Fiammetta Di Nardo, Carmine Napolitano, Paolo Vaia, Claudio Basile, Annachiara Coppola, Alessia Silvestrin, Giusy Senese, Marco Niosi, and et al. 2025. "From “MAFLD” to “MASLD”: Was This Revolution Worth It? A Head-to-Head Comparison of MAFLD and MASLD Criteria in Estimating Liver Disease Progression and Cardiovascular Risk in Real Life" Livers 5, no. 4: 58. https://doi.org/10.3390/livers5040058
APA StyleDallio, M., Romeo, M., Di Nardo, F., Napolitano, C., Vaia, P., Basile, C., Coppola, A., Silvestrin, A., Senese, G., Niosi, M., & Federico, A. (2025). From “MAFLD” to “MASLD”: Was This Revolution Worth It? A Head-to-Head Comparison of MAFLD and MASLD Criteria in Estimating Liver Disease Progression and Cardiovascular Risk in Real Life. Livers, 5(4), 58. https://doi.org/10.3390/livers5040058

