Identifying Subgroup at High Risk of Transarterial Chemoembolization Failure Among Patients with Hepatocellular Carcinoma Awaiting Liver Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Choice of HCC Treatment and TACE Procedure
2.3. Evaluation of Response After TACE
2.4. Histological and Immunohistochemical Analysis of Native Livers
2.5. Post-Transplant Management
2.6. Statistics
3. Results
3.1. Characteristics of the Study Population
3.2. Survival Analysis After First and Second TACE Sessions
3.3. Scoring System for Prediction of Poor Outcome After Second TACE
3.4. Pathological Examination of Native Livers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moeckli, B.; Majno, P.; Orci, L.A.; Peloso, A.; Toso, C. Liver Transplantation Selection and Allocation Criteria for Hepatocellular Carcinoma: A European Perspective. Semin. Liver Dis. 2021, 41, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Vitale, A.; Iesari, S.; Finkenstedt, A.; Mennini, G.; Onali, S.; Hoppe-Lotichius, M.; Manzia, T.M.; Nicolini, D.; Avolio, A.W.; et al. The Intention-to-Treat Effect of Bridging Treatments in the Setting of Milan Criteria in Patients Waiting for Liver Transplantation. Liver Transpl. 2019, 25, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed]
- Affonso, B.B.; Galastri, F.L.; da Motta Leal Filho, J.M.; Nasser, F.; Falsarella, P.M.; Cavalcante, R.N.; de Almeida, M.D.; Felga, G.E.G.; Valle, L.G.M.; Wolosker, N. Long-term outcomes of hepatocellular carcinoma that underwent chemoembolization for bridging or downstaging. World J. Gastroenterol. 2019, 25, 5687–5701. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.Y.; Mehta, N.; Flemming, J.; Dodge, J.; Hameed, B.; Fix, O.; Hirose, R.; Fidelman, N.; Kerlan, R.K., Jr.; Roberts, J.P. Downstaging of hepatocellular cancer before liver transplant: Long-term outcome compared to tumors within Milan criteria. Hepatology 2015, 61, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Wang, X. Techniques and status of hepatic arterial infusion chemotherapy for primary hepatobiliary cancers. Ther. Adv. Med. Oncol. 2024, 16, 17588359231225040. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef]
- Facciorusso, A.; Bhoori, S.; Sposito, C.; Mazzaferro, V. Repeated transarterial chemoembolization: An overfitting effort? J. Hepatol. 2015, 62, 1440–1442. [Google Scholar] [CrossRef]
- Adhoute, X.; Penaranda, G.; Naude, S.; Raoul, J.L.; Perrier, H.; Bayle, O.; Monnet, O.; Beaurain, P.; Bazin, C.; Pol, B.; et al. Retreatment with TACE: The ABCR SCORE, an aid to the decision-making process. J. Hepatol. 2015, 62, 855–862. [Google Scholar] [CrossRef]
- Mehta, N.; Dodge, J.L.; Roberts, J.P.; Yao, F.Y. A novel waitlist dropout score for hepatocellular carcinoma—Identifying a threshold that predicts worse post-transplant survival. J. Hepatol. 2021, 74, 829–837. [Google Scholar] [CrossRef]
- Duvoux, C.; Roudot-Thoraval, F.; Decaens, T.; Pessione, F.; Badran, H.; Piardi, T.; Francoz, C.; Compagnon, P.; Vanlemmens, C.; Dumortier, J.; et al. Liver Transplantation for Hepatocellular Carcinoma: A Model Including α-Fetoprotein Improves the Performance of Milan Criteria. Gastroenterology 2012, 143, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.; Sposito, C.; Zhou, J.; Pinna, A.D.; De Carlis, L.; Fan, J.; Cescon, M.; Di Sandro, S.; Yi-Feng, H.; Lauterio, A.; et al. Metroticket 2.0 Model for Analysis of Competing Risks of Death After Liver Transplantation for Hepatocellular Carcinoma. Gastroenterology 2018, 154, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Heimbach, J.; Harnois, D.M.; Sapisochin, G.; Dodge, J.L.; Lee, D.; Burns, J.M.; Sanchez, W.; Greig, P.D.; Grant, D.R.; et al. Validation of a Risk Estimation of Tumor Recurrence After Transplant (RETREAT) Score for Hepatocellular Carcinoma Recurrence After Liver Transplant. JAMA Oncol. 2017, 3, 493. [Google Scholar] [CrossRef] [PubMed]
- Raoul, J.C.; Gilabert, M.; Piana, G. How to define transarterial chemoembolization failure or refractoriness: A European perspective. Liver Cancer 2014, 3, 119–124. [Google Scholar] [CrossRef]
- Zhong, B.Y.; Wang, W.S.; Zhang, S.; Zhu, H.D.; Zhang, L.; Shen, J.; Zhu, X.L.; Teng, G.J.; Ni, C.F. Re-evaluating Transarterial Chemoembolization Failure/Refractoriness: A Survey by Chinese College of Interventionalists. J. Clin. Transl. Hepatol. 2021, 9, 521–527. [Google Scholar] [CrossRef]
- Choi, J.; Lee, D.; Shim, J.H.; Kim, K.M.; Lim, Y.S.; Lee, Y.S.; Lee, H.C. Evaluation of transarterial chemoembolization refractoriness in patients with hepatocellular carcinoma. PLoS ONE 2020, 15, e0229696. [Google Scholar] [CrossRef]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef]
- Bhangui, P.; Allard, M.A.; Vibert, E.; Cherqui, D.; Pelletier, G.; Cunha, A.S.; Guettier, C.; Vallee, J.C.; Saliba, F.; Bismuth, H.; et al. Salvage Versus Primary Liver Transplantation for Early Hepatocellular Carcinoma: Do Both Strategies Yield Similar Outcomes? Ann. Surg. 2016, 264, 155–163. [Google Scholar] [CrossRef]
- Ramsey, D.E.; Kernagis, L.Y.; Soulen, M.C.; Geschwind, J.F. Chemoembolisation of hepatocellular carcinoma. J. Vasc. Interv. Radiol. 2002, 13, S211–S221. [Google Scholar] [CrossRef]
- Vil, M.; Calderaro, J. Pathologic and molecular features of hepatocellular carcinoma: An update. World J. Hepatol. 2021, 13, 393–410. [Google Scholar]
- Renne, S.L.; Di Tommaso, L. A clinical and pathological update on hepatocellular carcinoma. J. Liver Cancer 2022, 22, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.; von Felden, J.; Casar, C.; Fründt, T.W.; Galaski, J.; Schmidt, C.; Jung, C.; Ittrich, H.; Weidemann, S.A.; Krech, T.; et al. Hepatocellular carcinoma: Intratumoral EpCAM-positive cancer stem cell heterogeneity identifies high-risk tumor subtype. BMC Cancer 2020, 20, 1130. [Google Scholar] [CrossRef] [PubMed]
- Monga, S.P. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 2015, 148, 1294–1310. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Butcher, D.A.; Brandis, K.J.; Wang, H.; Spannenburg, L.; Bridle, K.R.; Crawford, D.H.; Liang, X. Long-term survival and postoperative complications of pre-liver transplantation transarterial chemoembolisation in hepatocellular carcinoma: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2022, 48, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Vitale, A.; Iesari, S.; Finkenstedt, A.; Mennini, G.; Spoletini, G.; Hoppe-Lotichius, M.; Vennarecci, G.; Manzia, T.M.; Nicolini, D.; et al. Intention-to-treat survival benefit of liver transplantation in patients with hepatocellular cancer. Hepatology 2017, 66, 1910–1919. [Google Scholar] [CrossRef]
- Montalti, R.; Mimmo, A.; Rompianesi, G.; Di Gregorio, C.; Serra, V.; Cautero, N.; Ballarin, R.; Spaggiari, M.; Tarantino, G.; D’Amico, G.; et al. Absence of viable HCC in the native liver is an independent protective factor of tumor recurrence after liver transplantation. Transplantation 2014, 97, 220–226. [Google Scholar] [CrossRef]
- Galle, P.R.; Foerster, F.; Kudo, M.; Chan, S.L.; Llovet, J.M.; Qin, S.; Schelman, W.R.; Chintharlapalli, S.; Abada, P.B.; Sherman, M.; et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019, 39, 2214–2229. [Google Scholar] [CrossRef]
- Agopian, V.G.; Harlander-Locke, M.P.; Ruiz, R.M.; Klintmalm, G.B.; Senguttuvan, S.; Florman, S.S.; Haydel, B.; Hoteit, M.; Levine, M.H.; Lee, D.D.; et al. Impact of Pretransplant Bridging Locoregional Therapy for Patients with Hepatocellular Carcinoma Within Milan Criteria Undergoing Liver Transplantation: Analysis of 3601 Patients from the US Multicenter HCC Transplant Consortium. Ann. Surg. 2017, 266, 525–535. [Google Scholar] [CrossRef]
- Costentin, C.; Piñero, F.; Degroote, H.; Notarpaolo, A.; Boin, I.F.; Boudjema, K.; Baccaro, C.; Podestá, L.G.; Bachellier, P.; Ettorre, G.M.; et al. R3-AFP score is a new composite tool to refine prediction of hepatocellular carcinoma recurrence after liver transplantation. JHEP Rep. 2022, 4, 100445. [Google Scholar] [CrossRef]
- Al-Ameri, A.A.M.; Wei, X.; Wen, X.; Wei, Q.; Guo, H.; Zheng, S.; Xu, X. Systematic review: Risk prediction models for recurrence of hepatocellular carcinoma after liver transplantation. Transpl. Int. 2020, 33, 697–712. [Google Scholar] [CrossRef] [PubMed]
- Vibert, E.; Azoulay, D.; Hoti, E.; Iacopinelli, S.; Samuel, D.; Salloum, C.; Lemoine, A.; Bismuth, H.; Castaing, D.; Adam, R. Progression of alphafetoprotein before liver transplantation for hepatocellular carcinoma in cirrhotic patients: A critical factor. Am. J. Transplant. 2010, 10, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Avolio, A.W.; Graziadei, I.; Otto, G.; Rossi, M.; Tisone, G.; Goffette, P.; Vogel, W.; Pitton, M.B.; Lerut, J. Alpha-fetoprotein and modified response evaluation criteria in solid tumors progression after locoregional therapy as predictors of hepatocellular cancer recurrence and death after transplantation. Liver Transpl. 2013, 19, 1108–1118. [Google Scholar] [CrossRef]
- Ravaioli, M.; Odaldi, F.; Cucchetti, A.; Trevisani, F.; Piscaglia, F.; De Pace, V.; Bertuzzo, V.R.; Neri, F.; Golfieri, R.; Cappelli, A.; et al. Long term results of down-staging and liver transplantation for patients with hepatocellular carcinoma beyond the conventional criteria. Sci. Rep. 2019, 9, 3781. [Google Scholar] [CrossRef]
- Otto, G.; Schuchmann, M.; Hoppe-Lotichius, M.; Heise, M.; Weinmann, A.; Hansen, T.; Pitton, M.P. How to decide about liver transplantation in patients with hepatocellular carcinoma: Size and number of lesions or response to TACE? J. Hepatol. 2013, 59, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Kim, S.U.; Kim, K.A.; Chung, Y.E.; Kim, M.J.; Park, M.S.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Kim, M.D.; et al. Complete response at first chemoembolization is still the most robust predictor for favorable outcome in hepatocellular carcinoma. J. Hepatol. 2015, 62, 1304–1310. [Google Scholar] [CrossRef]
- Zheng, L.; Fang, S.; Wu, F.; Chen, W.; Chen, M.; Weng, Q.; Wu, X.; Song, J.; Zhao, Z.; Ji, J. Efficacy and Safety of TACE Combined with Sorafenib Plus Immune Checkpoint Inhibitors for the Treatment of Intermediate and Advanced TACE-Refractory Hepatocellular Carcinoma: A Retrospective Study. Front. Mol. Biosci. 2021, 7, 609322. [Google Scholar] [CrossRef]
- Yang, D.S.; Park, S.; Rim, C.H.; Yoon, W.S.; Shin, I.S.; Lee, H.A. Salvage External Beam Radiotherapy after Incomplete Transarterial Chemoembolization for Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review. Medicina 2021, 57, 1000. [Google Scholar] [CrossRef]
- Huo, Y.R.; Eslick, G.D. Transcatheter Arterial Chemoembolization Plus Radiotherapy Compared with Chemoembolization Alone for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2015, 1, 756. [Google Scholar] [CrossRef]
- Ko, C.J.; Li, C.J.; Wu, M.Y.; Chu, P.Y. Overexpression of epithelial cell adhesion molecule as a predictor of poor outcome in patients with hepatocellular carcinoma. Exp. Ther. Med. 2018, 16, 4810–4816. [Google Scholar] [CrossRef]
- Ye, F.; Jing, Y.Y.; Guo, S.W.; Yu, G.F.; Fan, Q.M.; Qu, F.F.; Gao, L.; Yang, Y.; Wu, D.; Meng, Y.; et al. Proliferative ductular reactions correlate with hepatic progenitor cell and predict recurrence in HCC patients after curative resection. Cell Biosci. 2014, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- Zen, C.; Zen, Y.; Mitry, R.R.; Corbeil, D.; Karbanová, J.; O’Grady, J.; Karani, J.; Kane, P.; Heaton, N.; Portmann, B.C.; et al. Mixed phenotype hepatocellular carcinoma after transarterial chemoembolization and liver transplantation. Liver Transpl. 2011, 17, 943–954. [Google Scholar] [CrossRef] [PubMed]
Variables | Study Population |
---|---|
N = 173 | |
Age | 61 (33–74) |
Male/Female | 148 (85.5)/25 (14.5) |
Ethnicity | |
White | 144 (83.2) |
African-American | 28 (16.2) |
Others | 1 (0.6) |
Cause of liver disease | |
Virus | 66 (38.2) |
Alcohol | 70 (40.5) |
NASH | 22 (12.7) |
Others | 15 (8.7) |
Child-Pugh score A/B | 127 (73.4)/46 (26.6) |
Previous hepatic resection | 44 (25.4) |
Before TACE 1 | |
Initial MELD score | 8.00 (6.00–20.00) |
Initial AFP, ng/mL | 9 (2–780) |
Number of tumors | 2 (1–6) |
Maximum tumor diameter, mm | 23 (7–60) |
Milan criteria inside/outside | 133 (66.9)/40 (23.1) |
AFP score 0/1/2 | 87 (51)/50 (28.9)/36 (20.1) |
After TACE 1 | |
Residual tumor activity on imaging after TACE 1 | 129 (74.6) |
Number of patients with a second TACE 2 | 118 (68.2) |
Residual tumor activity on imaging after TACE 2 | 83 (70%) |
Outcomes at last follow-up | |
Transplanted | 128 (74.0) |
Still on waiting list | 6 (3.5) |
Delisted | 39 (22.5) |
Delisted for tumor progression | 32 (18.5) |
Transplanted group–explanted livers | N = 128 |
Interval between TACE 1 - LT, months | 12 (1–67) |
Complete pathological response | 22 (17.2) |
Other than HCC (IHCCA or HCC-IHCCA) | 13 (10.1) |
Microvascular invasion | 47 (36.7) |
Maximun tumor size, mm | 20 (8–75) |
Number of tumors | 2 (0–37) |
Differentiation grade | |
Unknown | 1 (1.0) |
Well | 22 (22.7) |
Moderate | 48 (49.5) |
Poor | 26 (26.8) |
Overall Survival | TLSF-Free Survival | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | Events (n) | HR | 95% CI | p | Events (n) | HR | 95% CI | p | |
Sex | |||||||||
Male | 148 | 57 | 1.000 | 63 | 1.000 | ||||
Female | 25 | 9 | 0.877 | 0.434–1.772 | 0.714 | 10 | 0.861 | 0.442–1.679 | 0.661 |
Age, yrs | 173 | 1.004 | 0.969–1.041 | 0.812 | 0.996 | 0.964–1.03 | 0.821 | ||
Underlying disease | |||||||||
Virus | 66 | 20 | 1.000 | 24 | 1.000 | ||||
Alcohol | 70 | 32 | 1.816 | 1.038–3.177 | 0.036 | 33 | 1.415 | 0.836–2.395 | 0.196 |
NASH | 22 | 7 | 1.139 | 0.481–2.697 | 0.767 | 7 | 0.867 | 0.374–2.014 | 0.741 |
Others | 15 | 7 | 2.047 | 0.863–4.852 | 0.104 | 9 | 1.814 | 0.842–3.911 | 0.128 |
MELD score before TACE1 | 173 | 1.008 | 0.93–1.092 | 0.853 | 1.005 | 0.932–1.084 | 0.893 | ||
Child-Pugh | |||||||||
Child A | 127 | 47 | 1.000 | 51 | 1.000 | ||||
Child B | 46 | 19 | 1.192 | 0.699–2.033 | 0.518 | 22 | 1.259 | 0.764–2.077 | 0.366 |
Previous liver resection | |||||||||
No | 129 | 50 | 1.000 | 54 | 1.000 | ||||
Yes | 44 | 16 | 0.989 | 0.563–1.739 | 0.970 | 19 | 1.189 | 0.704–2.009 | 0.518 |
AFP score | |||||||||
0 | 104 | 39 | 1.000 | 43 | 1.000 | ||||
1 | 35 | 16 | 1.285 | 0.718–2.301 | 0.398 | 18 | 1.335 | 0.77–2.315 | 0.304 |
2 | 34 | 11 | 0.945 | 0.483–1.85 | 0.870 | 12 | 0.884 | 0.465–1.677 | 0.705 |
AFP > 15 ng/mL | |||||||||
No | 117 | 38 | 1.000 | 43 | 1.000 | ||||
Yes | 54 | 28 | 1.782 | 1.091–2.911 | 0.021 | 30 | 1.954 | 1.224–3.12 | 0.005 |
Number of Tumors on imaging | 173 | 0.933 | 0.769–1.131 | 0.479 | 0.937 | 0.78–1.125 | 0.486 | ||
Max tumor size on imaging, mm | 173 | 1.009 | 0.987–1.031 | 0.445 | 1.010 | 0.989–1.032 | 0.343 | ||
Milan criteria | |||||||||
Inside | 133 | 52 | 1.000 | 57 | 1.000 | ||||
Outside | 40 | 14 | 0.914 | 0.506–1.652 | 0.766 | 16 | 0.909 | 0.521–1.583 | 0.735 |
Tumor activity on imaging after TACE1 | |||||||||
No | 44 | 14 | 1.000 | 15 | 1.000 | ||||
Yes | 129 | 52 | 1.316 | 0.729–2.376 | 0.362 | 58 | 1.440 | 0.816–2.541 | 0.208 |
Overall Survival | TLSF-Free Survival | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | Events (n) | HR | 95% CI | p | Events (n) | HR | 95% CI | p | |
Sex | |||||||||
Male | 102 | 40 | 1.000 | 44 | 1.000 | ||||
Female | 16 | 6 | 0.857 | 0.363–2.022 | 0.724 | 7 | 0.934 | 0.420–2.076 | 0.867 |
Age, yrs | 118 | 0.994 | 0.952–1.038 | 0.793 | 0.993 | 0.952–1.035 | 0.725 | ||
Underlying Disease | |||||||||
Virus | 43 | 15 | 1.000 | 17 | 1.000 | ||||
Alcohol | 47 | 21 | 1.504 | 0.775–2.921 | 0.228 | 22 | 1.344 | 0.713–2.534 | 0.361 |
NASH | 16 | 5 | 0.948 | 0.344–2.613 | 0.917 | 5 | 0.796 | 0.291–2.148 | 0.645 |
Others | 12 | 5 | 1,360 | 0.493–3.753 | 0.553 | 7 | 1.690 | 0.698–4.091 | 0.245 |
MELD score before TACE1 | 118 | 1.012 | 0.923–1.109 | 0.803 | 1.012 | 0.928–1.103 | 0.793 | ||
Child_Pugh | |||||||||
Child A | 89 | 34 | 1.000 | 37 | 1.000 | ||||
Child B | 29 | 12 | 1.182 | 0.610–2.290 | 0.620 | 14 | 1.329 | 0.716–2.467 | 0.368 |
Previous liver resection | |||||||||
No | 88 | 34 | 1.000 | 37 | 1.000 | ||||
Yes | 30 | 12 | 1.150 | 0.594–2.227 | 0.678 | 14 | 1.236 | 0.667–2.290 | 0.500 |
AFP score | |||||||||
0 | 66 | 26 | 1.000 | 29 | 1.000 | ||||
1 | 26 | 13 | 1.357 | 0.697–2.642 | 0.370 | 14 | 1.329 | 0.702–2.517 | 0.383 |
2 | 26 | 7 | 0.718 | 0.311–1.659 | 0.438 | 8 | 0.710 | 0.324–1.557 | 0.393 |
AFP > 15 ng/mL | |||||||||
No | 82 | 26 | 1.000 | 30 | 1.000 | ||||
Yes | 34 | 20 | 2.477 | 1.371–4.476 | 0.003 | 21 | 2.409 | 1.369–4.238 | 0.002 |
Number of Tumor on imaging | 118 | 0.847 | 0.671–1.068 | 0.160 | 0.857 | 0.687–1.069 | 0.171 | ||
Max tumor size on imaging, mm | 118 | 1.002 | 0.975–1.030 | 0.891 | 1.003 | 0.977–1.029 | 0.826 | ||
Milan criteria | |||||||||
Inside | 83 | 35 | 1.000 | 38 | 1.000 | ||||
Outside | 35 | 11 | 0.714 | 0.362–1.410 | 0.332 | 13 | 0.757 | 0.403–1.425 | 0.389 |
Tumor activity on imaging after TACE2 | |||||||||
No | 35 | 6 | 1.000 | 8 | 1.000 | ||||
Yes | 83 | 40 | 3.306 | 1.399–7.810 | 0.006 | 43 | 2.806 | 1.318–5.976 | 0.007 |
Multivariate analysis | |||||||||
Overall survival | TLSF -free survival | ||||||||
HR | 95% CI | p | HR | 95% CI | p | ||||
AFP > 15 ng/mL | 2.262 | 1.241–4.113 | 0.007 | 2.208 | 1.250–3.902 | 0.006 | |||
Uncomplete response after 2nd TACE | 3.213 | 1.353–7.628 | 0.008 | 2.719 | 1.271–5.815 | 0.009 |
Overall Survival | TLSF -Free Survival | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
AFP > 15 ng/mL | 2.2621 | 1.241–4.113 | 0.007 | 2.208 | 1.250–3.902 | 0.006 |
Uncomplete response after 2nd TACE | 3.2130 | 1.353–7.628 | 0.008 | 2.719 | 1.271 - 5.815 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poli, E.; Allard, M.-A.; Laurent-Bellue, A.; Lewin, M.; Guettier, C.; Azoulay, D.; Coilly, A.; Dos Santos, A.; Faivre, J.; Vibert, E.; et al. Identifying Subgroup at High Risk of Transarterial Chemoembolization Failure Among Patients with Hepatocellular Carcinoma Awaiting Liver Transplantation. Livers 2025, 5, 9. https://doi.org/10.3390/livers5010009
Poli E, Allard M-A, Laurent-Bellue A, Lewin M, Guettier C, Azoulay D, Coilly A, Dos Santos A, Faivre J, Vibert E, et al. Identifying Subgroup at High Risk of Transarterial Chemoembolization Failure Among Patients with Hepatocellular Carcinoma Awaiting Liver Transplantation. Livers. 2025; 5(1):9. https://doi.org/10.3390/livers5010009
Chicago/Turabian StylePoli, Edoardo, Marc-Antoine Allard, Astrid Laurent-Bellue, Maïté Lewin, Catherine Guettier, Daniel Azoulay, Audrey Coilly, Alexandre Dos Santos, Jamila Faivre, Eric Vibert, and et al. 2025. "Identifying Subgroup at High Risk of Transarterial Chemoembolization Failure Among Patients with Hepatocellular Carcinoma Awaiting Liver Transplantation" Livers 5, no. 1: 9. https://doi.org/10.3390/livers5010009
APA StylePoli, E., Allard, M.-A., Laurent-Bellue, A., Lewin, M., Guettier, C., Azoulay, D., Coilly, A., Dos Santos, A., Faivre, J., Vibert, E., Pascale, A., Prud’homme, C., Sa Cunha, A., Saliba, F., Duclos-Vallée, J. C., Adam, R., Samuel, D., Cherqui, D., & Rosmorduc, O. (2025). Identifying Subgroup at High Risk of Transarterial Chemoembolization Failure Among Patients with Hepatocellular Carcinoma Awaiting Liver Transplantation. Livers, 5(1), 9. https://doi.org/10.3390/livers5010009