Impact of Hypoalbuminemia on Outcomes Following Hepatic Resection: A NSQIP Retrospective Cohort Analysis of 26,394 Patients
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Study Design, Patient Population, and Variable Definitions
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Association of HA on Post Liver Resection Outcomes
3.3. Multivariable Model Assessing Impact of HA on 30-Day Serious Complication Rate and Mortality
3.4. Optimal Albumin Cut-Off Values for Predicting Serious Complications and Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shubert, C.R.; Habermann, E.B.; Truty, M.J.; Thomsen, K.M.; Kendrick, M.L.; Nagorney, D.M. Defining Perioperative Risk after Hepatectomy Based on Diagnosis and Extent of Resection. J. Gastrointest. Surg. 2014, 18, 1917–1928. [Google Scholar] [CrossRef]
- Lei, J.; Huang, J.; Yang, X.; Zhang, Y.; Yao, K. Minimally invasive surgery versus open hepatectomy for hepatolithiasis: A systematic review and meta analysis. Int. J. Surg. 2018, 51, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Ciria, R.; Cherqui, D.; Geller, D.A.; Briceno, J.; Wakabayashi, G. Comparative Short-term Benefits of Laparoscopic Liver Resection: 9000 Cases and Climbing. Ann. Surg. 2016, 263, 761–777. [Google Scholar] [CrossRef] [PubMed]
- Melloul, E.; Hübner, M.; Scott, M.; Snowden, C.; Prentis, J.; Dejong, C.H.C.; Garden, O.J.; Farges, O.; Kokudo, N.; Vauthey, J.; et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations. World J. Surg. 2016, 40, 2425–2440. [Google Scholar] [CrossRef]
- Okinaga, H.; Yasunaga, H.; Hasegawa, K.; Fushimi, K.; Kokudo, N. Short-Term Outcomes following Hepatectomy in Elderly Patients with Hepatocellular Carcinoma: An Analysis of 10,805 Septuagenarians and 2381 Octo- and Nonagenarians in Japan. Liver Cancer 2018, 7, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Yokoo, H.; Miyata, H.; Konno, H.; Taketomi, A.; Kakisaka, T.; Hirahara, N.; Wakabayashi, G.; Gotoh, M.; Mori, M. Models predicting the risks of six life-threatening morbidities and bile leakage in 14,970 hepatectomy patients registered in the National Clinical Database of Japan. Medicine 2016, 95, e5466. [Google Scholar] [CrossRef]
- Longchamp, G.; Labgaa, I.; Demartines, N.; Joliat, G.-R. Predictors of complications after liver surgery: A systematic review of the literature. HPB 2021, 23, 645–655. [Google Scholar] [CrossRef]
- Silva-Fhon, J.R.; Rojas-Huayta, V.M.; Aparco-Balboa, J.P.; Cespedes-Panduro, B.; Partezani-Rodriques, R.A. Sarcopenia and blood albumin: A systematic review with meta-analysis. Biomedica 2021, 41, 590–603. [Google Scholar] [CrossRef]
- Moman, R.N.; Gupta, N.; Varacallo, M. Physiology, Albumin; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN J. Parenter. Enteral. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef]
- Eckart, A.; Struja, T.; Kutz, A.; Baumgartner, A.; Baumgartner, T.; Zurfluh, S.; Neeser, O.; Huber, A.; Stanga, Z.; Mueller, B.; et al. Relationship of Nutritional Status, Inflammation, and Serum Albumin Levels During Acute Illness: A Prospective Study. Am. J. Med. 2020, 133, 713–722.e7. [Google Scholar] [CrossRef]
- Christina, N.M.; Tjahyanto, T.; Lie, J.G.; Santoso, T.A.; Albertus, H.; Octavianus, D.; Putri, D.A.U.I.; Andrew, J.; Jatinugroho, Y.D.; Shiady, C.; et al. Hypoalbuminemia and colorectal cancer patients: Any correlation?: A systematic review and meta-analysis. Medicine 2023, 102, e32938. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.I.; Guerra, V. Serum Albumin Levels in Relation to Tumor Parameters in Hepatocellular Carcinoma Patients. Int. J. Biol. Markers 2017, 32, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Fattovich, G.; Stroffolini, T.; Zagni, I.; Donato, F. Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology 2004, 127 (Suppl. S1), S35–S50. [Google Scholar] [CrossRef]
- Ablett, A.; McCarthy, K.; Carter, B.; Pearce, L.; Stechman, M.; Moug, S.; Ceelen, W.; Hewitt, J.; Myint, P. A practical risk scale for predicting morbidity and mortality in the emergency general surgical setting: A prospective multi-center study. Int. J. Surg. 2018, 60, 236–244. [Google Scholar] [CrossRef]
- Uppal, S.; Al-Niaimi, A.; Rice, L.W.; Rose, S.L.; Kushner, D.M.; Spencer, R.J.; Hartenbach, E. Preoperative hypoalbuminemia is an independent predictor of poor perioperative outcomes in women undergoing open surgery for gynecologic malignancies. Gynecol. Oncol. 2013, 131, 416–422. [Google Scholar] [CrossRef]
- Engelman, D.T.; Adams, D.H.; Byrne, J.G.; Aranki, S.F.; Collins, J.J., Jr.; Couper, G.S.; Allred, E.N.; Cohn, L.H.; Rizzo, R.J. Impact of body mass index and albumin on morbidity and mortality after cardiac surgery. J. Thorac. Cardiovasc. Surg. 1999, 118, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Larsen, P.B.; Liest, S.; Hannani, D.; Jørgensen, H.L.; Sørensen, L.T.; Jørgensen, L.N. Preoperative Hypoalbuminemia Predicts Early Mortality Following Open Abdominal Surgery in Patients Above 60 Years of Age. Scand. J. Surg. 2021, 110, 29–36. [Google Scholar] [CrossRef]
- Jarnagin, W.R.; Gonen, M.; Fong, Y.; DeMatteo, R.P.; Ben-Porat, L.; Little, S.; Corvera, C.; Weber, S.; Blumgart, L.H. Improvement in perioperative outcome after hepatic resection: Analysis of 1803 consecutive cases over the past decade. Ann. Surg. 2002, 236, 397–406; discussion 406–407. [Google Scholar]
- Kesmodel, S.B.; Ellis, L.M.; Lin, E.; Chang, G.J.; Abdalla, E.K.; Kopetz, S.; Vauthey, J.-N.; Rodriguez-Bigas, M.A.; Curley, S.A.; Feig, B.W. Preoperative Bevacizumab Does Not Significantly Increase Postoperative Complication Rates in Patients Undergoing Hepatic Surgery for Colorectal Cancer Liver Metastases. J. Clin. Oncol. 2008, 26, 5254–5260. [Google Scholar] [CrossRef] [PubMed]
- Aloia, T.A.; Fahy, B.N.; Fischer, C.P.; Jones, S.L.; Duchini, A.; Galati, J.; Gaber, A.O.; Ghobrial, R.M.; Bass, B.L. Predicting poor outcome following hepatectomy: Analysis of 2313 hepatectomies in the NSQIP database. HPB 2009, 11, 510–515. [Google Scholar] [CrossRef]
- Virani, S.; Michaelson, J.S.; Hutter, M.M.; Lancaster, R.T.; Warshaw, A.L.; Henderson, W.G.; Khuri, S.F.; Tanabe, K.K. Morbidity and Mortality after Liver Resection: Results of the Patient Safety in Surgery Study. J. Am. Coll. Surg. 2007, 204, 1284–1292. [Google Scholar] [CrossRef]
- Ma, K.W.; Cheung, T.T.; She, W.H.; Chok, K.S.; Chan, A.C.Y.; Dai, W.C.; Lo, C.M. Risk prediction model for major complication after hepatectomy for malignant tumour—A validated scoring system from a university center. Surg. Oncol. 2017, 26, 446–452. [Google Scholar] [CrossRef] [PubMed]
- User Guide for the 2021 ACS NSQIP Participant Use Data File (PUF). 2022. Available online: https://www.facs.org/media/1nrdyqmr/nsqip_puf_userguide_2022.pdf (accessed on 1 July 2024).
- Li, J.-D.; Xu, X.-F.; Han, J.; Wu, H.; Xing, H.; Li, C.; Yu, J.-J.; Zhou, Y.-H.; Gu, W.-M.; Wang, H.; et al. Preoperative prealbumin level as an independent predictor of long-term prognosis after liver resection for hepatocellular carcinoma: A multi-institutional study. HPB 2019, 21, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, A.D.; Spies, C.; Schulte, E.; Jara, M.; von Haefen, C.; Mertens, M.; Süß, L.A.; Winkler, N.; Lachmann, G.; Lachmann, C. Preoperative hypoalbuminaemia in liver surgery: An observational study at a university medical centre. BMJ Open 2023, 13, e068405. [Google Scholar] [CrossRef]
- Kobayashi, T.; Teruya, M.; Kishiki, T.; Endo, D.; Takenaka, Y.; Miki, K.; Kobayashi, K.; Morita, K. Elevated C-Reactive Protein and Hypoalbuminemia Measured before Resection of Colorectal Liver Metastases Predict Postoperative Survival. Dig. Surg. 2010, 27, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Curran, S.; Apruzzese, P.; Kendall, M.C.; De Oliveira, G. The impact of hypoalbuminemia on postoperative outcomes after outpatient surgery: A national analysis of the NSQIP database. Can. J. Anaesth. 2022, 69, 1099–1106. [Google Scholar] [CrossRef]
- Sawchuk, T.; Verhoeff, K.; Jogiat, U.; Mocanu, V.; Shapiro, A.M.J.; Anderson, B.; Dajani, K.; Bigam, D.L. Impact of hypoalbuminemia on outcomes following pancreaticoduodenectomy: A NSQIP retrospective cohort analysis of 25,848 patients. Surg. Endosc. 2024, 38, 5030–5040. [Google Scholar] [CrossRef]
- Liu, X. Classification accuracy and cut point selection. Stat. Med. 2012, 31, 2676–2686. [Google Scholar] [CrossRef]
- Xu, R.; Hao, M.; Zhou, W.; Liu, M.; Wei, Y.; Xu, J.; Zhang, W. Preoperative hypoalbuminemia in patients undergoing cardiac surgery: A meta-analysis. Surg. Today 2023, 53, 861–872. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Huang, S.; Pan, Y. Association between hypoalbuminemia and complications after degenerative and deformity-correcting spinal surgeries: A systematic review and meta-analysis. Front. Surg. 2022, 9, 1030539. [Google Scholar] [CrossRef]
- Surgeons ACO. ACS NSQIP Surgical Risk Calculator. 2024. Available online: https://riskcalculator.facs.org/RiskCalculator/index.jsp (accessed on 1 July 2024).
- Lee, E.-H.; Kim, W.-J.; Kim, J.-Y.; Chin, J.-H.; Choi, D.-K.; Sim, J.-Y.; Choo, S.-J.; Chung, C.-H.; Lee, J.-W.; Choi, I.-C. Effect of Exogenous Albumin on the Incidence of Postoperative Acute Kidney Injury in Patients Undergoing Off-pump Coronary Artery Bypass Surgery with a Preoperative Albumin Level of Less Than 4.0 g/dl. Anesthesiology 2016, 124, 1001–1011. [Google Scholar] [CrossRef]
- Schaller, S.J.; Fuest, K.; Ulm, B.; Schmid, S.; Bubb, C.; Eckstein, H.-H.; von Eisenhart–Rothe, R.; Friess, H.; Kirchhoff, C.; Luppa, P.; et al. Goal-directed Perioperative Albumin Substitution Versus Standard of Care to Reduce Postoperative Complications - A Randomized Clinical Trial (SuperAdd Trial). Ann. Surg. 2024, 279, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Jie, B.; Jiang, Z.-M.; Nolan, M.T.; Zhu, S.-N.; Yu, K.; Kondrup, J. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition 2012, 28, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Bojesen, R.D.; Grube, C.; Buzquurz, F.; Miedzianogora, R.E.G.; Eriksen, J.R.; Gögenur, I. Effect of modifying high-risk factors and prehabilitation on the outcomes of colorectal cancer surgery: Controlled before and after study. BJS Open 2022, 6, zrac029. [Google Scholar] [CrossRef]
- Ferrandis, C.; Souche, R.; Bardol, T.; Boivineau, L.; Fabre, J.-M.; Altwegg, R.; Guillon, F. Personalized pre-habilitation reduces anastomotic complications compared to up front surgery before ileocolic resection in high-risk patients with Crohn’s disease: A single center retrospective study. Int. J. Surg. 2022, 105, 106815. [Google Scholar] [CrossRef]
- Narasimhulu, D.M.; Kumar, A.; Weaver, A.L.; McGree, M.E.; Langstraat, C.L.; Cliby, W.A. Using an evidence-based triage algorithm to reduce 90-day mortality after primary debulking surgery for advanced epithelial ovarian cancer. Gynecol. Oncol. 2019, 155, 58–62. [Google Scholar] [CrossRef]
- Deprato, A.; Verhoeff, K.; Purich, K.; Kung, J.Y.; Bigam, D.L.; Dajani, K.Z. Surgical outcomes and quality of life following exercise-based prehabilitation for hepato-pancreatico-biliary surgery: A systematic review and meta-analysis. Hepatobiliary Pancreat. Dis. Int. 2022, 21, 207–217. [Google Scholar] [CrossRef]
- Hijazi, Y.; Gondal, U.; Aziz, O. A systematic review of prehabilitation programs in abdominal cancer surgery. Int. J. Surg. 2017, 39, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Dagorno, C.; Sommacale, D.; Laurent, A.; Attias, A.; Mongardon, N.; Levesque, E.; Langeron, O.; Rhaiem, R.; Leroy, V.; Amaddeo, G.; et al. Prehabilitation in hepato-pancreato-biliary surgery: A systematic review and meta-analysis. A necessary step forward evidence-based sample size calculation for future trials. J. Visc. Surg. 2022, 159, 362–372. [Google Scholar] [CrossRef]
- Gillis, C.; Buhler, K.; Bresee, L.; Carli, F.; Gramlich, L.; Culos-Reed, N.; Sajobi, T.T.; Fenton, T.R. Effects of Nutritional Prehabilitation, With and Without Exercise, on Outcomes of Patients Who Undergo Colorectal Surgery: A Systematic Review and Meta-analysis. Gastroenterology 2018, 155, 391–410.e4. [Google Scholar] [CrossRef]
- Jeon, D.; Cha, H.R.; Chung, S.W.; Choi, J.; Lee, D.; Shim, J.H.; Kim, K.M.; Lim, Y.-S.; Lee, H.C.; Lee, S.W.; et al. Association between statin use and the prognosis of hepatocellular carcinoma after resection: A nationwide cohort study. eClinicalMedicine 2023, 65, 102300. [Google Scholar] [CrossRef]
Normal Serum Albumin (n = 25,047) | Hypoalbuminemia (n = 1347) | p-Value | |
---|---|---|---|
Patient factors | |||
Female sex | 12,199 (48.7%) | 657 (48.8) | 0.960 |
Age | 59.8 ± 13.6 | 62.3 ± 14.1 | <0.001 |
BMI | 28.8 ± 6.3 | 27.8 ± 7.1 | <0.001 |
ASA class | <0.001 | ||
1 | 217 (0.87) | 7 (0.52) | |
2 | 5654 (22.6) | 172 (12.9) | |
3 | 17,499 (70.0) | 983 (73.6) | |
4 | 1632 (6.5) | 174 (13.0) | |
5 | 9 (0.04) | 10 (0.7) | |
None assigned | 36 (0.1) | 1 (0.1) | |
Functional status | <0.001 | ||
Partially dependent | 190 (0.8) | 38 (2.8) | |
Totally dependent | 7 (0.03) | 6 (0.5) | |
Unknown | 61 (0.2) | 5 (0.4) | |
Comorbidities | |||
COPD | 890 (3.6) | 63 (4.7) | 0.031 |
CHF | 161 (0.6) | 24 (1.8) | <0.001 |
Hypertension | 11,996 (47.9) | 651 (48.3) | 0.755 |
Diabetes | <0.001 | ||
Non-insulin dependent | 3160 (12.6) | 164 (12.2) | |
Insulin-dependent | 1589 (6.3) | 131 (10.5) | |
Smoker | 3531 (14.1) | 234 (17.4) | 0.001 |
Dialysis | 92 (0.4) | 21 (1.6) | <0.001 |
Steroid use | 947 (3.8) | 79 (5.9) | <0.001 |
Bleeding disorder | 841 (3.4) | 102 (7.6) | <0.001 |
SIRS/sepsis/septic shock | 240 (1.0) | 191 (14.2%) | <0.001 |
Preoperative factors | |||
Thrombocytopenia | 592 (2.4) | 61 (4.5) | <0.001 |
Weight loss | 627 (3.2) | 145 (13.0) | <0.001 |
Disease factors | |||
Invasion | |||
Yes | 1095 (10.1%) | 142 (20.5%) | <0.001 |
Liver texture | |||
Cirrhotic | 1941 (9.5%) | 113 (10.5%) | <0.001 |
Congested | 377 (1.9%) | 38 (3.5%) | |
Fatty | 2801 (13.7%) | 97 (9.0%) | |
Fibrosis | 707 (3.5%) | 48 (4.5%) | |
Normal | 5564 (27.3%) | 240 (22.3%) | |
Not documented | 9012 (44.2%) | 541 (50.2%) | |
Tumor size | |||
No lesion | 13,100 (52.3%) | 885 (65.7%) | <0.001 |
<2 cm | 2852 (11.4%) | 80 (5.9%) | <0.001 |
2–5 cm | 5290 (21.1%) | 148 (11.0) | <0.001 |
>5 cm | 3804 (15.2%) | 232 (17.4%) | <0.001 |
Invasive disease (≥T3) | 1095 (10.1) | 142 (20.5) | <0.001 |
Neoadjuvant therapy | 6357 (31.3) | 272 (25.3) | <0.001 |
Operative factors | |||
MIS | 4675 (18.7) | 166 (12.3) | <0.001 |
Open | 20,372 (81.3) | 1181 (87.7) |
Normal Serum Albumin (n = 25,047) | Hypoalbuminemia (n = 1347) | p-Value | |
---|---|---|---|
Operative outcomes | |||
Major liver resection | |||
Yes | 17,559 (70.1%) | 794 (59.0%) | <0.001 |
No | 7488 (29.9%) | 553 (41.1%) | <0.001 |
Operative time (min) | 241.5 ± 124.9 | 263.1 ± 148.9 | <0.001 |
Length of stay (d) | 5.9 ± 4.8 | 11.1 ± 9.2 | <0.001 |
Hospital stay >30d | 246 (1.0) | 62 (4.6) | <0.001 |
Readmission | 2386 (9.5) | 230 (17.1) | <0.001 |
Unplanned intubation | 455 (1.8) | 68 (5.1) | <0.001 |
Reoperation | 736 (2.9) | 91 (6.8) | <0.001 |
Wound and infection complications | |||
Superficial surgical site infection | 728 (2.9) | 57 (4.23) | 0.005 |
Deep surgical site infection | 76 (0.3) | 5 (0.4) | 0.661 |
Organ space surgical site infection | 1756 (7.0) | 250 (18.6) | <0.001 |
Wound disruption | 131 (0.5) | 9 (0.7) | 0.048 |
Pneumonia | 689 (2.8) | 79 (5.86) | <0.001 |
Urinary tract infection | 426 (1.7) | 20 (1.5) | 0.05 |
Sepsis | 797 (3.2) | 147 (10.9) | <0.001 |
Septic shock | 353 (1.4) | 70 (5.2) | <0.001 |
Other complications | |||
Pulmonary embolism | 247 (1.0) | 29 (2.2) | <0.001 |
Deep vein thrombosis, thrombophlebitis | 358 (1.4) | 51 (3.8) | <0.001 |
Bleeding requiring transfusion | 3965 (15.8) | 560 (41.6) | <0.001 |
Acute renal failure | 207 (0.83) | 23 (2.6) | <0.001 |
Stroke | 42 (0.2) | 5 (0.4) | 0.084 |
Cardiac arrest | 163 (0.7) | 25 (1.9) | <0.001 |
Myocardial infarction | 203 (0.8) | 13 (1.0) | 0.539 |
Liver failure | 797 (3.9) | 96 (8.9) | <0.001 |
Bile leak | 1330 (6.6) | 164 (15.5) | <0.001 |
Serious complication | 7235 (28.9) | 830 (61.6) | <0.001 |
Death | 320 (1.28) | 74 (5.49) | <0.001 |
OR Complications | p-Value | OR Mortality | p-Value | |
---|---|---|---|---|
HA | 2.93 (2.36–3.65) | <0.001 | 2.15 (1.38–3.36) | 0.001 |
Age | 1.00 (1.00–1.01) | 0.148 | 1.05 (1.03–1.07) | <0.001 |
BMI | 1.00 (0.99–1.01) | 0.760 | 0.98 (0.95–1.01) | 0.190 |
Female sex | 0.99 (0.89–1.11) | 0.894 | 0.72 (0.52–1.00) | 0.051 |
COPD | 1.06 (0.85–2.29) | 0.599 | 1.33 (0.76–2.32)) | 0.319 |
CHF | 1.40 (0.81–2.39) | 0.224 | 2.89 (1.25–6.70) | 0.013 |
Hypertension | 1.07 (0.95–1.21) | 0.251 | 0.98 (0.69–1.39) | 0.907 |
Diabetes | ||||
Non-insulin dependent | 1.20 (1.04–1.39) | 0.011 | 1.38 (0.94–2.02) | 0.104 |
Insulin dependent | 1.34 (1.11–1.61) | 0.002 | 2.45 (1.61–3.73) | <0.001 |
Smoker | 1.00 (0.87–1.16) | 0.954 | 1.02 0.76–1.55) | 0.921 |
Dialysis | 1.49 (0.74–2.98) | 0.264 | 0.44 (0.05–1.55) | 0.443 |
Steroid use | 0.94 (0.71–1.24) | 0.649 | 0.79 (0.34–1.83) | 0.587 |
Bleeding disorder | 1.16 (0.89–1.51) | 0.268 | 1.73 (1.00–3.00) | 0.052 |
Preoperative sepsis | 3.30 (1.93–5.66) | <0.001 | 3.35 (1.51–7.46) | 0.003 |
Functional status | 1.95 (1.22–3.13 | 0.005 | 2.96 (1.44–6.07) | 0.003 |
Neoadjuvant | 2.11 (1.81–2.45) | <0.001 | 1.41 (0.95–2.10) | 0.092 |
MIS (vs. open) | 0.39 (0.33–0.45) | <0.001 | 0.46 (0.29–0.73) | 0.001 |
Invasive (≥T3) | 1.56 (1.37–1.78) | <0.001 | 1.08 (0.75–1.55) | 0.684 |
OR Complications | p-Value | OR Mortality | p-Value | |
---|---|---|---|---|
HA | 2.87 (2.50–3.28) | <0.001 | 2.29 (1.64–3.21) | <0.001 |
Age | 1.00 (1.00–1.01) | 0.004 | 1.04 (1.03–1.06) | <0.001 |
BMI | 0.99 (0.99–1.00) | 0.049 | 0.99 (0.97–1.01) | 0.483 |
Female sex | 0.98 (0.92–1.04) | 0.479 | 0.86 (0.68–1.09) | 0.212 |
COPD | 1.12 (0.95–1.32) | 0.165 | 1.36 (0.88–2.13) | 0.165 |
CHF | 1.35 (0.94–1.94) | 0.110 | 2.77 (1.40–5.49) | 0.004 |
Hypertension | 1.06 (0.99–1.14) | 0.101 | 1.31 (1.00–1.71) | 0.048 |
Diabetes | ||||
Non-insulin dependent | 1.16 (1.0–1.27) | 0.003 | 1.18 (0.87–1.61) | 0.293 |
Insulin dependent | 1.37 (1.21–1.55) | <0.001 | 1.61 (1.12–2.30) | 0.009 |
Smoker | 1.08 (0.99–1.18) | 0.096 | 1.17 (0.8–1.61) | 0.332 |
Dialysis | 2.29 (1.44–3.64) | <0.001 | 1.52 (0.57–4.01) | 0.402 |
Steroid use | 1.23 (1.06–1.43) | 0.006 | 0.88 (0.50–1.57) | 0.673 |
Bleeding disorder | 1.42 (1.22–1.65) | <0.001 | 1.87 (1.24–2.82) | 0.003 |
Preoperative sepsis | 3.20 (2.46–4.17) | <0.001 | 3.24 (1.90–5.54) | <0.001 |
Functional status | 1.83 (1.32–2.54) | <0.001 | 3.29 (1.86–5.80) | <0.001 |
Neoadjuvant | 1.50 (1.40–1.61) | <0.001 | 1.47 (1.12–1.93) | 0.006 |
MIS (vs. open) | 0.38 (0.35–0.41) | <0.001 | 0.3 (0.38–0.74) | <0.001 |
Tumor size | ||||
<2 cm | 0.49 (0.44–0.54) | <0.001 | 0.24 (0.14–0.41) | <0.001 |
2–5 cm | 0.60 (0.55–0.65) | <0.001 | 0.29 (0.19–0.42) | <0.001 |
>5 cm | 0.97 (0.89–1.05) | 0.423 | 0.42 (0.29–0.63) | <0.001 |
Serious Complications | Mortality | |
---|---|---|
Cut-off | 4.0 (optimal) | 3.80 (optimal) |
Sensitivity | 59.14% | 56.60% |
Specificity | 56.84% | 68.25% |
Cut-off | 3.5 | 3.5 |
Sensitivity | 25.05% | 38.32% |
Specificity | 88.31% | 84.57% |
Cut-off | 3.0 | 3.0 |
Sensitivity | 10.29% | 18.78% |
Specificity | 97.18% | 95.10% |
Cut-off | 2.5 | 2.5 |
Sensitivity | 3.57% | 9.64% |
Specificity | 99.29% | 98.54% |
Cut-off | 2.0 | 2.0 |
Sensitivity | 0.99% | 4.97% |
Specificity | 99.81% | 99.63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris-Janzen, D.; Jatana, S.; Verhoeff, K.; Shapiro, A.M.J.; Bigam, D.L.; Dajani, K.; Anderson, B. Impact of Hypoalbuminemia on Outcomes Following Hepatic Resection: A NSQIP Retrospective Cohort Analysis of 26,394 Patients. Livers 2024, 4, 507-520. https://doi.org/10.3390/livers4040036
Morris-Janzen D, Jatana S, Verhoeff K, Shapiro AMJ, Bigam DL, Dajani K, Anderson B. Impact of Hypoalbuminemia on Outcomes Following Hepatic Resection: A NSQIP Retrospective Cohort Analysis of 26,394 Patients. Livers. 2024; 4(4):507-520. https://doi.org/10.3390/livers4040036
Chicago/Turabian StyleMorris-Janzen, Dunavan, Sukhdeep Jatana, Kevin Verhoeff, A. M. James Shapiro, David L. Bigam, Khaled Dajani, and Blaire Anderson. 2024. "Impact of Hypoalbuminemia on Outcomes Following Hepatic Resection: A NSQIP Retrospective Cohort Analysis of 26,394 Patients" Livers 4, no. 4: 507-520. https://doi.org/10.3390/livers4040036
APA StyleMorris-Janzen, D., Jatana, S., Verhoeff, K., Shapiro, A. M. J., Bigam, D. L., Dajani, K., & Anderson, B. (2024). Impact of Hypoalbuminemia on Outcomes Following Hepatic Resection: A NSQIP Retrospective Cohort Analysis of 26,394 Patients. Livers, 4(4), 507-520. https://doi.org/10.3390/livers4040036