Dynamic Probabilistic Risk Assessment of Passive Safety Systems for LOCA Analysis Using EMRALD
Abstract
:1. Introduction
2. Safety Systems of BWRX-300 During LOCA
3. DPRA Modelling Using EMRALD
3.1. EMRALD Overview
3.2. DPRA Modelling
3.2.1. Reactor Isolation (RI)
3.2.2. Reactor Scram (RS)
3.2.3. Isolation Condenser System (ICS)
3.3. EMRALD Simulation
4. Comparison of CDF Using Static PRA and DPRA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathi, M.; Singh, L.K.; Singh, S.; Singh, P. A Comparative Study on Reliability Analysis Methods for Safety Critical Systems Using Petri-Nets and Dynamic Flowgraph Methodology: A Case Study of Nuclear Power Plant. IEEE Trans. Reliab. 2022, 71, 564–578. [Google Scholar] [CrossRef]
- Nøland, J.K.; Hjelmeland, M.; Tjernberg, L.B.; Hartmann, C. The Race to Realize Small Modular Reactors: Rapid Deployment of Clean Dispatchable Energy Sources. IEEE Power Energy Mag. 2024, 22, 90–103. [Google Scholar] [CrossRef]
- Pioro, I.L.; Duffey, R.B.; Kirillov, P.L.; Tikhomirov, G.V.; Dort-Goltz, N.; Smirnov, A.D. Current Status of SMRs and S&MRs Development in the World. In Handbook of Generation IV Nuclear Reactors, 2nd ed.; Pioro, I.L., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2023; pp. 713–757. ISBN 978-0-12-820588-4. [Google Scholar]
- Todreas, N. 1—Small Modular Reactors (SMRs) for Producing Nuclear Energy: An Introduction. In Handbook of Small Modular Nuclear Reactors; Carelli, M.D., Ingersoll, D.T., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2015; pp. 3–26. ISBN 978-0-85709-851-1. [Google Scholar]
- Wang, Y.; Chen, W.; Zhang, L.; Zhao, X.; Gao, Y.; Dinavahi, V. Small Modular Reactors: An Overview of Modeling, Control, Simulation, and Applications. IEEE Access 2024, 12, 39628–39650. [Google Scholar] [CrossRef]
- GE Hitachi Nuclear Energy. BWRX-300 General Description; GE Hitachi Nuclear Energy: Wilmington, NC, USA, 2023; p. 95. [Google Scholar]
- Di Maio, F.; Bani, L.; Zio, E. The Contribution of Small Modular Reactors to the Resilience of Power Supply. J. Nucl. Eng. 2022, 3, 152–162. [Google Scholar] [CrossRef]
- Holbert, K.E. A Review of Maritime Nuclear Reactor Systems. J. Nucl. Eng. 2025, 6, 5. [Google Scholar] [CrossRef]
- Lye, A.; Chang, J.; Xiao, S.; Chung, K.Y. An Overview of Probabilistic Safety Assessment for Nuclear Safety: What Has Been Done, and Where Do We Go from Here? J. Nucl. Eng. 2024, 5, 456–485. [Google Scholar] [CrossRef]
- Olatubosun, S.A.; Zhang, Z. Dependency Consideration of Passive System Reliability by Coupled Stress-Strength Interference/Functional Relations of Parameters Approach. Reliab. Eng. Syst. Saf. 2019, 188, 549–560. [Google Scholar] [CrossRef]
- Antonello, F.; Buongiorno, J.; Zio, E. A Methodology to Perform Dynamic Risk Assessment Using System Theory and Modeling and Simulation: Application to Nuclear Batteries. Reliab. Eng. Syst. Saf. 2022, 228, 108769. [Google Scholar] [CrossRef]
- Thulu, F.G.D.; Elshahat, A.; Hassan, M.H.M. Simulation of VVER-1000 Guillotine Large Break Loss of Coolant Accident Using RELAP5/SCDAPSIM/MOD3.5. J. Nucl. Eng. 2021, 2, 516–532. [Google Scholar] [CrossRef]
- Avramova, M.; Abarca, A.; Hou, J.; Ivanov, K. Innovations in Multi-Physics Methods Development, Validation, and Uncertainty Quantification. J. Nucl. Eng. 2021, 2, 44–56. [Google Scholar] [CrossRef]
- Di Maio, F.; Pedroni, N.; Tóth, B.; Burgazzi, L.; Zio, E. Reliability Assessment of Passive Safety Systems for Nuclear Energy Applications: State-of-the-Art and Open Issues. Energies 2021, 14, 4688. [Google Scholar] [CrossRef]
- Alkhatib, S.; Sakurahara, T.; Reihani, S.; Kee, E.; Ratte, B.; Kaspar, K.; Hunt, S.; Mohaghegh, Z. Phenomenological Nondimensional Parameter Decomposition to Enhance the Use of Simulation Modeling in Fire Probabilistic Risk Assessment of Nuclear Power Plants. J. Nucl. Eng. 2024, 5, 226–245. [Google Scholar] [CrossRef]
- Khalaquzzaman, M.; Lee, S.J.; Hossen, M.M. Reliability Assessment of NPP Safety Class Equipment Considering the Manufacturing Quality Assurance Process. J. Nucl. Eng. 2023, 4, 421–435. [Google Scholar] [CrossRef]
- Le Duy, T.D.; Vasseur, D.; Serdet, E. Probabilistic Safety Assessment of Twin-Unit Nuclear Sites: Methodological Elements. Reliab. Eng. Syst. Saf. 2016, 145, 250–261. [Google Scholar] [CrossRef]
- Di Maio, F.; Picoco, C.; Zio, E.; Rychkov, V. Safety Margin Sensitivity Analysis for Model Selection in Nuclear Power Plant Probabilistic Safety Assessment. Reliab. Eng. Syst. Saf. 2017, 162, 122–138. [Google Scholar] [CrossRef]
- Holmberg, J.-E.; Kahlbom, U. Application of Human Reliability Analysis in the Deterministic Safety Analysis for Nuclear Power Plants. Reliab. Eng. Syst. Saf. 2020, 194, 106371. [Google Scholar] [CrossRef]
- Petkov, G. Risk Contextualization for Nuclear Systems. J. Nucl. Eng. 2025, 6, 1. [Google Scholar] [CrossRef]
- Modarres, M.; Zhou, T.; Massoud, M. Advances in Multi-Unit Nuclear Power Plant Probabilistic Risk Assessment. Reliab. Eng. Syst. Saf. 2017, 157, 87–100. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Z.; Zhang, G.; Wang, B.; Zhang, B.; Liu, Y. Review on the Application of Living PSA in Nuclear Power. Energies 2024, 17, 5578. [Google Scholar] [CrossRef]
- Arigi, A.M.; Park, G.; Kim, J. Dependency Analysis Method for Human Failure Events in Multi-Unit Probabilistic Safety Assessments. Reliab. Eng. Syst. Saf. 2020, 203, 107112. [Google Scholar] [CrossRef]
- Kochunas, B.; Huan, X. Digital Twin Concepts with Uncertainty for Nuclear Power Applications. Energies 2021, 14, 4235. [Google Scholar] [CrossRef]
- Wu, J.; Chen, J.; Zou, C.; Li, X. Accident Modeling and Analysis of Nuclear Reactors. Energies 2022, 15, 5790. [Google Scholar] [CrossRef]
- Zhou, T.; Modarres, M.; Droguett, E.L. Multi-Unit Nuclear Power Plant Probabilistic Risk Assessment: A Comprehensive Survey. Reliab. Eng. Syst. Saf. 2021, 213, 107782. [Google Scholar] [CrossRef]
- Zheng, X.; Tamaki, H.; Sugiyama, T.; Maruyama, Y. Dynamic Probabilistic Risk Assessment of Nuclear Power Plants Using Multi-Fidelity Simulations. Reliab. Eng. Syst. Saf. 2022, 223, 108503. [Google Scholar] [CrossRef]
- Acosta, C.; Siu, N. Dynamic Event Trees in Accident Sequence Analysis: Application to Steam Generator Tube Rupture. Reliab. Eng. Syst. Saf. 1993, 41, 135–154. [Google Scholar] [CrossRef]
- Dugan, J.B.; Bavuso, S.J.; Boyd, M.A. Dynamic Fault-Tree Models for Fault-Tolerant Computer Systems. IEEE Trans. Reliab. 1992, 41, 363–377. [Google Scholar] [CrossRef]
- Guo, Y.; Zhong, M.; Gao, C.; Wang, H.; Liang, X.; Yi, H. A Discrete-Time Bayesian Network Approach for Reliability Analysis of Dynamic Systems with Common Cause Failures. Reliab. Eng. Syst. Saf. 2021, 216, 108028. [Google Scholar] [CrossRef]
- Mamdikar, M.R.; Kumar, V.; Singh, P. Dynamic Reliability Analysis Framework Using Fault Tree and Dynamic Bayesian Network: A Case Study of NPP. Nucl. Eng. Technol. 2022, 54, 1213–1220. [Google Scholar] [CrossRef]
- Kowal, K.; Potempski, S. Probabilistic Safety and Reliability Studies toward Licensing and Deploying HTGR Technology in the Polish Chemical Industry. Nucl. Eng. Des. 2024, 424, 113244. [Google Scholar] [CrossRef]
- Suo, W.; Wang, L.; Li, J. Probabilistic Risk Assessment for Interdependent Critical Infrastructures: A Scenario-Driven Dynamic Stochastic Model. Reliab. Eng. Syst. Saf. 2021, 214, 107730. [Google Scholar] [CrossRef]
- Labeau, P.E.; Smidts, C.; Swaminathan, S. Dynamic Reliability: Towards an Integrated Platform for Probabilistic Risk Assessment. Reliab. Eng. Syst. Saf. 2000, 68, 219–254. [Google Scholar] [CrossRef]
- Hofer, E.; Kloos, M.; Krzykacz-Hausmann, B.; Peschke, J.; Woltereck, M. An Approximate Epistemic Uncertainty Analysis Approach in the Presence of Epistemic and Aleatory Uncertainties. Reliab. Eng. Syst. Saf. 2002, 77, 229–238. [Google Scholar] [CrossRef]
- Karanki, D.R.; Rahman, S.; Dang, V.N.; Zerkak, O. Epistemic and Aleatory Uncertainties in Integrated Deterministic and Probabilistic Safety Assessment: Tradeoff between Accuracy and Accident Simulations. Reliab. Eng. Syst. Saf. 2017, 162, 91–102. [Google Scholar] [CrossRef]
- Rahman, S.; Karanki, D.R.; Epiney, A.; Wicaksono, D.; Zerkak, O.; Dang, V.N. Deterministic Sampling for Propagating Epistemic and Aleatory Uncertainty in Dynamic Event Tree Analysis. Reliab. Eng. Syst. Saf. 2018, 175, 62–78. [Google Scholar] [CrossRef]
- Hu, Y.; Parhizkar, T.; Mosleh, A. Guided Simulation for Dynamic Probabilistic Risk Assessment of Complex Systems: Concept, Method, and Application. Reliab. Eng. Syst. Saf. 2022, 217, 108047. [Google Scholar] [CrossRef]
- Picoco, C.; Rychkov, V.; Aldemir, T. A Framework for Verifying Dynamic Probabilistic Risk Assessment Models. Reliab. Eng. Syst. Saf. 2020, 203, 107099. [Google Scholar] [CrossRef]
- Prescott, S.; Smith, C.; Vang, L. EMRALD, Dynamic PRA for the Traditional Modeler. In Proceedings of the 14th International Probabilistic Safety Assessment and Management Conference, Los Angeles, CA, USA, 16–21 September 2018. [Google Scholar]
- Trundle, G. Reliability Assessment of Passive ICS in an SMR as Part of the PSA Analysis. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2023. [Google Scholar]
- Ma, Z.; Wierman, T.; Kvarfordt, K. Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants: 2020 Update; INL/EXT-21-65055-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2021. [Google Scholar]
- Parisi, C.; Prescott, S.; Ma, Z.; Spears, B.; Szilard, R.; Coleman, J.; Kosbab, B. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic Pwr; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2017. [Google Scholar]
- Earthperson, A.; Otani, C.M.; Nevius, D.; Prescott, S.R.; Diaconeasa, M.A. A Combined Strategy for Dynamic Probabilistic Risk Assessment of Fission Battery Designs Using EMRALD and DEPM. Prog. Nucl. Energy 2023, 160, 104673. [Google Scholar] [CrossRef]
- Park, J.; Ulrich, T.A.; Boring, R.L.; Zhang, S.; Ma, Z.; Zhang, H. Modeling FLEX Human Actions Using the EMRALD Dynamic Risk Assessment Tool; Report Number: INL/CON-21-62364-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2021. [Google Scholar]
- Park, J.; Boring, R.L.; Prescott, S.R.; Heo, Y. Simulation-Based Recovery Action Analysis Using the EMRALD Dynamic Risk Assessment Tool; Report Number: INL/CON-23-71740-Rev000; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2023. [Google Scholar]
- Park, J.; Boring, R.L.; Ulrich, T.A. An Approach to Dynamic Human Reliability Analysis Using the EMRALD Dynamic Risk Assessment Tool; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2022. [Google Scholar]
- Ulrich, T.A.; Mortenson, T.; Boring, R.L.; Prescott, S. Dynamic Modeling of Field Operators in Human Reliability Analysis: An EMRALD and GOMS-HRA Dynamic Model of FLEX Operator Actions. In Advances in Safety Management and Human Performance: Proceedings of the AHFE 2020 Virtual Conferences on Safety Management and Human Factors, and Human Error, Reliability, Resilience, and Performance, San Diego, CA, USA, 16–20 July 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 346–352. [Google Scholar]
- Christian, R.; Prescott, S.R.; Yadav, V.; St Germain, S.W.; Chwasz, C.P. Evaluation of Physical Security Risk for Potential Implementation of FLEX Using Dynamic Simulation Methods; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2022. [Google Scholar]
- GE Hitachi Nuclear Energy. ESBWR Certification Probabilistic Risk Assessment; GE-Hitachi Nuclear Energy Americas LLC: Wilmington, NC, USA, 2010. [Google Scholar]
Failed Components | Failure Count | Failure Rate in % | |
---|---|---|---|
Component IDs | Component Descriptions | ||
ICS-A-LUV0_Failed, ICS-B-LUV0_Failed | ICS-A Loop Test or Maintenance, ICS-B Loop Test or Maintenance | 3 | 16.67 |
ICS-A-V402_Failed, ICS-B-V302_Failed | ICV-4A Signal Failure, ICV-3B Signal Failure | 2 | 11.11 |
ICS-A-V102_Failed, ICS-B-V402_Failed | ICV-1A Signal Failure, ICV-4B Signal Failure | 1 | 5.56 |
ICS-A-V202_Failed, ICS-B-V402_Failed | ICV-2A Signal Failure, ICV-4B Signal Failure | 1 | 5.56 |
ICS-A-V202_Failed, ICS-B-V102_Failed | ICV-2A Signal Failure, ICV-1B Signal Failure | 1 | 5.56 |
ICS-A-V302_Failed, ICS-B-V102_Failed | ICV-3A Signal Failure, ICV-1B Signal Failure | 1 | 5.56 |
ICS-A-V402_Failed, ICS-B-V102_Failed | ICV-4A Signal Failure, ICV-1B Signal Failure | 1 | 5.56 |
ICS-A-V402_Failed, ICS-B-V202_Failed | ICV-4A Signal Failure, ICV-2B Signal Failure | 1 | 5.56 |
ICS-A-V302_Failed, ICS-B-LUV0_Failed | ICV-3A Signal Failure, ICS-B Loop Test or Maintenance | 3 | 16.67 |
ICS-A-LUV0_Failed, ICS-B-V402_Failed | ICS-A Loop Test or Maintenance, ICV-4B Signal Failure | 1 | 5.56 |
ICS-A-LUV0_Failed, ICS-B-V302_Failed | ICS-A Loop Test or Maintenance, ICV-3B Signal Failure | 1 | 5.56 |
ICS-A-V202_Failed, ICS-B-LUV0_Failed | ICV-2A Signal Failure, ICS-B Loop Test or Maintenance | 1 | 5.56 |
ICS-A-V402_Failed, ICS-B-LUV0_Failed | ICV-4A Signal Failure, ICS-B Loop Test or Maintenance | 1 | 5.56 |
Total CDF | 18 | ~100 |
CDF due to System Failure | CDF from Static PRA | CDF from DPRA |
---|---|---|
Isolation Condenser System (ICS) | 2.12 × 10−8 | 1.80 × 10−8 |
Reactor Scram (RS) | 3.04 × 10−13 | <1 × 10−9 |
Reactor Isolation (RI) | 1.75 × 10−10 | <1 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basak, S.; Lu, L. Dynamic Probabilistic Risk Assessment of Passive Safety Systems for LOCA Analysis Using EMRALD. J. Nucl. Eng. 2025, 6, 18. https://doi.org/10.3390/jne6020018
Basak S, Lu L. Dynamic Probabilistic Risk Assessment of Passive Safety Systems for LOCA Analysis Using EMRALD. Journal of Nuclear Engineering. 2025; 6(2):18. https://doi.org/10.3390/jne6020018
Chicago/Turabian StyleBasak, Saikat, and Lixuan Lu. 2025. "Dynamic Probabilistic Risk Assessment of Passive Safety Systems for LOCA Analysis Using EMRALD" Journal of Nuclear Engineering 6, no. 2: 18. https://doi.org/10.3390/jne6020018
APA StyleBasak, S., & Lu, L. (2025). Dynamic Probabilistic Risk Assessment of Passive Safety Systems for LOCA Analysis Using EMRALD. Journal of Nuclear Engineering, 6(2), 18. https://doi.org/10.3390/jne6020018