Assembly Rehomogenization Methods for Reactor Analysis
Abstract
:1. Introduction
2. Cross Section Corrections for Coarse Nodal Methods
2.1. Correction Methods in Space
2.1.1. Spatial Rehomogenization
2.1.2. Leakage Correction via Boundary Conditions
2.1.3. Environment Effect Treatment via Adapted Mesh
2.1.4. Control Rod Treatment
2.2. Correction Methods in Energy Spectrum
2.2.1. Heuristic Spectral Corrections
2.2.2. Spectral Rehomogenization
2.2.3. Recondensation via the Discrete Generalized Multigroup Method
2.2.4. Generalized Energy Condensation
2.2.5. Dynamic Homogenization
2.3. Numerical Verification of the Correction Methods
3. Corrections on Direct Pin-by-Pin Calculations
3.1. Correction Based on the Leakage Index
3.2. Correction Based on the SPH Factor
Ref. | Configuration | Method | keff (%) | P max (%) | P RMS (%) | |||
---|---|---|---|---|---|---|---|---|
env | std | env | std | env | std | |||
[58] | BWR asb r | FDM | 0.020 | 0.070 | 0.28 | 0.86 | 0.16 | 0.55 |
[61] | PWR cset | FDM | 0.003 | 0.001 | 0.59 | 1.07 | 0.18 | 0.53 |
[63] | PWR core | HCMFD | 0.033 | 0.173 | −1.78 | 3.94 | 0.34 | 1.15 |
[64] | PWR core | NEM | 0.018 | 0.069 | 1.64 | −2.95 | 0.21 | 0.82 |
[65] | PWR core | HCMFD | 0.024 | 0.085 | 1.46 | −2.95 | 0.24 | 0.82 |
[66] | PWR core | HCMFD | 0.006 | 0.069 | −0.13 | 0.90 | - | - |
3.3. The GPS Method
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFEN | Analytic Function NEM |
APEC | Albedo-corrected Parameterized Equivalence Constants |
asb | Fuel assembly |
BWR | Boiling Water Reactor |
CFR | Current-to-Flux Ratio |
CISE | Centro Informazioni Studi Esperienze (Italy) |
cset | Color set (cluster of few fuel assemblies) |
DF | Discontinuity Factor |
DGM | Discrete Generalized Multigroup |
ET | Equivalence Theory |
FDM | Finite Difference Method |
GET | Generalized Equivalence Theory |
GPS | GET plus SPH |
HCMFD | Hybrid coarse-mesh finite difference |
HDT | Hybrid Diffusion-Transport |
LWR | Light Water Reactor |
MOC | Method of Characteristics |
MOX | Mixed Oxide |
NEM | Nodal Expansion Method |
Spherical harmonics approximation (order N) of the transport | |
PWR | Pressurized Water Reactor |
RHS | Right Hand Side |
SMR | Small Modular Reactor |
Discrete ordinates approximation (order N) of the transport | |
SP3 | Simplified with |
SPH | Superhomogenization |
VNM | Variational NEM |
References
- Altomare, S.; Barry, R.F. The TURTLE 24.0 Diffusion Depletion Code; Technical Report WCAP-7758; Westinghouse Electric Corporation: Pittsburgh, PA, USA, 1971. [Google Scholar]
- Liu, Y.S.; Meliksetian, A.; Rathkopf, J.A.; Little, D.C.; Nakano, F.; Poploski, M.J. ANC: A Westinghouse Advanced Nodal Computer Code; Technical Report WCAP-10966-A; Westinghouse Electric Corporation: Pittsburgh, PA, USA, 1986. [Google Scholar]
- General Electric. Steady-State Nuclear Methods; Technical Report NED0-30130; General Electric Company: San Jose, CA, USA, 1983. [Google Scholar]
- Tomatis, D.; Cufe, J. The Homogeneous B1 Model as Polynomial Eigenvalue Problem. J. Comput. Theor. Transp. 2021, 50, 220–235. [Google Scholar] [CrossRef]
- Hébert, A. Applied Reactor Physics; Presses Internationales Polytechnique: Montreal, ON, Canada, 2009. [Google Scholar]
- Lawrence, R.D. Progress in nodal methods for the solution of the neutron diffusion and transport equations. Prog. Nucl. Energy 1986, 17, 271–301. [Google Scholar] [CrossRef]
- Smith, K.S. Spatial Homogenization Methods for Light Water Reactor Analysis. Ph.D. Thesis, MIT, Cambridge, MA, USA, 1980. [Google Scholar]
- Becker, M. Incorporation of Spectral Effects into One-Group Nodal Simulators. Nucl. Sci. Eng. 1976, 59, 276–278. [Google Scholar] [CrossRef]
- Kavenoky, A. The SPH Homogenization Method. In Proceedings of the a Specialists’ Meeting on Homogenization Methods in Reactor Physics, Lugano, Switzerland, 13–15 November 1978; IAEA-TECDOC-231. International Atomic Energy Agency: Vienna, Austria, 1980; pp. 181–187. [Google Scholar]
- Hébert, A. A consistent technique for the pin-by-pin homogenization of a pressurized water reactor assembly. Nucl. Sci. Eng. 1993, 113, 227–238. [Google Scholar] [CrossRef]
- Hébert, A.; Mathonnière, G. Development of a Third-Generation Superhomogeneisation Method for the Homogenization of a Pressurized Water Reactor Assembly. Nucl. Sci. Eng. 1993, 115, 129–141. [Google Scholar] [CrossRef]
- Koebke, K. Advances in homogenization and dehomogenization. In Proceedings of the International Topical Meeting on Advances in Mathematical Methods for the Solution of Nuclear Engineering Problems, Munich, Germany, 27–29 April 1981; Volume 2, p. 59. [Google Scholar]
- Smith, K.S. Assembly Homogenization Techniques for Light Water Reactor Analysis. Prog. Nucl. Energy 1986, 17, 303–333. [Google Scholar] [CrossRef]
- Sanchez, R. Assembly homogenization techniques for core calculations. Prog. Nucl. Energy 2009, 51, 14–31. [Google Scholar] [CrossRef]
- Smith, K.S. Practical and efficient iterative method for LWR fuel assembly homogenization. Trans. Am. Nucl. Soc. 1994, 71, 238–241. [Google Scholar]
- Dall’Osso, A. A spatial rehomogenization method in nodal calculations. Ann. Nucl. Energy 2006, 33, 869–877. [Google Scholar] [CrossRef]
- Dall’Osso, A. Spatial rehomogenization of cross sections and discontinuity factors for nodal calculations. In Proceedings of the International Conference PHYSOR 2014, Kyoto, Japan, 28 September–3 October 2014. [Google Scholar]
- Wagner, M.R.; Koebke, K.; Winter, H.J. A nonlinear extension of the nodal expansion method. In Proceedings of the International Conference in Advances in Mathematical Methods for the Solution of Engineering Problems, Munich, Germany, 27–29 April 1981; Volume 2. [Google Scholar]
- Forslund, P.; Müller, E.; Lindahl, S. Investigation of intranodal depletion effects. Ann. Nucl. Energy 2001, 28, 225–250. [Google Scholar] [CrossRef]
- Gamarino, M.; Dall’Osso, A.; Lathouwers, D.; Kloosterman, J.L. A two-dimensional modal method for spatial rehomogenization of nodal cross sections and discontinuity-factor correction. Ann. Nucl. Energy 2019, 125, 157–185. [Google Scholar] [CrossRef]
- Gamarino, M.; Tomatis, D.; Dall’Osso, A.; Lathouwers, D.; Kloosterman, J.L.; van der Hagen, T.H.J.J. Investigation of rehomogenization in the framework of nodal cross section corrections. In Proceedings of the Conference PHYSOR 2016, Sun Valley, ID, USA, 1–5 May 2016; pp. 3698–3707. [Google Scholar]
- Clarno, K.T.; Adams, M.L. Capturing the Effects of Unlike Neighbors in Single-Assembly Calculations. Nucl. Sci. Eng. 2005, 149, 182–196. [Google Scholar] [CrossRef]
- Rahnema, F.; Nichita, E.M. Leakage corrected spatial (assembly) homogenization technique. Ann. Nucl. Energy 1997, 24, 477–488. [Google Scholar] [CrossRef]
- McKinley, M.S.; Rahnema, F. Higher-order boundary condition perturbation theory for the diffusion approximation. Nucl. Sci. Eng. 2000, 136, 15–33. [Google Scholar] [CrossRef]
- Rahnema, F.; McKinley, M.S. High-order cross-section homogenization method. Ann. Nucl. Energy 2002, 29, 875–899. [Google Scholar] [CrossRef]
- Douglass, S.; Rahnema, F. Cross section recondensation method via generalized energy condensation theory. Ann. Nucl. Energy 2011, 38, 2105–2110. [Google Scholar] [CrossRef]
- Yasseri, S.; Rahnema, F. On the Consistent Spatial Homogenization Method in Neutron Transport Theory. J. Comput. Theor. Transp. 2014, 43, 240–261. [Google Scholar] [CrossRef]
- Kooreman, G.; Rahnema, F. Hybrid diffusion-transport spatial homogenization method. Ann. Nucl. Energy 2014, 72, 95–103. [Google Scholar] [CrossRef]
- Kim, W.; Heo, W.; Kim, Y. Improvement of Nodal Accuracy by Using Albedo-Corrected Parameterized Equivalence Constants. Nucl. Sci. Eng. 2017, 188, 207–245. [Google Scholar] [CrossRef]
- Kim, W.; Lee, K.; Kim, Y. Functionalization of the Discontinuity Factor in the Albedo-Corrected Parameterized Equivalence Constants (APEC) Method. Nucl. Sci. Eng. 2018, 192, 1–20. [Google Scholar] [CrossRef]
- Lee, K.; Kim, W.; Kim, Y. Improved nodal equivalence with leakage-corrected cross sections and discontinuity factors for PWR depletion analysis. Nucl. Eng. Technol. 2019, 51, 1195–1208. [Google Scholar] [CrossRef]
- Jang, S.; Kim, Y. Improved macroscopic depletion in 2-D nodal analysis by 2x2 albedo-corrected parameterized equivalence constants method. Ann. Nucl. Energy 2022, 175, 109209. [Google Scholar] [CrossRef]
- Tsuiki, M.; Hval, S. A Variational Nodal Expansion Method for the Solution of Multigroup Neutron Diffusion Equations with Heterogeneous Nodes. Nucl. Sci. Eng. 2002, 141, 218–235. [Google Scholar] [CrossRef]
- Calloo, A.; Couyras, D.; Févotte, F.; Guillo, M.; Brosselard, C.; Bouriquet, B.; Dubois, A.; Girardi, E.; Hoareau, F.; Fliscounakis, M.; et al. COCAGNE: EDF new neutronic core code for ANDROMÈDE calculation chain. In Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2017), Jeju, Republic of Korea, 16–20 April 2017. [Google Scholar]
- Mala, P.; Pautz, A. Development and verification of pin-by-pin homogenized simplified transport solver Tortin for PWR core analysis. Nucl. Eng. Technol. 2020, 52, 2431–2441. [Google Scholar] [CrossRef]
- Bahadir, T.; Lindahl, S.; Palmtag, S.P. SIMULATE-4 multigroup nodal code with microscopic depletion model. In Proceedings of the Conference on Mathematics and Computation (M&C 2005), Avignon, France, 12–15 September 2005. [Google Scholar]
- Joo, H.S. Resolution of the Control Rod Cusping Problem for Nodal Methods. Ph.D. Thesis, Department of Nuclear Engineering, MIT, Cambridge, MA, USA, 1984. [Google Scholar]
- Gehin, J.C. A Quasi Static Polynomial Nodal Method for Nuclear Reactor Analysis. Ph.D. Thesis, Department of Nuclear Engineering, MIT, Cambridge, MA, USA, 1992; pp. 59–60. [Google Scholar]
- Smith, K.S.; Rempe, K.R.; Rhodes, J.D.; Stevens, J.G. Enhancements of the Studvick core management system. In Proceedings of the Topical Meeting on Advances in Reactor Physics, Charleston, SC, USA, 8–11 March 1992; Volume 1, pp. 117–128. [Google Scholar]
- Dall’Osso, A. Reducing Rod Cusping Effect in Nodal Expansion Method Calculations. In Proceedings of the International Conference PHYSOR 2002, Seoul, Republic of Korea, 7–10 October 2002. [Google Scholar]
- Li, Y.; Wang, Y.; Wu, H.; Cao, L. Heterogeneous Variational Nodal Method with Continuous Cross Section Distribution in Space. Trans. Am. Nucl. Soc. 2014, 111, 727–729. [Google Scholar]
- Wang, Y.; Wu, H.; Li, Y. Comparison of two three-dimensional heterogeneous variational nodal methods for PWR control rod cusping effect and pin-by-pin calculation. Prog. Nucl. Energy 2017, 101, 370–380. [Google Scholar] [CrossRef]
- Li, Y.; Liang, B.; Wu, H.; Li, Z.; Yang, J. Heterogeneous discontinuity factor treatment in Variational Nodal Method. Ann. Nucl. Energy 2019, 127, 341–350. [Google Scholar] [CrossRef]
- Palmtag, S.; Smith, K.S. Two-group spectral corrections for MOX calculations. In Proceedings of the International Conference on the Physics of Nuclear Science and Technology, Long Island, NY, USA, 5–8 October 1998; Volume 1, pp. 3–7. [Google Scholar]
- Lee, K.T.; Cho, N.Z. A Spectrum Correction Method for Fuel Assembly Rehomogenization. In Proceedings of the Korean Nuclear Society Spring Meeting, Gyeongju, Republic of Korea, 27–28 May 2004. [Google Scholar]
- Dall’Osso, A.; Brault, L. On the neutron spectrum and multiplication factor in the infinite homogeneous reactor. Ann. Nucl. Energy 2009, 36, 1287–1293. [Google Scholar] [CrossRef]
- Dall’Osso, A.; Tomatis, D.; Du, Y. Improving Cross Sections via Spectral Rehomogenization. In Proceedings of the International Conference PHYSOR 2010, Pittsburgh, PA, USA, 9–14 May 2010. [Google Scholar]
- Gamarino, M.; Dall’Osso, A.; Lathouwers, D.; Kloosterman, J.L. A rehomogenization-based approach to model spectral effects of local nuclide density changes in nodal calculations. Ann. Nucl. Energy 2019, 126, 142–168. [Google Scholar] [CrossRef]
- Gamarino, M.; Dall’Osso, A.; Lathouwers, D.; Kloosterman, J.L. Rehomogenization of Nodal Cross Sections via Modal Synthesis of Neutron Spectrum Changes. Nucl. Sci. Eng. 2018, 190, 1–30. [Google Scholar] [CrossRef]
- Gamarino, M.; Dall’Osso, A.; Lathouwers, D.; Kloosterman, J.L. A neutron-leakage spectrum model for on-the-fly rehomogenization of nodal cross sections. Ann. Nucl. Energy 2018, 116, 257–279. [Google Scholar] [CrossRef]
- Zhu, L.; Forget, B. An Energy Recondensation Method Using the Discrete Generalized Multigroup Energy Expansion Theory. Ann. Nucl. Energy 2011, 38, 1718–1727. [Google Scholar] [CrossRef]
- Everson, M.S.; Forget, B. Spatial recondensation using the Discrete Generalized Multigroup method. Ann. Nucl. Energy 2013, 62, 487–498. [Google Scholar] [CrossRef]
- Rahnema, F.; Douglass, S.; Forget, B. Generalized energy condensation theory. Nucl. Sci. Eng. 2008, 160, 41–58. [Google Scholar] [CrossRef]
- Douglass, S.; Rahnema, F. Consistent generalized energy condensation theory. Ann. Nucl. Energy 2012, 40, 200–214. [Google Scholar] [CrossRef]
- Galia, A.; Sanchez, R.; Zmijarevic, I. A method of dynamic homogenization: Application to 2D core calculation. Ann. Nucl. Energy 2021, 151, 107774. [Google Scholar] [CrossRef]
- Galia, A.; Sanchez, R.; Zmijarevic, I. A dynamic homogenization method for 3D core calculations. Ann. Nucl. Energy 2021, 160, 108360. [Google Scholar] [CrossRef]
- Yamamoto, A.; Kitamura, Y.; Yamane, Y. Cell homogenization methods for pin-by-pin core calculations tested in slab geometry. Ann. Nucl. Energy 2004, 31, 825–847. [Google Scholar] [CrossRef]
- Fujita, T.; Endo, T.; Yamamoto, A. A new technique for spectral interference correction on pin-by-pin BWR core analysis. J. Nucl. Sci. Technol. 2014, 51, 783–797. [Google Scholar] [CrossRef]
- Fujita, T.; Endo, T.; Yamamoto, A. Application of correction technique using leakage index combined with SPH or discontinuity factors for energy collapsing on pin-by-pin BWR core analysis. J. Nucl. Sci. Technol. 2014, 52, 355–370. [Google Scholar] [CrossRef]
- Herrero, J.J.; García-Herranz, N.; Cuervo, D.; Ahnert, C. Neighborhood-corrected interface discontinuity factors for multi-group pin-by-pin diffusion calculations for LWR. Ann. Nucl. Energy 2012, 46, 106–115. [Google Scholar] [CrossRef]
- Yamamoto, A.; Tatsumi, M.; Kitamura, Y.; Yamane, Y. Improvement of the SPH Method for Pin-by-Pin Core Calculations. J. Nucl. Sci. Technol. 2004, 41, 1155–1165. [Google Scholar] [CrossRef]
- Wang, X.; Zhuang, K.; Qiu, Z.; Wang, L.; Lu, D.; Zhang, B.; Wang, S. Research on reactor core pin-by-pin calculation based on new leakage corrected SPH method. Ann. Nucl. Energy 2025, 213, 111150. [Google Scholar] [CrossRef]
- Yu, H.; Kim, Y. A Leakage Correction with SPH Factors for Two-group Cross-section in MOX-loaded PWR Core. In Proceedings of the Transactions of the Korean Nuclear Society Autumn Meeting, Yeosu, Republic of Korea, 25–26 October 2018. [Google Scholar]
- Yu, H.; Kim, W.; Kim, Y. A leakage correction with SPH factors for two-group constants in GET-based pin-by-pin reactor analyses. Ann. Nucl. Energy 2019, 129, 30–55. [Google Scholar] [CrossRef]
- Yu, H.; Kim, Y. A Study on in situ Two-group SPH Factor Correction in GET-based Pin-by-Pin Core Analysis. In Proceedings of the Transactions of the Korean Nuclear Society Autumn Meeting, Jeju, Republic of Korea, 17–18 May 2018. [Google Scholar]
- Jeong, H.S.; Oh, T.; Kim, Y. A leakage correction with burnup-dependent GPS method in two-step core depletion analysis. Ann. Nucl. Energy 2023, 183, 109624. [Google Scholar] [CrossRef]
- Gamarino, M. Modal Methods for Rehomogenization of Nodal Cross Sections in Nuclear Reactor Core Analysis. Ph.D. Thesis, Nuclear Science and Engineering Department, Delft University of Technology, Delft, The Netherlands, 2018. [Google Scholar]
Ref. | Configuration | Method | keff (%) | P max (%) | P RMS (%) | |||
---|---|---|---|---|---|---|---|---|
env | std | env | std | env | std | |||
[15] | Mini-Core Gd | NEM | 0.100 | 0.320 | - | - | - | - |
[16] | PWR 2 × 2 r | NEM | −0.093 | −0.366 | 6.60 | 6.20 | - | - |
[17] | PWR 2 × 2 r | NEM | 0.162 | −0.177 | 0.003 | −0.003 | - | - |
[20] | PWR 2 × 2 r | NEM | 0.030 | −0.189 | 0.78 | 0.86 | 0.22 | 0.85 |
[22] | 1D LWR core | NEM | 0.057 | −0.142 | 1.80 | 8.50 | 0.05 | 0.29 |
[23] | CISE core | NEM | 0.048 | 0.140 | 2.64 | 3.26 | 1.24 | 1.41 |
[25] | 1D BWR core Gd | NEM | 0.100 | −39.56 | - | - | 5.70 | 9.80 |
[26] | 1D BWR core | S8 | −1.484 | 2.869 | 2.50 | - | 3.00 | 15.0 |
[28] | 1D BWR core r | HDT | 0.087 | 0.319 | 3.60 | 24.6 | 1.60 | 13.3 |
[29] | SMR core | NEM | 0.010 | 0.113 | 1.43 | 2.42 | 0.86 | 1.41 |
[30] | SMR core | NEM | 0.028 | 0.139 | 0.76 | 2.47 | 0.51 | 1.63 |
[31] | SMR core | NEM | 0.019 | 0.132 | 0.75 | 2.36 | 0.47 | 1.54 |
[33] | PWR core | VNM | 0.013 | - | 0.20 | - | 0.10 | - |
[35] | PWR core r | SP3 | 0.014 | - | −1.98 | - | 0.56 | - |
[45] | UO2/MOX core | AFEN | −0.059 | 0.557 | 2.29 | 3.96 | 1.27 | 2.89 |
[47] | 2 × 2 UO2 r | NEM | 0.085 | 0.590 | - | - | - | - |
[48] | UO2/MOX cset | NEM | 0.021 | 0.030 | 0.92 | 0.26 | 0.21 | 0.73 |
[49] | UO2/MOX cset | NEM | −0.059 | −0.197 | - | - | - | - |
[51] | 1D BWR core Gd | MOC | 1.400 | 9.600 | 1.70 | 8.50 | 2.60 | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dall’Osso, A. Assembly Rehomogenization Methods for Reactor Analysis. J. Nucl. Eng. 2025, 6, 14. https://doi.org/10.3390/jne6020014
Dall’Osso A. Assembly Rehomogenization Methods for Reactor Analysis. Journal of Nuclear Engineering. 2025; 6(2):14. https://doi.org/10.3390/jne6020014
Chicago/Turabian StyleDall’Osso, Aldo. 2025. "Assembly Rehomogenization Methods for Reactor Analysis" Journal of Nuclear Engineering 6, no. 2: 14. https://doi.org/10.3390/jne6020014
APA StyleDall’Osso, A. (2025). Assembly Rehomogenization Methods for Reactor Analysis. Journal of Nuclear Engineering, 6(2), 14. https://doi.org/10.3390/jne6020014