Effects of Neutron Flux Distribution and Control Rod Shadowing on Control Rod Calibrations in the Oregon State TRIGA® Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. OSTR Core Configurations Post-LEU Conversion
2.2. Control Rod Calibrations at OSTR
2.3. OSTR Fission Chamber Description
2.4. The OSTR MCNP® Model
3. Results
3.1. Model Bias Calculations
3.2. Measured and Calculated Control Rod Reactivity Worths
3.3. Comparison of Modeled Detector Responses to Measured and Calculated Control Rod Reactivity Worths
3.4. Thermal Flux Maps
4. Discussion
4.1. Total Control Rod Reactivity Worth Comparisons
4.2. Subcritical Experimental Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reese, S.R.; Keller, S.T. Safety Analysis Report for the Conversion of the Oregon State TRIGA® Reactor from HEU to LEU Fuel; Oregon State University: Corvallis, OR, USA, 2008. [Google Scholar]
- OSTR Logbook #150. 14 October 2008. Available online: https://www.nrc.gov/docs/ML0911/ML091110188.pdf (accessed on 1 October 2023).
- Schickler, R. OSTROP 9: Control Rod Calibration Procedures; Oregon State University: Corvallis, OR, USA, 2019. [Google Scholar]
- Keller, S.T. Oregon State University TRIGA Reactor Post Conversion Reactor Startup Report; Oregon State University: Corvallis, OR, USA, 2009; p. 80. [Google Scholar]
- Snoj, L.; Barbot, L. Analysis of the TRIGA Mark II Research Reactor Ex-Core Detector Response. In Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, 14–17 September 2015. [Google Scholar]
- General Atomics. Technical Foundations of TRIGA. UNT Digital Library. Available online: https://digital.library.unt.edu/ark:/67531/metadc304052/ (accessed on 2 November 2021).
- Duderstadt, J.J.; Hamilton, L.J. Nuclear Reactor Analysis; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Model SA-C3-2510-114 Fission Chamber Sales Specifications; GE Reuter-Stokes: Twinsburg, OH, USA, 1982.
- Tiyapun, K. Epithermal Neutron Beam Design at the Oregon State University TRIGA Mark II Reactor (OSTR) Based on Monte Carlo Methods. March 1997. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1g05fg170?locale=de (accessed on 15 September 2021).
- Kitto, A.K. Determination of a Calculation Bias in the MCNP Model of the OSTR. December 2012. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/rr172174p?locale=en (accessed on 30 August 2021).
- Kim, H.; Kim, Y. Pin-by-Pin Coupled Transient Monte Carlo Analysis Using the iMC Code. Front. Energy Res. 2022, 10, 853222. [Google Scholar] [CrossRef]
- Mazaher, M.G.; Salehi, A.A.; Vosoughi, N. A time dependent Monte Carlo approach for nuclear reactor analysis in a 3-D arbitrary geometry. Prog. Nucl. Energy 2019, 115, 80–90. [Google Scholar] [CrossRef]
Control Rod | CLICIT Core Measured Worth [$] | CLICIT Core Calculated Worth [$] | Normal Core Measured Worth [$] | Normal Core Calculated Worth [$] |
---|---|---|---|---|
Transient | 2.57 | 2.39 ± 0.10 | 2.86 | 2.81 ± 0.03 |
Safety | 2.31 | 2.14 ± 0.09 | 2.66 | 2.57 ± 0.03 |
Shim | 2.71 | 2.82 ± 0.10 | 2.76 | 2.61 ± 0.03 |
Regulating | 3.16 | 3.36 ± 0.11 | 3.71 | 3.57 ± 0.04 |
Total | 10.75 | 10.71 ± 0.20 | 11.99 | 11.56 ± 0.06 |
Configuration | ] | Reactivity [$] | Std. Error [±$] | ||
---|---|---|---|---|---|
All rods in | 0.96523 | 0.00027 | - | - | - |
All rods out | 1.05169 | 0.00029 | 0.0896 | 11.96 | ±0.06 |
Transient rod out | 0.99013 | 0.00032 | 0.0258 | 3.46 | ±0.07 |
Safety rod out | 0.98851 | 0.00035 | 0.0241 | 3.23 | ±0.07 |
Shim rod out | 0.98949 | 0.00030 | 0.0251 | 3.37 | ±0.06 |
Reg rod out | 0.99449 | 0.00032 | 0.0303 | 4.06 | ±0.07 |
Sum of rods | - | - | 0.1054 | 14.12 | ±0.13 |
Configuration | ] | Reactivity [$] | Std. Error [±$] | ||
---|---|---|---|---|---|
Trans rod in | 1.00648 | 0.00039 | - | - | - |
Trans rod out | 1.02741 | 0.00034 | 0.0208 | 2.71 | ±0.09 |
Safety rod in | 1.00864 | 0.00030 | - | - | - |
Safety rod out | 1.02672 | 0.00032 | 0.0179 | 2.32 | ±0.07 |
Shim rod in | 1.00811 | 0.00032 | - | - | - |
Shim rod out | 1.02645 | 0.00029 | 0.0182 | 2.36 | ±0.07 |
Reg rod in | 1.00320 | 0.00035 | - | - | - |
Reg rod out | 1.02845 | 0.00033 | 0.0252 | 3.29 | ±0.08 |
Sum of rods | - | - | 0.0821 | 10.68 | ±0.15 |
Configuration | ] | Reactivity [$] | Std. Error [±$] | ||
---|---|---|---|---|---|
All rods in | 0.95322 | 0.00031 | - | - | - |
All rods out | 1.03664 | 0.00032 | 0.0875 | 11.60 | ±0.07 |
Trans rod out | 0.97691 | 0.00031 | 0.0249 | 3.25 | ±0.07 |
Safety rod out | 0.97523 | 0.00033 | 0.0231 | 3.01 | ±0.07 |
Shim rod in | 0.97868 | 0.00035 | 0.0267 | 3.50 | ±0.07 |
Shim rod out | 0.98036 | 0.00028 | 0.0285 | 3.73 | ±0.06 |
Sum of rods | - | - | 0.1031 | 13.49 | ±0.13 |
Configuration | ] | Reactivity [$] | Std. Error [±$] | ||
---|---|---|---|---|---|
Trans rod in | 0.99335 | 0.00034 | - | - | - |
Trans rod out | 1.01340 | 0.00037 | 0.0202 | 2.63 | ±0.09 |
Safety rod in | 0.99507 | 0.00033 | - | - | - |
Safety rod out | 1.01225 | 0.00030 | 0.0173 | 2.24 | ±0.07 |
Shim rod in | 0.99240 | 0.00030 | - | - | - |
Shim rod out | 1.01332 | 0.00031 | 0.0211 | 2.75 | ±0.07 |
Reg rod in | 0.99164 | 0.00035 | - | - | - |
Reg rod out | 1.01370 | 0.00031 | 0.0222 | 2.90 | ±0.08 |
Sum of rods | - | - | 0.0808 | 10.51 | ±0.16 |
Configuration | [CPS] | Reactivity [$] | Std. Error [±$] | ||
---|---|---|---|---|---|
All rods in | 14.3 | - | - | - | - |
Transient rod out | 29.4 | 0.9770 | 0.0243 | 3.25 | 0.46 |
Safety rod out | 28.0 | 0.9759 | 0.0232 | 3.10 | 0.43 |
Shim rod out | 34.2 | 0.9803 | 0.0276 | 3.68 | 0.65 |
Reg rod out | 39.1 | 0.9828 | 0.0301 | 4.01 | 0.71 |
Sum of rods | - | - | 0.1053 | 14.03 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spoerer, T.; Schickler, R.; Reese, S. Effects of Neutron Flux Distribution and Control Rod Shadowing on Control Rod Calibrations in the Oregon State TRIGA® Reactor. J. Nucl. Eng. 2024, 5, 13-25. https://doi.org/10.3390/jne5010002
Spoerer T, Schickler R, Reese S. Effects of Neutron Flux Distribution and Control Rod Shadowing on Control Rod Calibrations in the Oregon State TRIGA® Reactor. Journal of Nuclear Engineering. 2024; 5(1):13-25. https://doi.org/10.3390/jne5010002
Chicago/Turabian StyleSpoerer, Tracey, Robert Schickler, and Steven Reese. 2024. "Effects of Neutron Flux Distribution and Control Rod Shadowing on Control Rod Calibrations in the Oregon State TRIGA® Reactor" Journal of Nuclear Engineering 5, no. 1: 13-25. https://doi.org/10.3390/jne5010002
APA StyleSpoerer, T., Schickler, R., & Reese, S. (2024). Effects of Neutron Flux Distribution and Control Rod Shadowing on Control Rod Calibrations in the Oregon State TRIGA® Reactor. Journal of Nuclear Engineering, 5(1), 13-25. https://doi.org/10.3390/jne5010002