Candidate Core Designs for the Transformational Challenge Reactor
Abstract
:1. Introduction
1.1. Design Approach
1.2. Constraints
1.3. Computational Tools and Software
2. Key Design Features
2.1. Dense TRISO/SiC Fuel Forms
2.2. Double-Walled Fuel Cladding with Conductive Structures
2.3. Advanced Neutron Moderator Materials
3. Candidate Core Designs
3.1. Core Manufacturing
3.2. UO2/YHx/Steel Thermal-Spectrum Design
3.3. TRISO/YH/Steel Thermal-Spectrum Design
4. Core Thermal Hydraulic Analyses
4.1. Thermal Hydraulic Models
4.2. Steady-State Results
4.3. Pressurized Loss of Forced Circulation (P-LOFC) with Scram
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betzler, B.R.; Ade, B.J.; Wysocki, A.J.; Greenwood, M.S.; Heineman, J.J.W.; Chesser, P.C.; Jain, P.K.; Heidet, F.; Bergeron, A. Advanced Manufacturing for Nuclear Core Design; ORNL/TM-2019/1258; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2019. [Google Scholar]
- Sobes, V.; Hiscox, B.; Popov, E.; Delchini, M.; Archibald, R.; Hauck, C.; Laiu, P.; Betzler, B.; Terrani, K. Artificial Intelligence Design of Nuclear Systems Empowered by Advanced Manufacturing. In European Physical Journal Web of Conferences; PHYSOR 2020—Transition to a Scalable Nuclear Future; EDP Sciences: Cambridge, UK, 2020. [Google Scholar]
- Pandya, T.M.; Johnson, S.R.; Evans, T.M.; Davidson, G.G.; Hamilton, S.P.; Godfrey, A.T. Implementation, Capabilities, and Benchmarking of Shift, a Massively Parallel Monte Carlo Radiation Transport Code. J. Comput. Phys. 2016, 308, 239–272. [Google Scholar] [CrossRef] [Green Version]
- Davidson, G.G.; Pandya, T.M.; Johnson, S.R.; Evans, T.M.; Isotalo, A.E.; Gentry, C.A.; Wieselquist, W.A. Nuclide Depletion Capabilities in the Shift Monte Carlo Code. Ann. Nucl. Energy 2018, 114, 259–276. [Google Scholar] [CrossRef]
- Wieselquist, W.A.; Lefebvre, R.A.; Jessee, M.A. (Eds.) SCALE Code System, ORNL/TM-2005/39, Version 6.2.4; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2020. [Google Scholar]
- Bowman, S.M. SCALE 6: Comprehensive Nuclear Safety Analysis Code System. Nucl. Technol. 2011, 174, 126–148. [Google Scholar] [CrossRef]
- DeHart, M.D.; Bowman, S.M. Reactor physics methods and analysis capabilities in SCALE. Nucl. Technol. 2011, 174, 196–213. [Google Scholar] [CrossRef]
- Williams, M.L.; Rearden, B.T. SCALE-6 Sensitivity/Uncertainty Methods and Covariance Data. Nucl. Data Sheets 2008, 109, 2796–2800. [Google Scholar] [CrossRef]
- X-5 Monte Carlo TeamTeam, X.; Monte, C. Mcnp—Version 5, Vol. I: Overview and Theory; LA-UR-03-1987; Los Alamos National Laboratory: Los Alamos, NM, USA, 2003. Available online: https://mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf (accessed on 1 September 2019).
- Goorley, J.T.; James, M.R.; Booth, T.E.; Brown, F.B.; Bull, J.S.; Cox, L.J.; Durkee, J.W.; Elson, J.S.; Fensin, M.L.; Forster, R.A.; et al. Initial Mcnp6 Release Overview—Mcnp6 Version 1.0; LA-UR-13-22934; Los Alamos National Laboratory: Los Alamos, NM, USA, 2013. Available online: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-13-22934.pdf (accessed on 1 September 2019).
- U.S. Nuclear Regulatory Commission. Trace V5.0 Theory Manual—Field Equations, Solution Methods, and Physical Models; US Nuclear Regulatory Commission: Rockford, MD, USA, 2010. Available online: https://www.nrc.gov/docs/ML0710/ML071000097.pdf (accessed on 1 September 2019).
- Nuclear Safety Analysis; Division. Relap5/Mod3.3 Code Manual; NUREG/CR-5535/Rev 1-Vol I; Information Systems Laboratories, Inc.: Rockville, MD, USA; Idaho Falls, ID, USA, 2001; Available online: http://www.edasolutions.com/old/RELAP5/RELAP5M33/Manuals/volume1.pdf (accessed on 1 September 2019).
- COMSOL Inc. Comsol Multiphysics User’s Guide, Version 4.2; COMSOL Inc.: Burlington, MA, USA, 2011. [Google Scholar]
- Hunt, R.D.; Silva, C.M.; Lindemer, T.B.; Johnson, J.A.; Collins, J.L. Preparation of Uc0.07−0.10n0.90−0.93 Spheres for Triso Coated Fuel Particles. J. Nucl. Mater. 2014, 448, 399–403. [Google Scholar] [CrossRef]
- Lindemer, T.B.; Silva, C.M.; Henry, J.J.; McMurray, J.W.; Voit, S.L.; Collins, J.L.; Hunt, R.D. Quantification of Process Variables for Carbothermic Synthesis of Uc1-Xnx Fuel Microspheres. J. Nucl. Mater. 2017, 483, 176–191. [Google Scholar] [CrossRef] [Green Version]
- McMurray, J.W.; Kiggans, J.O.; Helmreich, G.W.; Terrani, K.A. Production of near-Full Density Uranium Nitride Microspheres with a Hot Isostatic Press. J. Am. Ceram. Soc. 2018, 101, 4492–4497. [Google Scholar] [CrossRef]
- Morris, R.N.; Pappano, P.J. Estimation of Maximum Coated Particle Fuel Compact Packing Fraction. J. Nucl. Mater. 2007, 361, 18–29. [Google Scholar] [CrossRef]
- Scott, G.D.; Kilgour, D.M. The Density of Random Close Packing of Spheres. J. Phys. D Appl. Phys. 1969, 2, 863–866. [Google Scholar] [CrossRef]
- Torquato, S.; Truskett, T.M.; Debenedetti, P.G. Is Random Close Packing of Spheres Well Defined? Phys. Rev. Lett. 2000, 84, 2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrani, K.A.; Trammell, M.P.; Jolly, B.C. Additive Manufacturing of Complex Objects Using Refractory Matrix Materials. U.S. Patent Application No. 16/527,317, 21 May 2020. [Google Scholar]
- Terrani, K.A.; Jolly, B.C.; Trammell, M.P.; Vasadevamurthy, G.; Schappel, G.; Ade, B.; Helmreich, G.W.; Wang, H.; MarquizRossy, A.; Betzler, B.R.; et al. Architecture and Properties of Tcr Fuel Form. J. Nucl. Mater. 2021, 152781. [Google Scholar] [CrossRef]
- Caputo, A.J.; Lackey, W.L. Fabrication of Fiber-Reinforced Ceramic Composites by Chemical Vapor Infiltration. In Proceedings of the 8th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings, Cocoa Beach, FL, USA, 15–18 January 1984; Available online: https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1002/9780470320228.ch20 (accessed on 1 August 2019).
- Begun, G.M.; Land, J.F.; Bell, J.T. High Temperature Equilibrium Measurements of the Yttrium–Hydrogen Isotope (H2, D2, T2) Systems. J. Chem. Phys. 1980, 72, 2959–2966. [Google Scholar] [CrossRef]
- Wang, W.E.; Olander, D.R. Thermodynamics of the Zr-H System. J. Am. Ceram. Soc. 1995, 78, 3323–3328. [Google Scholar] [CrossRef]
- Field, K.G.; Simpson, J.; Gussev, M.N.; Wang, H.; Li, M.; Zhang, X.; Chen, X.; Koyanagi, T.; Kane, K.; Marquez Rossy, A.; et al. Handbook of Advanced Manufactured Material Properties from Tcr Structure Builds at Ornl—Fy 2019; ORNL/TM-2019/1328; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2019. [Google Scholar]
1 MW | 6 MW | 12 MW | ||||
---|---|---|---|---|---|---|
TH Results: | Analytic | RELAP | Analytic | RELAP | Analytic | RELAP |
Velocity (m/s) | 8.9 | 8.7 | 19.8 | 22.3 | 26.1 | 33.0 |
Core pressure drop (Pa) | 2387.6 | 2370.3 | 12,174.1 | 13,437.6 | 22,342.3 | 26,981.9 |
Peak temperatures (K): | Analytic | RELAP | Analytic | RELAP | Analytic | RELAP |
Coolant inlet | 704.2 | 702.7 | 604.3 | 603.4 | 534.4 | 534.3 |
Coolant outlet | 773.2 | 771.2 | 773.2 | 773.1 | 773.2 | 774.6 |
Fuel surface | 787.1 | 779.9 | 814.4 | 797.6 | 836.3 | 813.2 |
Fuel peak | 788.1 | 781.3 | 820.7 | 802.9 | 848.8 | 823.1 |
1 MW | 6 MW | 12 MW | ||||
---|---|---|---|---|---|---|
TH Results: | Analytic | RELAP | Analytic | RELAP | Analytic | RELAP a |
Velocity (m/s) | 17.6 | 17.8 | 40.5 | 45.1 | 54.8 | |
Core pressure drop (Pa) | 1674.1 | 1318.8 | 9080.1 | 8081.1 | 17,210.5 | |
Peak temperatures (K): | Analytic | RELAP | Analytic | RELAP | Analytic | RELAP a |
Coolant inlet | 718.4 | 718.3 | 639.0 | 639.0 | 583.5 | |
Coolant outlet | 773.2 | 767.5 | 773.2 | 772.7 | 773.2 | |
Clad interior | 834.0 | 827.2 | 962.9 | 958.3 | 1071.7 | |
Fuel surface | 958.5 | 1027.8 | 1709.6 | 1700.3 | 2565.2 | |
Fuel peak | 1045.2 | 1121.6 | 2229.7 | 2272.5 | 3605.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ade, B.J.; Betzler, B.R.; Wysocki, A.J.; Greenwood, M.S.; Chesser, P.C.; Terrani, K.A.; Jain, P.K.; Burns, J.R.; Hiscox, B.D.; Rader, J.D.; et al. Candidate Core Designs for the Transformational Challenge Reactor. J. Nucl. Eng. 2021, 2, 74-85. https://doi.org/10.3390/jne2010008
Ade BJ, Betzler BR, Wysocki AJ, Greenwood MS, Chesser PC, Terrani KA, Jain PK, Burns JR, Hiscox BD, Rader JD, et al. Candidate Core Designs for the Transformational Challenge Reactor. Journal of Nuclear Engineering. 2021; 2(1):74-85. https://doi.org/10.3390/jne2010008
Chicago/Turabian StyleAde, Brian J., Benjamin R. Betzler, Aaron J. Wysocki, Michael S. Greenwood, Phillip C. Chesser, Kurt A. Terrani, Prashant K. Jain, Joseph R. Burns, Briana D. Hiscox, Jordan D. Rader, and et al. 2021. "Candidate Core Designs for the Transformational Challenge Reactor" Journal of Nuclear Engineering 2, no. 1: 74-85. https://doi.org/10.3390/jne2010008
APA StyleAde, B. J., Betzler, B. R., Wysocki, A. J., Greenwood, M. S., Chesser, P. C., Terrani, K. A., Jain, P. K., Burns, J. R., Hiscox, B. D., Rader, J. D., Heineman, J. J. W., Heidet, F., Bergeron, A., Sterbentz, J. W., Holschuh, T. V., Brown, N. R., & Kile, R. F. (2021). Candidate Core Designs for the Transformational Challenge Reactor. Journal of Nuclear Engineering, 2(1), 74-85. https://doi.org/10.3390/jne2010008