Gonadotropin and Ovarian Hormone Monitoring: Lateral Flow Assays for Clinical Decision Making
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Lateral Flow Immunoassays’ Performance
3.2. Premenstrual Syndrome and Premenstrual Dysphoric Disorder
3.3. Ovarian Cysts
3.4. Ovulatory Disorders
3.5. Infertility Management
3.5.1. Ovarian Reserve Testing
3.5.2. Ovulation Testing
3.5.3. Luteal Phase Deficiency
3.5.4. Ovarian Stimulation
4. Discussion
4.1. Replacement
4.2. Discovery
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACOG | the American College of Obstetricians and Gynecologists |
ASRM | the American Society of Reproductive Medicine |
CI | confidence interval |
COVID-19 | coronavirus disease |
DHEAS | dehydroepiandrosterone sulfate |
E2 | estradiol |
E3G | estrone-3-glucuronide |
ESHRE | the European Society of Human Reproduction and Embryology |
FSH | follicle stimulating hormone |
ICSI | intracytoplasmic sperm injection |
IVF | in vitro fertilization |
LFAs | lateral flow assays |
LH | luteinizing hormone |
LPD | luteal phase deficiency |
PCOS | Polycystic ovarian syndrome |
PdG | pregnanediol-3-glucuronide |
PMS | premenstrual syndrome |
PMDD | premenstrual dysphoric disorder |
POC | point-of-care |
POI | primary ovarian insufficiency |
TSH | thyroid stimulating hormone |
References
- Lateral Flow Assays Market Share: Forecasts Report, 2032. Global Market Insights Inc. Available online: https://www.gminsights.com/industry-analysis/lateral-flow-assays-market (accessed on 11 May 2023).
- Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Ahmed, R.; Damayantharan, M.; Ünal, B.; Butt, H.; Yetisen, A.K. Lateral and Vertical Flow Assays for Point-of-Care Diagnostics. Adv. Healthc. Mater. 2019, 8, e1900244. [Google Scholar] [CrossRef] [PubMed]
- Vu, B.V.; Lei, R.; Mohan, C.; Kourentzi, K.; Willson, R.C. Flash Characterization of Smartphones Used in Point-of-Care Diagnostics. Biosensors 2022, 12, 1060. [Google Scholar] [CrossRef] [PubMed]
- IDC Forecasts Nearly 415 Million Used Smartphones Will Be Shipped Worldwide in 2026 with a Market Value of $99.9 Billion. Available online: https://www.idc.com/getdoc.jsp?containerId=prUS50005523 (accessed on 21 June 2023).
- Rose, M.P.; Das, R.E.G.; Balen, A.H. Definition and Measurement of Follicle Stimulating Hormone. Endocr. Rev. 2000, 21, 5–22. [Google Scholar] [CrossRef]
- Targonskaya, A.; Maslowski, K. FSH, Estrogens, Progesterone effects on female bodies during reproductive stages and their utilization in clinical practice and research. Res. J. Womens Health 2023, 10, 1. [Google Scholar] [CrossRef]
- Filicori, M. The role of luteinizing hormone in folliculogenesis and ovulation induction. Fertil. Steril. 1999, 71, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Shen, Y.; Li, R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol. Med. 2013, 19, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Ketha, H.; Girtman, A.; Singh, R.J. Estradiol assays—The path ahead. Steroids 2015, 99, 39–44. [Google Scholar] [CrossRef]
- Blackwell, L.F.; Brown, J.B.; Vigil, P.; Gross, B.; Sufi, S.; D’arcangues, C. Hormonal monitoring of ovarian activity using the Ovarian Monitor, Part I. Validation of home and laboratory results obtained during ovulatory cycles by comparison with radioimmunoassay. Steroids 2003, 68, 465–476. [Google Scholar] [CrossRef]
- Blackwell, L.F.; Vigil, P.; Gross, B.; D’Arcangues, C.; Cooke, D.G.; Brown, J.B. Monitoring of ovarian activity by measurement of urinary excretion rates of estrone glucuronide and pregnanediol glucuronide using the Ovarian Monitor, Part II: Reliability of home testing. Hum. Reprod. 2011, 27, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Roos, J.; Johnson, S.; Weddell, S.; Godehardt, E.; Schiffner, J.; Freundl, G.; Gnoth, C. Monitoring the menstrual cycle: Comparison of urinary and serum reproductive hormones referenced to true ovulation. Eur. J. Contracept. Reprod. Health Care 2015, 20, 438–450. [Google Scholar] [CrossRef]
- Pattnaik, S.; Das, D.; Venkatesan, V.A.; Rai, A. Predicting serum hormone concentration by estimation of urinary hormones through a home-use device. Hum. Reprod. Open 2022, 2023, hoac058. [Google Scholar] [CrossRef] [PubMed]
- Roomruangwong, C.; Carvalho, A.F.; Comhaire, F.; Maes, M. Lowered Plasma Steady-State Levels of Progesterone Combined with Declining Progesterone Levels During the Luteal Phase Predict Peri-Menstrual Syndrome and Its Major Subdomains. Front. Psychol. 2019, 10, 2246. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; Upadhyay, K.; Briggs, P.; Osborn, E.; Panay, N. Premenstrual disorders including premenstrual syndrome and premenstrual dysphoric disorder. Obstet. Gynaecol. 2023, 25, 38–46. [Google Scholar] [CrossRef]
- Hong, J.P.; Park, S.; Wang, H.-R.; Chang, S.M.; Sohn, J.H.; Jeon, H.J.; Lee, H.W.; Cho, S.-J.; Kim, B.-S.; Bae, J.N.; et al. Prevalence, correlates, comorbidities, and suicidal tendencies of premenstrual dysphoric disorder in a nationwide sample of Korean women. Soc. Psychiatry Psychiatr. Epidemiol. 2012, 47, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, A.B.; Cardoso, T.d.A.; Mondin, T.C.; da Silva, R.A.; Souza, L.D.d.M.; Magalhães, P.V.d.S.; Jansen, K. Prevalence and factors associated with Premenstrual Dysphoric Disorder: A community sample of young adult women. Psychiatry Res. 2018, 268, 42–45. [Google Scholar] [CrossRef]
- ICD-11 for Mortality and Morbidity Statistics. Available online: https://icd.who.int/browse11/l-m/en (accessed on 21 June 2023).
- ACOG Committee on Practice Bulleteins. Practice Bulletin. Int. J. Gynecol. Obstet. 2001, 73, 183–191. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association, American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Mahe, V.; Dumaine, A. Oestrogen withdrawal associated psychoses. Acta Psychiatr. Scand. 2001, 104, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Noreika, D.; Griškova-Bulanova, I.; Alaburda, A.; Baranauskas, M.; Grikšienė, R. Progesterone and Mental Rotation Task: Is There Any Effect? BioMed Res. Int. 2014, 2014, 741758. [Google Scholar] [CrossRef]
- Poromaa, I.S.; Smith, S.; Gulinello, M. GABA receptors, progesterone and premenstrual dysphoric disorder. Arch. Women’s Ment. Health 2003, 6, 23–41. [Google Scholar] [CrossRef]
- Hantsoo, L.; Payne, J.L. Towards understanding the biology of premenstrual dysphoric disorder: From genes to GABA. Neurosci. Biobehav. Rev. 2023, 149, 105168. [Google Scholar] [CrossRef]
- Lovick, T.A.; Guapo, V.G.; Anselmo-Franci, J.A.; Loureiro, C.M.; Faleiros, M.C.M.; Del Ben, C.M.; Brandão, M.L. A specific profile of luteal phase progesterone is associated with the development of premenstrual symptoms. Psychoneuroendocrinology 2017, 75, 83–90. [Google Scholar] [CrossRef]
- Hammarbäck, S.; Damber, J.E.; Bäckström, T. Relationship between Symptom Severity and Hormone Changes in Women with Premenstrual Syndrome. J. Clin. Endocrinol. Metab. 1989, 68, 125–130. [Google Scholar] [CrossRef]
- Seippel, L.; Bäckström, T. Luteal-Phase Estradiol Relates to Symptom Severity in Patients with Premenstrual Syndrome. J. Clin. Endocrinol. Metab. 1998, 83, 1988–1992. [Google Scholar] [CrossRef] [PubMed]
- Blum, I.; Lerman, M.; Misrachi, I.; Nordenberg, Y.; Grosskopf, I.; Weizman, A.; Levy-Schiff, R.; Sulkes, J.; Vered, Y. Lack of Plasma Norepinephrine Cyclicity, Increased Estradiol during the Follicular Phase, and of Progesterone and Gonadotrophins at Ovulation in Women with Premenstrual Syndrome. Neuropsychobiology 2004, 50, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Ziomkiewicz, A.; Pawlowski, B.; Ellison, P.; Lipson, S.; Thune, I.; Jasienska, G. Higher luteal progesterone is associated with low levels of premenstrual aggressive behavior and fatigue. Biol. Psychol. 2012, 91, 376–382. [Google Scholar] [CrossRef]
- Yen, J.-Y.; Lin, H.-C.; Liu, T.-L.; Long, C.-Y.; Ko, C.-H. Early- and Late-Luteal-Phase Estrogen and Progesterone Levels of Women with Premenstrual Dysphoric Disorder. Int. J. Environ. Res. Public Health 2019, 16, 4352. [Google Scholar] [CrossRef] [PubMed]
- Demont, F.; Fourquet, F.; Rogers, M.; Lansac, J. Epidemiology of apparently benign ovarian cysts. J. Gynecol. Obstet. Biol. Reprod. 2001, 30, S8–S11. [Google Scholar]
- Terzic, M.; Aimagambetova, G.; Norton, M.; Della Corte, L.; Marín-Buck, A.; Lisón, J.F.; Amer-Cuenca, J.J.; Zito, G.; Garzon, S.; Caruso, S.; et al. Scoring systems for the evaluation of adnexal masses nature: Current knowledge and clinical applications. J. Obstet. Gynaecol. 2020, 41, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Lukanova, A.; Lundin, E.; Akhmedkhanov, A.; Micheli, A.; Rinaldi, S.; Zeleniuch-Jacquotte, A.; Lenner, P.; Muti, P.; Biessy, C.; Krogh, V.; et al. Circulating levels of sex steroid hormones and risk of ovarian cancer. Int. J. Cancer 2003, 104, 636–642. [Google Scholar] [CrossRef]
- Cramer, D.W.; Hutchison, G.B.; Welch, W.R.; Scully, R.E.; Ryan, K.J. Determinants of Ovarian Cancer Risk. I. Reproductive Experiences and Family History. JNCI J. Natl. Cancer Inst. 1983, 71, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.D.; Ozols, R.F.; Smyth, J.F.; Hamilton, T.C. Estrogen and Anti-Estrogen Effects on the Growth of Human Epithelial Ovarian Cancer In Vitro. Am. J. Obstet. Gynecol. 1989, 73, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Syed, V.; Ulinski, G.; Mok, S.C.; Yiu, G.K.; Ho, S.M. Expression of Gonadotropin Receptor and Growth Responses to Key Reproductive Hormones in Normal and Malignant Human Ovarian Surface Epithelial Cells. Cancer Res. 2001, 61, 6768–6776. [Google Scholar] [PubMed]
- Helzlsouer, K.J.; Alberg, A.J.; Gordon, G.B.; Longcope, C.; Bush, T.L.; Hoffman, S.C.; Comstock, G.W. Serum Gonadotropins and Steroid Hormones and the Development of Ovarian Cancer. JAMA 1995, 274, 1926–1930. [Google Scholar] [CrossRef] [PubMed]
- McSorley, M.A.; Alberg, A.J.; Allen, D.S.; Allen, N.E.; Brinton, L.A.; Dorgan, J.F.; Kaaks, R.; Rinaldi, S.; Helzlsouer, K.J. Prediagnostic circulating follicle stimulating hormone concentrations and ovarian cancer risk. Int. J. Cancer 2009, 125, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Schildkraut, J.M.; Schwingl, P.J.; Bastos, E.; Evanoff, A.; Hughes, C. Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet. Gynecol. 1996, 88, 554–559. [Google Scholar] [CrossRef]
- Krämer, S.; Leeker, M.; Jäger, W. Gonadotropin Levels in Ovarian Cyst Fluids: A Predictor of Malignancy? Int. J. Biol. Markers 1998, 13, 165–168. [Google Scholar] [CrossRef]
- Chudecka-Głaz, A.; Rzepka-Górska, I.; Kosmowska, B. Gonadotropin (LH, FSH) levels in serum and cyst fluid in epithelial tumors of the ovary. Arch. Gynecol. Obstet. 2003, 270, 151–156. [Google Scholar] [CrossRef]
- Thomas, C.M.G.; A Boss, E.; Boonstra, H.; Van Tienoven, D.; Sweep, C.G.J.; Massuger, L.F.A.G. Gonadotropins and female sex steroid hormones in cyst fluid and serum from patients with ovarian tumors. Eur. J. Gynaecol. Oncol. 2008, 29, 468–472. [Google Scholar]
- Trabert, B.; Coburn, S.B.; Falk, R.T.; Manson, J.E.; Brinton, L.A.; Gass, M.L.; Kuller, L.H.; Rohan, T.E.; Pfeiffer, R.M.; Qi, L.; et al. Circulating estrogens and postmenopausal ovarian and endometrial cancer risk among current hormone users in the Women’s Health Initiative Observational Study. Cancer Causes Control 2019, 30, 1201–1211. [Google Scholar] [CrossRef]
- Munro, M.G.; Critchley, H.O.; Fraser, I.S.; The FIGO Menstrual Disorders Committee. The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int. J. Gynecol. Obstet. 2018, 143, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Committee on Practice Bulletins—Gynecology. Practice Bulletin No. 128: Diagnosis of Abnormal Uterine Bleeding in Reproductive-Aged Women. Obstet. Gynecol. 2012, 120, 197–206. [Google Scholar] [CrossRef] [PubMed]
- International Evidence Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. 2018. Available online: https://www.monash.edu/medicine/sphpm/mchri/pcos (accessed on 19 December 2022).
- Gordon, C.M.; Ackerman, K.E.; Berga, S.L.; Kaplan, J.R.; Mastorakos, G.; Misra, M.; Murad, M.H.; Santoro, N.F.; Warren, M.P. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 1413–1439. [Google Scholar] [CrossRef]
- Azziz, R.; Adashi, E.Y. Stein and Leventhal: 80 years on. Am. J. Obstet. Gynecol. 2016, 214, 247.e1–247.e11. [Google Scholar] [CrossRef]
- Mohammad, M.B.; Seghinsara, A.M. Polycystic Ovary Syndrome (PCOS), Diagnostic Criteria, and AMH. Asian Pac. J. Cancer Prev. 2017, 18, 17–21. [Google Scholar] [CrossRef]
- Robinson, S.; Rodin, D.A.; Deacon, A.; Wheeler, M.J.; Clayton, R.N. Which hormone tests for the diagnosis of polycystic ovary syndrome? Br. J. Obstet. Gynaecol. 1992, 99, 232–238. [Google Scholar] [CrossRef]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Practice Committees of the American Society for Reproductive Medicine and the Society for Reproductive Endocrinology and Infertility. Diagnosis and treatment of luteal phase deficiency: A committee opinion. Fertil. Steril. 2021, 115, 1416–1423. [Google Scholar] [CrossRef]
- Sidra, S.; Tariq, M.H.; Farrukh, M.J.; Mohsin, M. Evaluation of clinical manifestations, health risks, and quality of life among women with polycystic ovary syndrome. PLoS ONE 2019, 14, e0223329. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.-I.; Liou, T.-H.; Chou, S.-Y.; Chang, C.-Y.; Hsu, C.-S. Diagnostic criteria for polycystic ovary syndrome in Taiwanese Chinese women: Comparison between Rotterdam 2003 and NIH 1990. Fertil. Steril. 2007, 88, 727–729. [Google Scholar] [CrossRef]
- Chon, S.J.; Umair, Z.; Yoon, M.-S. Premature Ovarian Insufficiency: Past, Present, and Future. Front. Cell Dev. Biol. 2021, 9, 672890. [Google Scholar] [CrossRef]
- World Health Organization. Infertility Prevalence Estimates, 1990–2021. Available online: https://www.who.int/publications/i/item/978920068315 (accessed on 3 April 2023).
- Ulrich, N.D.; Marsh, E.E.M. Ovarian Reserve Testing: A Review of the Options, Their Applications, and Their Limitations. Clin. Obstet. Gynecol. 2019, 62, 228–237. [Google Scholar] [CrossRef]
- Infertility Workup for the Women’s Health Specialist. Obstet. Gynecol. 2019, 133, e377–e384. [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Fertility Evaluation of Infertile Women: A Committee Opinion. Fertil. Steril. 2021, 116, 1255–1265. [Google Scholar] [CrossRef]
- Penzias, A.; Azziz, R.; Bendikson, K.; Falcone, T.; Hansen, K.; Hill, M.; Hurd, W.; Jindal, S.; Kalra, S.; Mersereau, J.; et al. Testing and Interpreting Measures of Ovarian Reserve: A Committee Opinion. Fertil. Steril. 2020, 114, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.J.; D’hooghe, T.; Dancet, E.A.F.; Aurell, R.; Lunenfeld, B.; Orvieto, R.; Pellicer, A.; Polyzos, N.P.; Zheng, W. Self-Monitoring of Urinary Hormones in Combination with Telemedicine—A Timely Review and Opinion Piece in Medically Assisted Reproduction. Reprod. Sci. 2021, 29, 3147–3160. [Google Scholar] [CrossRef]
- Gerris, J.; Delvigne, A.; Dhont, N.; Vandekerckhove, F.; Madoc, B.; Buyle, M.; Neyskens, J.; Deschepper, E.; De Bacquer, D.; Pil, L.; et al. Self-operated endovaginal telemonitoring versus traditional monitoring of ovarian stimulation in assisted reproduction: An RCT. Hum. Reprod. 2014, 29, 1941–1948. [Google Scholar] [CrossRef]
- Yong, E.L.; Wong, P.C.; Wong, Y.C.; Goh, H.H.; Hagglund, L.; Ratnam, S. Simple Office Methods to Predict Ovulation: The Clinical Usefulness of a New Urine Luteinizing Hormone Kit Compared to Basal Body Temperature, Cervical Mucus and Ultrasound. Aust. N. Z. J. Obstet. Gynaecol. 1989, 29, 155–160. [Google Scholar] [CrossRef]
- Leiva, R.A.; Bouchard, T.P.; Abdullah, S.H.; Ecochard, R. Urinary Luteinizing Hormone Tests: Which Concentration Threshold Best Predicts Ovulation? Front. Public Health 2017, 5, 320. [Google Scholar] [CrossRef] [PubMed]
- Vladimirov, I.; Martin, V.; Desislava, T. P–670 Urine estrone–3-glucuronide (E3G) assay: Is there any place during ovarian stimulation for IVF cycles? Hum. Reprod. 2021, 36, deab130.669. [Google Scholar] [CrossRef]
- Tanabe, K.; Susumu, N.; Hand, K.; Nishii, K.; Ishikawa, I.; Nozawa, S. Prediction of the potentially fertile period by urinary hormone measurements using a new home-use monitor: Comparison with laboratory hormone analyses. Hum. Reprod. 2001, 16, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Weddell, S.; Godbert, S.; Freundl, G.; Roos, J.; Gnoth, C. Development of the first urinary reproductive hormone ranges referenced to independently determined ovulation day. Clin. Chem. Lab. Med. 2015, 53, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Wathen, N.C.; Perry, L.; Lilford, R.J.; Chard, T. Interpretation of single progesterone measurement in diagnosis of anovulation and defective luteal phase: Observations on analysis of the normal range. BMJ 1984, 288, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.A.; Brown, J.B. An evaluation of the method of cox for the rapid analysis of pregnanediol in urine by gas—Liquid chromatography. J. Endocrinol. 1970, 47, 471–480. [Google Scholar] [CrossRef]
- Blackwell, L.F.; Cooke, D.G.; Brown, S. The Use of Estrone-3-Glucuronide and Pregnanediol-3-Glucuronide Excretion Rates to Navigate the Continuum of Ovarian Activity. Front. Public Health 2018, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Beckley, A.; Klein, J.; Park, J.; Eyvazzadeh, A.; Levy, G.; Koudele, A. The Predictive Value of Urinary Progesterone Metabolite PdG Testing in Pregnancy Outcomes. Obstet. Gynecol. Res. 2022, 05, 194–198. [Google Scholar] [CrossRef]
- Yeh, P.T.; E Kennedy, C.; Van der Poel, S.; Matsaseng, T.; Bernard, L.; Narasimhan, M. Should home-based ovulation predictor kits be offered as an additional approach for fertility management for women and couples desiring pregnancy? A systematic review and meta-analysis. BMJ Glob. Health 2019, 4, e001403. [Google Scholar] [CrossRef]
- Astwood, E.B.; Jones, G.E.S. A Simple Method for The Quantitative Determination of Pregnanediol In Human Urine. J. Biol. Chem. 1941, 137, 397–407. [Google Scholar] [CrossRef]
- Jones, G.E.S. Some Newer Aspects of the Management of Infertility. JAMA 1949, 141, 1123–1129. [Google Scholar] [CrossRef]
- Schliep, K.C.; Mumford, S.L.; Hammoud, A.O.; Stanford, J.B.; Kissell, K.A.; Sjaarda, L.A.; Perkins, N.J.; Ahrens, K.A.; Wactawski-Wende, J.; Mendola, P.; et al. Luteal phase deficiency in regularly menstruating women: Prevalence and overlap in identification based on clinical and biochemical diagnostic criteria. J. Clin. Endocrinol. Metab. 2014, 99, E1007–E1014. [Google Scholar] [CrossRef]
- Deng, W.; Sun, R.; Du, J.; Wu, X.; Ma, L.; Wang, M.; Lv, Q. Prediction of miscarriage in first trimester by serum estradiol, progesterone and β-human chorionic gonadotropin within 9 weeks of gestation. BMC Pregnancy Childbirth 2022, 22, 112. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Chen, Z.-Y.; Zhang, J.; Xu, H.; Zhang, X.-M.; Huang, X.-F. Clinical utility of serum reproductive hormones for the early diagnosis of ectopic pregnancy in the first trimester. J. Obstet. Gynaecol. Res. 2012, 39, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Nakhuda, G.S.; Li, N.; Yang, Z.; Kang, S. At-home urine estrone-3-glucuronide quantification predicts oocyte retrieval outcomes comparably to serum estradiol. F&S Rep. 2023, 4, 43–48. [Google Scholar] [CrossRef]
- Rosner, W.; Hankinson, S.E.; Sluss, P.M.; Vesper, H.W.; Wierman, M.E. Challenges to the Measurement of Estradiol: An Endocrine Society Position Statement. J. Clin. Endocrinol. Metab. 2013, 98, 1376–1387. [Google Scholar] [CrossRef] [PubMed]
- Lawrenz, B.; Sibal, J.; Garrido, N.; Abu, E.; Jean, A.; Melado, L.; Fatemi, H.M. Inter-assay variation and reproducibility of progesterone measurements during ovarian stimulation for IVF. PLoS ONE 2018, 13, e0206098. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Targonskaya, A.; Maslowski, K. Gonadotropin and Ovarian Hormone Monitoring: Lateral Flow Assays for Clinical Decision Making. Women 2023, 3, 471-485. https://doi.org/10.3390/women3040036
Targonskaya A, Maslowski K. Gonadotropin and Ovarian Hormone Monitoring: Lateral Flow Assays for Clinical Decision Making. Women. 2023; 3(4):471-485. https://doi.org/10.3390/women3040036
Chicago/Turabian StyleTargonskaya, Anna, and Katherine Maslowski. 2023. "Gonadotropin and Ovarian Hormone Monitoring: Lateral Flow Assays for Clinical Decision Making" Women 3, no. 4: 471-485. https://doi.org/10.3390/women3040036
APA StyleTargonskaya, A., & Maslowski, K. (2023). Gonadotropin and Ovarian Hormone Monitoring: Lateral Flow Assays for Clinical Decision Making. Women, 3(4), 471-485. https://doi.org/10.3390/women3040036