Factors Influencing the Utilization of Antenatal Services among Women of Childbearing Age in South Africa
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Maternal Household Factors of Women within Reproductive Age in South Africa
2.2. Characteristics of Women within Reproductive Age in South Africa and Factors Influencing the Use of Antenatal Care among Them
2.3. Multilevel Multivariate Logistic Regression Results
2.3.1. Socio-Demographic Factors
2.3.2. Obstetric and Household Factors
2.3.3. Economic Status Factors
2.3.4. Media Exposure Factors
2.4. Model II: Household Factors, Economic Factors, and Media Exposure Factors Associated with Utilization of Antenatal Care Services, While Controlling for Their Socio-Emographic/Individual Factors
2.4.1. Obstetric and Household Factor
2.4.2. Economic Status Factors
2.4.3. Media Exposure Factors
2.5. Model III: Economic Factors and Media Exposure Factors Associated with Utilization of Antenatal Care Services, While Controlling for Obstetric and Household Factors
2.5.1. Economic Status Factors
2.5.2. Media Exposure Factors
2.6. Model IV: Media Exposure Factors Associated with Utilization of Antenatal Care Services, While Controlling for Economic Status Factors
Media Exposure Factors
3. Discussion
Limitations and Strengths of the Study
4. Materials and Methods
4.1. Research Design
4.2. Population
4.3. Sample Size and Sampling Frame
4.4. Instruments
4.5. Validity and Reliability of the Data Collection Instrument
4.6. Variables of Interest
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References and Note
- Konje, E.T.; Magoma, M.T.N.; Hatfield, J.; Kuhn, S.; Sauve, R.S.; Dewey, D.M. Missed opportunities in antenatal care for improving the health of pregnant women and newborns in Geita district, Northwest Tanzania 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Pregnancy Childbirth 2018, 18, 394. [Google Scholar] [CrossRef]
- Arunda, M.; Emmelin, A.; Asamoah, B.O. Effectiveness of antenatal care services in reducing neonatal mortality in Kenya: Analysis of national survey data. Glob. Health Action 2017, 10, 1328796. [Google Scholar] [CrossRef] [PubMed]
- Bolarinwa, O.A.; Sakyi, B.; Ahinkorah, B.O.; Ajayi, K.V.; Seidu, A.A.; Hagan, J.E., Jr.; Tessema, Z.T. Spatial patterns and multilevel analysis of factors associated with antenatal care visits in nigeria: Insight from the 2018 nigeria demographic health survey. Healthcare 2021, 9, 1389. [Google Scholar] [CrossRef] [PubMed]
- Mutowo, J.; Yazbek, M.; van der Wath, A.; Maree, C. Barriers to using antenatal care services in a rural district in Zimbabwe. Int. J. Afr. Nurs. Sci. 2021, 15, 100319. [Google Scholar] [CrossRef]
- NDoH SS, SAMRC I. South Africa Demographic and Health Survey 2016. Pretoria, South Africa, and Rockville, Maryland, USA: National Department of Health (NDoH). Statistics South Africa (Stats SA), South African Medical Research Council (SAMRC), ICF. 2019
- WHO. Maternal Health. World Health Organization. 2022, p. 1. Available online: https://www.who.int/health-topics/maternal-health#tab=tab_1 (accessed on 13 May 2022).
- Lange, I.L.; Gherissi, A.; Chou, D.; Say, L.; Filippi, V. What maternal morbidities are and what they mean for women: A thematic analysis of twenty years of qualitative research in low and lower-middle income countries. PLoS ONE 2019, 14, e0214199. [Google Scholar] [CrossRef]
- Fife, J.G. Antenatal Care. Br. Med. J. 1948, 2, 227. [Google Scholar] [CrossRef]
- World Health Organization. WHO recommendations on antenatal Care for a Positive Pregnancy Experience. World Heal Organ. 2018, pp. 1–172. Available online: https://apps.who.int/iris/bitstream/handle/10665/250796/9789241549912-eng.pdf?sequence=1 (accessed on 13 May 2022).
- WHO. Global Health Observatory Data Repository: Antenatal Care Coverage Data by Country. World Health Organization. 2021, p. 1. Available online: https://apps.who.int/gho/data/view.main.ANTENATALCARECOVERAGE4v (accessed on 13 May 2022).
- Olaitan, T.; Okafor, I.P.; Onajole, A.T.; Abosede, O.A. Ending preventable maternal and child deaths in western Nigeria: Do women utilize the life lines? PLoS ONE 2017, 12, e0176195. [Google Scholar] [CrossRef]
- Odhiambo, A. “Stop Making Excuses”: Accountability for Maternal Health Care in South Africa. Human Rights Watch, 8 August 2011. [Google Scholar]
- World Health Organization. Trends in Maternal Mortality: 2000 to 2017: Estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Beitzel, M. Sustainable Development Goal# 3 Good Health and Well-Being: Maternal and Child Health. Available online: https://summit.plymouth.edu/handle/20.500.12774/168 (accessed on 25 August 2022).
- SSA Statistics South Africa. Maternal Health Indicators: Further Analysis of the 1998 and 2016 South Africa Demographic and Health Surveys; Statistics South Africa: Pretoria, South Africa, 2020. [Google Scholar]
- Bobo, F.T.; Asante, A.; Woldie, M.; Dawson, A.; Hayen, A. Spatial patterns and inequalities in skilled birth attendance and caesarean delivery in sub-Saharan Africa. BMJ Glob. Health 2021, 6, e007074. [Google Scholar] [CrossRef]
- Nuamah, G.B.; Agyei-Baffour, P.; Mensah, K.A.; Boateng, D.; Quansah, D.Y.; Dobin, D.; Addai-Donkor, K. Access and utilization of maternal healthcare in a rural district in the forest belt of Ghana. BMC Pregnancy Childbirth 2019, 19, 6. [Google Scholar] [CrossRef]
- Geleto, A.; Chojenta, C.; Musa, A.; Loxton, D. Barriers to access and utilization of emergency obstetric care at health facilities in sub-Saharan Africa: A systematic review of literature 11 Medical and Health Sciences 1117 Public Health and Health Services. Syst. Rev. 2018, 7, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wabiri, N.; Chersich, M.; Shisana, O.; Blaauw, D.; Rees, H.; Dwane, N. Growing inequities in maternal health in South Africa: A comparison of serial national household surveys. BMC Pregnancy Childbirth 2016, 16, 256. [Google Scholar] [CrossRef] [PubMed]
- Morón-Duarte, L.S.; Varela, A.R.; Bertoldi, A.D.; Domingues, M.R.; Wehrmeister, F.C.; Silveira, M.F. Quality of antenatal care and its sociodemographic determinants: Results of the 2015 Pelotas birth cohort, Brazil. BMC Health Serv. Res. 2021, 21, 1070. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, S.T.; Yaya, S. Correlates of antenatal care utilization among women of reproductive age in sub-Saharan Africa: Evidence from multinomial analysis of demographic and health surveys (2010–2018) from 31 countries. Arch. Public Health 2020, 78, 134. [Google Scholar] [CrossRef]
- Okedo-Alex, I.N.; Akamike, I.C.; Ezeanosike, O.B.; Uneke, C.J. Determinants of antenatal care utilisation in sub-Saharan Africa: A systematic review. BMJ Open 2019, 9, e031890. [Google Scholar] [CrossRef]
- Aziz Ali, S.; Aziz Ali, S.; Feroz, A.; Saleem, S.; Fatmai, Z.; Kadir, M.M. Factors affecting the utilization of antenatal care among married women of reproductive age in the rural Thatta, Pakistan: Findings from a community-based case-control study. BMC Pregnancy Childbirth 2020, 20, 355. [Google Scholar] [CrossRef]
- Tran, T.K.; Nguyen, C.T.; Nguyen, H.D.; Eriksson, B.; Bondjers, G.; Gottvall, K.; Ascher, H.; Petzold, M. Urban-Rural disparities in antenatal care utilization: A study of two cohorts of pregnant women in Vietnam. BMC Health Serv. Res. 2011, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Rustagi, R.; Basu, S.; Garg, S.; Singh, M.M.; Mala, Y.M. Utilization of antenatal care services and its sociodemographic correlates in urban and rural areas in Delhi, India. Eur. J. Midwifery 2021, 5, 40. [Google Scholar] [CrossRef]
- Venkateswaran, M.; Bogale, B.; Abu Khader, K.; Awwad, T.; Friberg, I.K.; Ghanem, B.; Hijaz, T.; Mørkrid, K.; Frøen, J.F. Effective coverage of essential antenatal care interventions: A cross-sectional study of public primary healthcare clinics in the West Bank. PLoS ONE 2019, 14, e0212635. [Google Scholar] [CrossRef]
- Ogbo, F.A.; Dhami, M.V.; Ude, E.M.; Senanayake, P.; Osuagwu, U.L.; Awosemo, A.O.; Ogeleka, P.; Akombi, B.J.; Ezeh, O.K.; Agho, K.E. Enablers and barriers to the utilization of antenatal care services in India. Int. J. Environ. Res. Public Health 2019, 16, 3152. [Google Scholar] [CrossRef]
- Joshi, C.; Torvaldsen, S.; Hodgson, R.; Hayen, A. Factors associated with the use and quality of antenatal care in Nepal: A population-based study using the demographic and health survey data. BMC Pregnancy Childbirth 2014, 14, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dairo, M.D.; Owoyokun, K. Factors affecting the utilization of antenatal care services in Ibadan, Nigeria. Benin J. Postgrad. Med. 2011, 12, 1–11. [Google Scholar] [CrossRef]
- Denny, H.M.; Laksono, A.D.; Matahari, R.; Kurniawan, B. The Determinants of Four or More Antenatal Care Visits Among Working Women in Indonesia. Asia Pac. J. Public Health 2022, 34, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Ebonwu, J.; Mumbauer, A.; Uys, M.; Wainberg, M.L.; Medina-Marino, A. Determinants of late antenatal care presentation in rural and peri-urban communities in South Africa: A cross-sectional study. PLoS ONE 2018, 13, e0191903. [Google Scholar] [CrossRef]
- Dahiru, T.; Oche, O.M. Determinants of antenatal care, institutional delivery and postnatal care services utilization in Nigeria. Pan Afr. Med. J. 2015, 21, 1–17. [Google Scholar] [CrossRef]
- Rurangirwa, A.A.; Mogren, I.; Nyirazinyoye, L.; Ntaganira, J.; Krantz, G. Determinants of poor utilization of antenatal care services among recently delivered women in Rwanda; a population based study. BMC Pregnancy Childbirth 2017, 17, 142. [Google Scholar] [CrossRef]
- Basha, G.W. Factors Affecting the Utilization of a Minimum of Four Antenatal Care Services in Ethiopia. Obstet. Gynecol. Int. 2019, 2019, 5036783. [Google Scholar] [CrossRef]
- Tessema, Z.T.; Teshale, A.B.; Tesema, G.A.; Tamirat, K.S. Determinants of completing recommended antenatal care utilization in sub-Saharan from 2006 to 2018: Evidence from 36 countries using Demographic and Health Surveys. BMC Pregnancy Childbirth 2021, 21, 192. [Google Scholar] [CrossRef]
- Chopra, I.; Juneja, S.K.; Sharma, S. Effect of maternal education on antenatal care utilization, maternal and perinatal outcome in a tertiary care hospital. Int. J. Reprod. Contracept. Obstet. Gynecol. 2018, 8, 247. [Google Scholar] [CrossRef]
- Teklesilasie, W.; Deressa, W. Husbands’ involvement in antenatal care and its association with women’s utilization of skilled birth attendants in Sidama zone, Ethiopia: A prospective cohort study. BMC Pregnancy Childbirth 2018, 18, 315. [Google Scholar] [CrossRef] [PubMed]
- Alenoghena, I.O.; Isah, E.C.; Isara, A.R. Maternal health services uptake and its determinants in public primary health care facilities in edo state, Nigeria. Niger. Postgrad. Med. J. 2015, 22, 25–31. [Google Scholar] [PubMed]
- Maduka, O.; Ogu, R. Non-Utilization of antenatal care services among women of reproductive age in the Niger delta region of Nigeria: Findings from 2595 women. Clin. Obstet. Gynecol. Reprod. Med. 2018, 4, 1–5. [Google Scholar] [CrossRef]
- Yaya, S.; Bishwajit, G.; Ekholuenetale, M.; Shah, V.; Kadio, B.; Udenigwe, O. Timing and adequate attendance of antenatal care visits among women in Ethiopia. PLoS ONE 2017, 12, e0184934. [Google Scholar] [CrossRef] [PubMed]
- Sanogo, N.A.; Yaya, S. Wealth Status, Health Insurance, and Maternal Health Care Utilization in Africa: Evidence from Gabon. BioMed Res. Int. 2020, 2020, 4036830. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Khanal, V.; Singh, J.K.; Adhikari, M.; Gautam, S. Impact of mass media on the utilization of antenatal care services among women of rural community in Nepal. BMC Res. Notes 2015, 8, 345. [Google Scholar] [CrossRef]
- Fatema, K.; Lariscy, J.T. Mass media exposure and maternal healthcare utilization in South Asia. SSM-Popul. Health 2020, 11, 100614. [Google Scholar] [CrossRef]
- Login, S. The DHS Program. DHS 2016:1–2. Available online: https://dhsprogram.com/What-We-Do/Survey-Types/DHS-Questionnaires.cfm (accessed on 25 August 2022).
Variables | Weighted Frequency | Weighted % |
---|---|---|
Socio-demographics Age (years) | ||
15–24 | 20,933 | 30.9 |
25–34 | 31,531 | 46.6 |
35+ | 15,181 | 22.4 |
Marital Status | ||
Married/Co-habiting | 33,683 | 49.8 |
Single | 33,962 | 50.2 |
Educational Level | ||
No Education | 3542 | 5.2 |
Primary | 12,505 | 18.5 |
Secondary | 45,612 | 67.4 |
Tertiary | 5986 | 8.8 |
Race | ||
Black/African | 58,172 | 86.3 |
White | 2256 | 3.3 |
Colored | 5692 | 8.4 |
Indian/Asian | 1261 | 1.9 |
Obstetric and Household Factor Parity | ||
Nulliparity | 7833 | 11.6 |
Para 1–2 | 52,397 | 77.5 |
Para ≥3 | 7415 | 11.5 |
Timing of ANC (months) (n = 64,463) γ | ||
<3 | 11,217 | 17.4 |
3–6 | 46,549 | 72.2 |
6+ | 6697 | 10.4 |
Place of Residence | ||
Urban | 38,295 | 56.6 |
Rural | 29,350 | 43.4 |
Province | ||
Gauteng | 15,928 | 23.5 |
Kwazulu-Natal | 13,344 | 19.7 |
Limpopo | 8540 | 12.6 |
Eastern Cape | 8429 | 12.5 |
Mpumalanga | 5811 | 8.6 |
Western Cape | 5624 | 8.3 |
North West | 52,928 | 7.7 |
Free State | 3471 | 5.1 |
Northern Cape | 1286 | 1.9 |
Economic Status Wealth Index | ||
Poorest | 12,177 | 18.0 |
Poorer | 15,762 | 23.3 |
Middle | 15,430 | 22.8 |
Richer | 13,007 | 19.2 |
Richest | 11,269 | 16.7 |
Employment Status (n = 65,646) γ | ||
Employed | 20,095 | 30.6 |
Not employed | 45,551 | 69.4 |
Own a Car/Truck (n = 66,442) γ | ||
Yes | 15,226 | 22.9 |
No | 51,216 | 77.1 |
Own a Motorcycle/Scooter (n = 66,381) γ | ||
Yes | 1094 | 1.6 |
No | 65,287 | 98.4 |
Own a Bicycle (n = 66,442) γ | ||
Yes | 9420 | 14.2 |
No | 57,022 | 85.8 |
Own a refrigerator (n = 66,336) γ | ||
Yes | 39,090 | 58.93 |
No | 27,246 | 41.07 |
Has Electricity (n = 66,417) γ | ||
Yes | 45,578 | 71.6 |
No | 18,839 | 28.4 |
Media Exposure factor Own a Television (n = 66,371) γ | ||
Yes | 45,720 | 68.89 |
No | 20,651 | 31.11 |
Own a Radio (n = 66,344) γ | ||
Yes | 43,316 | 65.29 |
No | 23,028 | 34.71 |
Watches TV everyday/week (n = 67,220) γ | ||
Yes | 42,755 | 63.6 |
No | 24,465 | 36.4 |
Listens to Radio everyday/week (n = 67,507) γ | ||
Yes | 41,424 | 61.4 |
No | 26,083 | 38.6 |
Reads newspaper regularly (n = 67,491) γ | ||
Yes | 24,595 | 36.9 |
No | 42,595 | 63.1 |
Health Institution factor Getting permission to go to the Health facility (n = 14,768) γ | ||
Not a big Problem | 12,828 | 86.9 |
Big Problem | 1940 | 13.1 |
Getting money to go to the Health facility for treatment (n = 14,768) γ | ||
Not a big Problem | 10,665 | 72.2 |
Big Problem | 4103 | 27.8 |
Distance to Health facility (n = 14,768) γ | ||
Not a big Problem | 11,459 | 77.6 |
Big Problem | 3309 | 22.4 |
Not wanting to go to the Health facility alone (n = 14,768) γ | ||
Not a big Problem | 12,989 | 88.0 |
Big Problem | 1779 | 12.0 |
Variables | Utilization of Antenatal Care Services Weighted Freq (%) | Total | Chi-Square, p-Value | |
---|---|---|---|---|
Yes n = 53,726 | No n = 13,919 | |||
Socio-Demographics Age (Years) | ||||
15–24 | 16,283 (77.8) | 4650 (22.2) | 20,933(100.0) | χ2 = 10.12, p = 0.038 |
25–34 | 25,570 (81.1) | 5961 (18.9) | 31,531(100.0) | |
35+ | 11,873 (78.2) | 3308 (21.8) | 15,181(100.0) | |
Marital Status | χ2 = 20.37, p = 0.001 | |||
Married/Co-habiting | 26,990(80.1) | 6693 (19.9) | 33,683 (100.0) | |
Single | 26,736(78.7) | 7226 (21.3) | 33,962 (100.0) | |
Educational Level | χ2 = 33.78, p = 0.001 | |||
No Education | 2611 (73.7) | 931 (26.3) | 3542 (100.0) | |
Primary | 9728 (77.8) | 2777 (22.2) | 12,505 (100.0) | |
Secondary | 36,140 (79.2) | 9472 (20.8) | 45,612 (100.0) | |
Tertiary | 5247 (87.7) | 739 (12.3) | 5986 (100.0) | |
Race | χ2 = 44.38, p = 0.001 | |||
Black/African | 45,504 (78.2) | 12,668 (21.8) | 58,172 (100.0) | |
White | 1952 (86.5) | 304 (13.5) | 2256 (100.0) | |
Colored | 4921 (86.5) | 771 (13.5) | 5692 (100.0) | |
Indian/Asian | 1179 (93.5) | 82 (6.5) | 1261 (100.0) | |
Obstetric and Household factor Parity | χ2 = 29.59, p = 0.001 | |||
Nulliparity | 5852 (74.7) | 1981 (25.3) | 7833 (100.0) | |
Para 1–2 | 42,373 (80.9) | 10,024 (19.1) | 52,397 (100.0) | |
Para ≥3 | 5501 (74.2) | 1914 (25.8) | 7415 (100.0) | |
Timing of ANC (months) | χ2 = 984.32, p = 0.001 | |||
<3 | 10,881 (97.0) | 336 (3.0) | 11,217 (100.0) | |
3–6 | 39,923 (85.8) | 6626 (14.2) | 46,549 (100.0) | |
6+ | 2804 (41.9) | 3893 (58.1) | 6697 (100.0) | |
Place of Residence | χ2 = 8.21, p = 0.004 | |||
Urban | 30,565 (79.8) | 7730 (20.2) | 38,295 (100.0) | |
Rural | 23,161 (78.9) | 6189 (21.1) | 29,350 (100.0) | |
Province | χ2 = 81.47, p = 0.001 | |||
Western Cape | 4981 (88.6) | 643 (11.4) | 5624 (100.0) | |
Eastern Cape | 6334 (75.1) | 2095 (24.9) | 8429 (100.0) | |
Northern Cape | 1049 (81.6) | 237 (18.4) | 1286 (100.0) | |
Free State | 2734 (78.8) | 737 (21.2) | 3471 (100.0) | |
Kwazulu-Natal | 11,055 (82.8) | 2289 (17.2) | 13,344 (100.0) | |
North West | 4195 (80.5) | 1017 (19.5) | 5212 (100.0) | |
Gauteng | 11,856 (74.4) | 4072 (25.6) | 15,928 (100.0) | |
Mpumalanga | 4446 (76.5) | 1365 (23.5) | 5811 (100.0) | |
Limpopo | 7076 (82.9) | 1464 (17.1) | 8540 (100.0) | |
Economic Status Wealth Index | χ2 = 25.11, p = 0.003 | |||
Poorest | 9205 (75.6) | 2922 (24.4) | 12,177 (100.0) | |
Poorer | 12,185 (77.3) | 3577 (22.7) | 15,762 (100.0) | |
Middle | 12,563 (81.4) | 2867 (18.6) | 15,430 (100.0) | |
Richer | 10,554 (81.1) | 2453 (18.9) | 13,007 (100.0) | |
Richest | 9219 (81.8) | 2050 (18.2) | 11,269 (100.0) | |
Employment Status | χ2 = 27.07, p = 0.001 | |||
Employed | 16,706 (83.1) | 3389 (16.9) | 20,095 (100.0) | |
Not employed | 35,291 (77.5) | 10,260 (22.5) | 45,551 (100.0) | |
Own a Car/Truck | χ2 = 21.95, p = 0.004 | |||
Yes | 12,753 (83.8) | 2473 (16.2) | 15,226 (100.0) | |
No | 40,056 (78.2) | 11,160 (21.8) | 51,216 (100.0) | |
Own a Motorcycle/Scooter | χ2 = 36.18, p = 0.001 | |||
Yes | 950 (86.8) | 144 (13.2) | 1094 (100.0) | |
No | 51,831 (79.4) | 13,456 (20.6) | 65,287 (100.0) | |
Own a Bicycle | χ2 = 6.27, p = 0.032 | |||
Yes | 7776 (82.5) | 1644 (17.5) | 9420 (100.0) | |
No | 45,033 (79.0) | 11,989 (21.0) | 57,022 (100.0) | |
Own a refrigerator | χ2 = 27.92, p = 0.001 | |||
Yes | 31,917 (81.7) | 7173 (18.3) | 39,090 (100.0) | |
No | 20,788 (76.3) | 6458 (23.7) | 27,246 (100.0) | |
Has Electricity | χ2 = 29.54, p = 0.001 | |||
Yes | 38,627 (81.2) | 8951 (18.8) | 47,578 (100.0) | |
No | 14,164 (75.2) | 4675 (24.8) | 18,839 (100.0) | |
Media Exposure factor Own a Television | χ2 = 20.69, p = 0.001 | |||
Yes | 37,023 (81.0) | 8697 (19.0) | 45,720 (100.0) | |
No | 15,712 (76.1) | 4939 (23.9) | 20,651 (100.0) | |
Own a Radio | χ2 = 19.02, p = 0.001 | |||
Yes | 35,104 (81.0) | 8212 (19.0) | 43,316 (100.0) | |
No | 1766 (76.5) | 5417 (23.5) | 23,028 (100.0) | |
Watches TV every day/week | χ2 = 37.82, p = 0.001 | |||
Yes | 34,964 (81.8) | 7791 (18.2) | 42,755 (100.0) | |
No | 18,462 (75.5) | 6003 (24.5) | 24,465 (100.0) | |
Listens to the Radio every day/week | χ2 = 6.58, p = 0.038 | |||
Yes | 33,306 (80.4) | 8118 (19.6) | 41,424 (100.0) | |
No | 20,293 (77.8) | 5790 (22.2) | 26,083 (100.0) | |
Reads newspaper regularly | χ2 = 7.41, p = 0.039 | |||
Yes | 20,211 (81.2) | 4685 (18.8) | 24,896 (100.0) | |
No | 33,393 (78.4) | 9202 (21.6) | 42,595 (100.0) | |
Health Institution factor α Getting permission to go to the Health facility | χ2 = 0.253, p = 0.687 | |||
Not a big Problem | 10,013 (78.1) | 2815 (21.9) | 12,828 (100.0) | |
Big Problem | 1483 (76.4) | 457 (23.6) | 1940 (100.0) | |
Getting money to go to the Health facility for treatment | χ2 = 3.66, p = 0.167 | |||
Not a big Problem | 8439 (79.1) | 2226 (20.9) | 10,665 (100.0) | |
Big Problem | 3057 (74.5) | 1046 (25.5) | 4103 (100.0) | |
Distance to Health facility | χ2 = 1.75, p = 0.274 | |||
Not a big Problem | 8832 (77.1) | 2627 (22.9) | 11,459 (100.0) | |
Big Problem | 2664 (80.5) | 645 (19.5) | 3309 (100.0) | |
Not wanting to go to the Health facility alone | χ2 = 1.75, p = 0.274 | |||
Not a big Problem | 10,028 (77.2) | 2961 (22.8) | 12,989 (100.0) | |
Big Problem | 1468 (82.5) | 311 (17.5) | 1779 (100.0) |
Variables | Model I cOR (95% CI) | Model II aOR (95% CI) | Model III aOR (95% CI) | Model IV aOR (95% CI) |
---|---|---|---|---|
Age (years) | ||||
15–24 R | ||||
25–34 | 0.98 (0.84–1.16) | |||
35+ | 1.26 (1.08–1.47) * | |||
Marital Status | ||||
Single R | ||||
Married/Co-habiting | 1.13 (1.004–1.27) * | |||
Educational Level | ||||
No Education R | ||||
Primary | 0.38 (0.26–0.53) *** | |||
Secondary | 0.45 (0.34–0.60) *** | |||
Tertiary | 0.55 (0.42–0.72) *** | |||
Race | ||||
Black/African R | ||||
White | 0.25 (0.12–0.55) *** | |||
Colored | 0.46 (0.19–1.09) | |||
Indian/Asian | 0.35 (0.16–0.76) ** | |||
Parity | ||||
Nulliparity R | ||||
Para 1–2 | 1.33 (1.06–1.68) ** | 0.95 (0.71–1.26) | ||
Para ≥3 | 1.63 (1.37–1.93) *** | 1.29 (1.03–1.68) * | ||
Timing of ANC (months) | ||||
<3 R | ||||
3–6 | 41.91 (29.46–59.61) *** | 0.029 (0.020–0.042) *** | ||
6+ | 9.73 (8.15–11.62) *** | 0.29 (0.21–0.40) *** | ||
Place of Residence | ||||
Rural R | ||||
Urban | 1.35 (1.20–1.52) *** | 1.24 (1.04–1.49) * | ||
Province | ||||
Western Cape R | ||||
Eastern Cape | 1.54 (1.09–2.18) * | 0.54 (0.30–0.95) * | ||
Northern Cape | 0.56 (0.45–0.69) *** | 0.33 (0.19–0.58) *** | ||
Free State | 0.94 (0.71–1.24) | 0.23 (0.13–0.41) *** | ||
Kwazulu-Natal | 0.84 (0.63–1.09) | 0.31(0.17–0.57) *** | ||
North West | 0.98 (0.77–1.25) | 0.38 (0.21–0.68)*** | ||
Gauteng | 0.93 (0.49–0.81) *** | 0.27 (0.15–0.50) *** | ||
Mpumalanga | 0.63 (0.49–0.81) *** | 0.34 (0.20–0.60) *** | ||
Limpopo | 0.70 (0.55–0.89) *** | 0.25 (0.15–0.43) *** | ||
Wealth Index | ||||
Poorest/Poorer R | ||||
Middle | 1.32 (1.15–1.51) *** | 1.08 (0.93–1.25) | 1.21 (1.0–1.47) * | |
Richer/Richest | 1.05 (0.89–1.25) | 1.11 (0.94–1.31) | 1.23 (1.007–1.51) * | |
Employment Status | ||||
Not employed R | ||||
Employed | 1.48 (1.29–1.70) *** | 1.27 (1.102–1.49) *** | 1.20 (1.004–1.44) * | |
Own a Car/Truck | ||||
No R | ||||
Yes | 1.44 (1.23–1.69) *** | 1.01 (0.85–1.23) | 1.15 (0.92–1.43) | |
Own a Motorcycle/Scooter | ||||
No R | ||||
Yes | 2.97 (1.37–6.44) ** | 2.11 (0.95–4.65) | 2.69 (0.91–7.99) | |
Own a Bicycle | ||||
No R | ||||
Yes | 1.18 (0.99–1.41) | 0.95 (0.79–1.15) | 0.88 (0.71–1.12) | |
Own a refrigerator | ||||
No R | ||||
Yes | 1.58 (1.40–1.79) *** | 1.20 (1.01–1.41) * | 1.09 (0.89–1.33) | |
Has Electricity | ||||
No R | ||||
Yes | 1.62 (1.43–1.84) *** | 1.27 (1.07–1.50) ** | 1.04 (0.85–1.28) | |
Own a Television | ||||
No R | ||||
Yes | 1.27 (1.12–1.44) *** | 1.16 (1.0–1.35) * | 1.33 (1.11–1.60) | 1.18 (1.02–1.38) * |
Own a Radio | ||||
No R | ||||
Yes | 1.50 (1.33–1.69) *** | 0.99 (0.84–1.19) | 0.89 (0.72–1.11) | 0.86 (0.70–1.04) |
Watches TV every day/week | ||||
No R | ||||
Yes | 1.68 (1.49–1.89) *** | 1.44 (1.21–1.72) *** | 1.39 (1.12–1.73) * | 1.37 (1.15–1.65) *** |
Listens to the Radio every day/week | ||||
No R | ||||
Yes | 1.21 (1.07–1.36) ** | 0.95 (0.82–1.11) | 0.90 (0.75–1.08) | 0.95 (0.82–1.10) |
Reads newspaper regularly | ||||
No R | ||||
Yes | 1.47 (1.29–1.68) *** | 1.12 (0.97–1.31) | 1.18 (0.99–1.42) | 1.18 (1.01–1.36) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nxiweni, P.Z.; Oladimeji, K.E.; Nanjoh, M.; Banda, L.; Anyiam, F.E.; Hyera, F.L.M.; Apalata, T.R.; Mbokazi, J.A.; Oladimeji, O. Factors Influencing the Utilization of Antenatal Services among Women of Childbearing Age in South Africa. Women 2022, 2, 285-303. https://doi.org/10.3390/women2030027
Nxiweni PZ, Oladimeji KE, Nanjoh M, Banda L, Anyiam FE, Hyera FLM, Apalata TR, Mbokazi JA, Oladimeji O. Factors Influencing the Utilization of Antenatal Services among Women of Childbearing Age in South Africa. Women. 2022; 2(3):285-303. https://doi.org/10.3390/women2030027
Chicago/Turabian StyleNxiweni, Putunywa Zandrina, Kelechi Elizabeth Oladimeji, Mirabel Nanjoh, Lucas Banda, Felix Emeka Anyiam, Francis Leonard Mpotte Hyera, Teke R. Apalata, Jabu A. Mbokazi, and Olanrewaju Oladimeji. 2022. "Factors Influencing the Utilization of Antenatal Services among Women of Childbearing Age in South Africa" Women 2, no. 3: 285-303. https://doi.org/10.3390/women2030027
APA StyleNxiweni, P. Z., Oladimeji, K. E., Nanjoh, M., Banda, L., Anyiam, F. E., Hyera, F. L. M., Apalata, T. R., Mbokazi, J. A., & Oladimeji, O. (2022). Factors Influencing the Utilization of Antenatal Services among Women of Childbearing Age in South Africa. Women, 2(3), 285-303. https://doi.org/10.3390/women2030027