Solvent-Free Lipase-Catalysed Esterification of Potato Maltodextrins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Esters
2.3. Enzymatic Hydrolysis of Rapeseed Oil
2.4. Determination of Acid Number (Acid Value)
- m—mass of fat [g];
- V—volume of potassium hydroxide solution used for titration of the fat sample;
- V0—volume of potassium hydroxide solution used for titration of the blank sample;
- C—concentration of KOH solution (0.1 N).
2.5. Gas Chromatography
2.6. FT–IR Spectroscopy
2.7. 1H NMR Spectroscopy
2.8. Determination of the Degree of Substitution
2.9. Scanning Electron Microscopy (SEM)
2.10. Water Solubility Measurement
- wC2—mass of crystalliser with precipitate, after drying [g];
- wC1—mass of empty crystalliser [g];
- wS—dry mass of the sample [g].
2.11. Preparation of the Emulsions
2.12. Visual Determination of Emulsion Stability—Determination of Creaming Index
- HL—height of lower part (serum),
- HE—height of emulsion.
2.13. Data Analysis
3. Results
3.1. Evaluation of the Progress of Enzymatic Hydrolysis of Rapeseed Oil—ATR FT–IR Spectra Analysis
3.2. Relationship Between Acid Value and Time of Reaction
3.3. Determination of the Quantitative and Qualitative Composition of the Mixture Formed by Enzymatic Hydrolysis of Rapeseed Oil by the GC-FID Method
3.4. Evaluation of the Influence of Esterification Conditions, Degree of Saccharification of Maltodextrins, and Type of Lipase Used on the Degrees of Substitution of Modification Products
3.5. FT–IR Measurements—Confirmation of Esterification
3.6. 1H NMR Measurements—Determination of the Structure of Esterification Products
3.7. Scanning Electron Microscopy (SEM)
3.8. Water Solubility Measurements
3.9. Comparison of Emulsion Stability Based on the Visual Method and Determination of the Creaming Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DE | dextrose equivalent |
DS | degree of substitution |
LM | low-saccharified maltodextrin |
MM | medium-saccharified maltodextrin |
HM | high-saccharified maltodextrin |
CI | creaming index |
WSI | water solubility index |
AV | acid value/number |
References
- Zarski, A.; Kapusniak, K.; Ptak, S.; Rudlicka, M.; Coseri, S.; Kapusniak, J. Functionalization methods of starch and its derivatives: From old limitations to new possibilities. Polymers 2024, 16, 597. [Google Scholar] [CrossRef]
- Roczkowska, M.; Ptak, S.; Siemion, P.; Kapusniak, J. Biocatalysed esterification of potato maltodextrin in the presence of fungal lipase. In Proceedings of the 11th International Conference on Polysaccharides-Glycoscience, Prague, Czech Republic, 22–24 October 2015; Czech Chemical Society: Prague, Czech Republic, 2015; pp. 155–158, ISSN 2336-6796. [Google Scholar]
- Wang, J.; Wang, L. Structures and properties of commercial maltodextrins from corn, potato, and rice starches. Starch/Stärke 2000, 52, 296–304. [Google Scholar]
- Takeiti, C.Y.; Kieckbusch, T.G.; Collares-Queiroz, F.P. Morphological and Physicochemical Characterization of Commercial Maltodextrins with Different Degrees of Dextrose-Equivalent. Int. J. Food Prop. 2010, 13, 411–425. [Google Scholar] [CrossRef]
- Dokic-Baucal, L.; Dokic, P.; Jakovljevic, J. Influence of different maltodextrins on properties of O/W emulsions. Food Hydrocoll. 2004, 18, 233–239. [Google Scholar] [CrossRef]
- Lee, S.M.; Cho, A.R.; Yoo, S.H.; Kim, Y.S. Effects of maltodextrins with different dextrose-equivalent values. Flavour Fragr J. 2017, 33, 153–159. [Google Scholar]
- Negrão-Murakami, A.N.; Nunes, G.L.; Pinto, S.S.; Murakami, F.S.; Amante, E.R.; Petrus, J.C.C.; Amboni, R.D.M.C. Influence of DE-value of maltodextrin on the physicochemical properties, antioxidant activity, and storage stability of spray dried concentrated mate (Ilex paraguariensis A. St. Hil.). LWT-Food Sci. Technol. 2017, 79, 561–567. [Google Scholar] [CrossRef]
- Matsuura, T.; Ogawa, A.; Tomabechi, M.; Matsushita, R.; Gohtani, S.; Neoh, T.L.; Yoshii, H. Effect of dextrose equivalent of maltodextrin on the stability of emulsified coconut-oil in spray-dried powder. J. Food Eng. 2015, 163, 54–59. [Google Scholar]
- Blanchard, P.H.; Katz, F.R. Starch Hydrolysates. In Food Polysaccharides and Their Applications, 2nd ed.; Stephen, A.M., Ed.; Marcel Dekker: New York, NY, USA, 1995; Volume 99, pp. 119–145. [Google Scholar]
- Biswas, A.; Shogren, R.L.; Willett, J.L. Ionic liquid as a solvent and a catalyst for acylation of maltodextrin. Ind. Crop. Prod. 2009, 30, 172–175. [Google Scholar] [CrossRef]
- Coupland, J.N.; McClements, D.J. Droplet size determination in food emulsions: Comparison of ultrasonic and light scattering methods. J. Food Eng. 2001, 50, 117–120. [Google Scholar]
- Goudappel, G.J.W.; van Duynhoven, M.J.P.; Mooren, M.M.W. Measurement of oil droplet size distributions in food oil/water emulsions by time domain pulsed field gradient NMR. J. Colloid Interface Sci. 2001, 239, 535–542. [Google Scholar]
- Schubert, H.; Ax, K.; Behrend, O. Product engineering of dispersed systems. Trends Food. Sci. Technol. 2003, 14, 9–16. [Google Scholar] [CrossRef]
- Kowalska, M.; Zbikowska, A.; Gorecka, A. Wpływ wybranych zagęstników na rozkład kropel oleju w emulsjach niskotłuszczowych. Żywność. Nauka. Technologia. Jakość. 2011, 4, 84–93. (In Polish) [Google Scholar]
- McClements, D.J. Food Emulsions: Principles, Practise and Techniques, 3rd ed.; CRC Press LLC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Chanami, R.; McClements, D.J. Creaming stability of flocculated monodisperse oil-in-water emulsions. J. Colloid Interface Sci. 2000, 225, 214–218. [Google Scholar] [CrossRef]
- Buffo, R.A.; Reineccius, G.A.; Oehlert, G.W. Factors affecting the emulsifying and rheological properties of gum acacia in beverage emulsion. Food Hydrocoll. 2001, 15, 53–66. [Google Scholar] [CrossRef]
- Roland, I.; Piel, G.; Delattre, L.; Evrard, B. Systematic characterization of oil-in-water emulsions for formulation design. Int. J. Pharm. 2003, 263, 85–94. [Google Scholar] [CrossRef]
- Dluzewska, E.; Leszczyński, K. Stabilność i cechy reologiczne emulsji napojowych z dodatkiem gumy ghatti. Postępy Tech. Przetwórstwa Spożywczego 2006, 1, 21–24. (In Polish) [Google Scholar]
- Chanami, R.; McClements, D.J. Depletion flocculation of beverage emulsions by gum Arabic and modified starch. J. Food Sci. 2001, 66, 457–463. [Google Scholar] [CrossRef]
- Udomrati, S.; Ikeda, S.; Gohtani, S. The effect of tapioca maltodextrins on the stability of oil-in water emulsions. Starch/Stärke 2011, 63, 347–353. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Hogan, S.A.; McNamee, B.F.; O’Riordan, E.D.; O’Sullivan, M. Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. Int. Dairy J. 2001, 11, 137–144. [Google Scholar] [CrossRef]
- Klinkesorn, U.; Sophanodora, P.; Chinachoti, P.; McClements, D.J. Stability and rheology of corn oil-in-water emulsions containing maltodextrin. Food Res. Int. 2004, 37, 851–859. [Google Scholar] [CrossRef]
- Udomrati, S.; Ikeda, S.; Gohtani, S. Rheological properties and stability of oil-in-water emulsions containing tapioca maltodextrin in the aqueous phase. J. Food Eng. 2013, 116, 170–175. [Google Scholar] [CrossRef]
- Udomrati, S.; Gohtani, S. Tapioca maltodextrin fatty acid ester as a potential stabilizer for Tween 80-stabilized oil-in-water emulsions. Food Hydrocoll. 2015, 44, 23–31. [Google Scholar] [CrossRef]
- Udomrati, S.; Gohtani, S. Enzymatic esterification of tapioca maltodextrin fatty acid ester. Carbohydr. Polym. 2014, 99, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Udomrati, S.; Gohtani, S. Esterified xylo-oligosaccharides for stabilization of Tween 80-stabilized oil-in-water emulsions: Stabilization mechanism, rheological properties, and stability of emulsions. J. Sci. Food Agric. 2014, 94, 3241–3247. [Google Scholar] [CrossRef]
- Udomrati, S.; Khalid, N.; Gohtani, S.; Nakajima, M.; Neves, M.A.; Uemura, K.; Kobayashi, I. Effect of esterified oligosaccharides on the formation and stability of oil-in-water emulsions. Carbohydr. Polym. 2016, 143, 44–50. [Google Scholar] [CrossRef]
- Udomrati, S.; Gohtani, S. Enzymatic modification and characterization of xylo-oligosaccharide esters as potential emulsifiers. Int. Food Res. J. 2015, 22, 818–825. [Google Scholar]
- Gérard, D.; Méline, T.; Muzard, M.; Deleu, M.; Plantier-Royon, R.; Rémond, C. Enzymatically-synthesized xylo-oligosaccharides laurate esters as surfactants of interest. Carbohydr. Res. 2020, 495, 108090. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, Y.C. Structure and preparation of octenyl succinic esters of granular starch, microporous starch and soluble maltodextrin. Carbohydr. Polym. 2011, 83, 520–527. [Google Scholar] [CrossRef]
- Park, N.; Walsh, M.K. Physical and emulsion stabilizing properties of maltodextrin fatty acid polymers produced by lipase-catalyzed reactions in ethanol. Carbohydr. Polym. 2019, 226, 115309. [Google Scholar] [CrossRef]
- Shogren, R.L.; Biswas, A.; Willett, J.L. Preparation and physical properties of maltodextrin stearates of low to high degree of substitution. Starch/Stärke 2010, 62, 333–340. [Google Scholar] [CrossRef]
- Udomrati, S.; Cheetangdee, N.; Gohtani, S.; Surojanametakul, V.; Klongdee, S. Emulsion stabilization mechanism of combination of esterified maltodextrin and Tween 80 in oil-in-water emulsions. Food Sci. Biotechnol. 2019, 29, 387–392. [Google Scholar]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 2020, 19, 169. [Google Scholar]
- Janda, K.; Przybulewska, K. Ocena zdolności szczepów Thermomyces lanuginosus do biodegradacji oleju rzepakowego. Roczniki PZH. 2004, 3, 223–228. (In Polish) [Google Scholar]
- Stergiou, P.Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E.M. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 2013, 31, 1846–1859. [Google Scholar]
- Jaeger, J.E.; Dijkstra, B.W.; Reetz, M.T. Bacterial biocatalysis: Molecular biology, three dimensional structures and biotechnological applications of lipases. Annu. Rev. Microbiol. 1999, 53, 315–351. [Google Scholar] [PubMed]
- Antczak, T.; Graczyk, J. Lipazy: źródła, struktura i właściwości katalityczne. Biotechnologia 2002, 2, 130–145. (In Polish) [Google Scholar]
- Sharma, R.; Chisti, Y.; Banerjee, U.C. Production, purification, characterization and applications of lipase. Biotechnol. Adv. 2001, 19, 627–662. [Google Scholar]
- Illanes, A.; Fernandez-Lafuente, R.; Guisan, J.M.; Wilson, L. Heterogeneous Enzyme Kinetics. In Enzyme Biocatalysis. Principles and Applications, 3rd ed.; Stephen, A.M., Ed.; Springer: New York, NY, USA, 2008; pp. 155–197. [Google Scholar]
- Pantoa, T.; Shompoosang, S.; Ploypetchara, T.; Gohtani, S.; Udomrati, S. Surface-active properties and anti-microbial activities of esterified maltodextrins. Starch/Stärke 2019, 71, 1800265. [Google Scholar] [CrossRef]
- Park, N.; Walsh, M.K. Microbial inhibitory properties of maltodextrin fatty acid esters against food-related microorganisms. LWT-Food Sci. Technol. 2021, 147, 111664. [Google Scholar] [CrossRef]
- Zago, E.; Joly, N.; Chaveriat, L.; Lequart, V.; Martin, P. Enzymatic synthesis of amphiphilic carbohydrate esters: Influence of physicochemical and biochemical parameters. Biotechnol. Rep. 2021, 30, e00631. [Google Scholar]
- PN-ISO 660:1998; Vegetable and Animal Oils and Fats. Determination of Acid Number and Acidity. PKN: Warsaw, Poland, 1998.
- Roczkowska, M.; Siemion, P.; Kaczmarek, A. Właściwości fizykochemiczne produktów enzymatycznego utleniania skrobi. Chem. Environ. Biotechnol. 2013, 16, 85–96. (In Polish) [Google Scholar]
- Spectral Database for Organic Compounds, SDBS. Available online: https://sdbs.db.aist.go.jp/SearchResult.aspx (accessed on 16 December 2024).
- Kapusniak, J.; Siemion, P. Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. Linoleic acid. J. Food Eng. 2007, 78, 323–332. [Google Scholar]
- Fan, Y.; Lin, M.; Luo, A.; Chun, Z.; Luo, A. Characterization and antitumor activity of a polysaccharide from Sarcodia ceylonensis. Molecules 2014, 19, 10863–10876. [Google Scholar] [CrossRef] [PubMed]
- Junistia, L.; Sugih, A.K.; Manurung, R.; Picchioni, F.; Janssen, L.; Heeres, H.J. Synthesis of higher fatty acid starch esters using vinyl laurate and stearate as reactants. Starch/Stärke 2008, 60, 667–675. [Google Scholar]
- Mano, J.F.; Koniarova, D.; Reis, R.L. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J. Mater. Sci. Mater. Med. 2003, 14, 127–135. [Google Scholar]
- Winkler, H.; Vorwerg, W.; Wetzel, H. Synthesis and properties of fatty acid starch esters. Carbohydr. Polym. 2013, 98, 208–216. [Google Scholar]
- Hong, T.; Yi, Y.J.; Ping, N.S.; Yong, X.M. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem. 2021, 12, 100168. [Google Scholar]
- Fang, J.M.; Fowler, P.A.; Tomkinson, J.; Hill, C.A.S. The preparation and characterisation of a series of chemically modified potato starches. Carbohydr. Polym. 2002, 47, 245–252. [Google Scholar]
- van den Broek, L.A.M.; Boeriu, C.G. Enzymatic synthesis of oligo- and polysaccharide fatty acid esters. Carbohydr. Polym. 2013, 93, 65–72. [Google Scholar]
- Fang, J.M.; Fowler, P.A.; Sayers, C.; Williams, P.A. The chemical modification of a range of starches under aqueous reaction conditions. Carbohydr. Polym. 2004, 55, 283–289. [Google Scholar] [CrossRef]
- Shogren, R. Rapid preparation of starch esters by high temperature/pressure reaction. Carbohydr. Polym. 2003, 52, 319–326. [Google Scholar] [CrossRef]
- Singh, N.; Chawla, D.; Singh, J. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chem. 2004, 86, 601–608. [Google Scholar]
- Labidi, N.S.; Iddou, A. Adsorption of oleic acid on quarz/water interface. J. Saudi Chem. Soc. 2007, 11, 221–234. [Google Scholar]
- Premaratne, W.A.P.J.; Priyadarshana, W.M.G.I.; Gunawerdena, S.H.P.; De Alwis, A.A.P. Synthesis of nanosilica from paddy husk ash and their surface functionalization. J. Sci. Univ. Kelaniya. 2013, 8, 33–48. [Google Scholar]
- Hong, Y.S.; Cho, J.H.; Kim, N.R.; Lee, C.; Cheong, C.; Hong, K.S.; Lee, C.H. Artifacts in the measurement of water distribution in soybeans using MR imaging. Food Chem. 2009, 112, 267–272. [Google Scholar] [CrossRef]
- Sagis, L.M.C.; Boeriu, C.G.; Frissen, A.E.; Schols, H.A.; Wierenga, P.A. Highly stable foams from block oligomers synthesized by enzymatic reactions. Langmuir 2008, 24, 359–361. [Google Scholar]
- Luo, Z.; Zhou, Z. Homogeneous synthesis and characterization of starch acetates in ionic liquid without catalysts. Starch/Stärke 2012, 64, 37–44. [Google Scholar]
- Zarski, A.; Ptak, S.; Siemion, P.; Kapusniak, J. Esterification of potato starch by a biocatalysed reaction in an ionic liquid. Carbohydr. Polym. 2016, 137, 657–663. [Google Scholar] [CrossRef]
- Namazi, H.; Fathi, F.; Dadkhah, A. Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Sci. Iran. 2011, 18, 439–445. [Google Scholar]
- Molenda, M.; Stasiak, M.; Horabik, J.; Fornal, J.; Blaszczak, W.; Ornowski, A. Microstructure and mechanical parameters of five types of starch. Pol. J. Food Nutr. Sci. 2006, 15, 161–168. [Google Scholar]
- Xie, W.; Wang, Y. Synthesis of high fatty acid starch esters with 1-butyl-3- methylimidazolium chloride as a reaction medium. Starch/Stärke 2011, 63, 190–197. [Google Scholar] [CrossRef]
- Rajan, A.; Sudha, J.; Abraham, T.E. Enzymatic modification of cassava starch by fungal lipase. Ind. Crop. Prod. 2008, 27, 50–59. [Google Scholar] [CrossRef]
- Bendjaballah, M.; Canselier, J.P.; Oumeddour, R. Optimization of Oil-in-Water Emulsion Stability: Experimental Design, Multiple Light Scattering, and Acoustic Attenuation Spectroscopy. J. Dispers. Sci. Technol. 2010, 31, 1260–1272. [Google Scholar] [CrossRef]
Fatty Acid Name (Common) | Semi-Structural Formula | Symbol (Notation) | Concentration [% w/w] |
---|---|---|---|
Rapeseed Oil Hydrolysate | |||
lauric | CH3(CH2)10COOH | C12:0 | 0.1 |
miristic | CH3(CH2)12COOH | C14:0 | 0.1 |
palmitic | CH3(CH2)14COOH | C16:0 | 4.6 |
oleopalmitic | CH3(CH2)5CH=CH(CH2)7COOH | C16:1 | 0.3 |
margaric | CH3(CH2)15COOH | C17:0 | 0.1 |
elaidic | CH3(CH2)6CH=CH(CH2)7COOH | C17:1 | 0.1 |
stearic | CH3(CH2)16COOH | C18:0 | 1.8 |
trans oleic | CH3(CH2)7CH=CH(CH2)7COOH | C18:1 trans | 0.1 |
cis9 oleic | CH3(CH2)7CH=CH(CH2)7COOH | C18:1 cis9 | 58.7 |
cis11 oleic | CH3(CH2)7CH=CH(CH2)7COOH | C18:1 cis11 | 3.2 |
trans linolic | CH₃(CH₂)₄CH=CHCH₂CH=CH(CH₂)₇COOH | C18:2 trans | 0.1 |
linolic | CH₃(CH₂)₄CH=CHCH₂CH=CH(CH₂)₇COOH | C18:2 | 18.5 |
trans linolenic | CH3CH2(CH2-CH=CH)3(CH2)6COOH | C18:3 trans | 0.2 |
linolenic | CH3CH2(CH2-CH=CH)3(CH2)6COOH | C18:3 | 8.7 |
arachidic | CH3(CH2)18COOH | C20:0 | 0.6 |
eicosenoic | CH3(CH2)9CH=CH(CH2)7COOH | C20:1 | 1.7 |
behenic | CH3(CH2)20COOH | C22:0 | 0.3 |
erucic | CH3(CH2)7CH=CH(CH2)11COOH | C22:1 | 0.7 |
lignoceric | CH3(CH2)22COOH | C24:0 | 0.1 |
nervonic | CH3(CH2)7CH=CH(CH2)13COOH | C24:1 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudlicka, M.; Zarski, A.; Pokora-Carzynska, M.; Kapusniak, J. Solvent-Free Lipase-Catalysed Esterification of Potato Maltodextrins. Polysaccharides 2025, 6, 29. https://doi.org/10.3390/polysaccharides6020029
Rudlicka M, Zarski A, Pokora-Carzynska M, Kapusniak J. Solvent-Free Lipase-Catalysed Esterification of Potato Maltodextrins. Polysaccharides. 2025; 6(2):29. https://doi.org/10.3390/polysaccharides6020029
Chicago/Turabian StyleRudlicka, Magdalena, Arkadiusz Zarski, Marta Pokora-Carzynska, and Janusz Kapusniak. 2025. "Solvent-Free Lipase-Catalysed Esterification of Potato Maltodextrins" Polysaccharides 6, no. 2: 29. https://doi.org/10.3390/polysaccharides6020029
APA StyleRudlicka, M., Zarski, A., Pokora-Carzynska, M., & Kapusniak, J. (2025). Solvent-Free Lipase-Catalysed Esterification of Potato Maltodextrins. Polysaccharides, 6(2), 29. https://doi.org/10.3390/polysaccharides6020029