Development and Characterization of Sustainable Antimicrobial Films Incorporated with Natamycin and Cellulose Nanocrystals for Cheese Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Experimental Design
2.2.2. Elaboration of the Polymeric Blend Incorporated with CNC and Natamycin
2.2.3. Thickness and Mechanical Properties
2.2.4. Color and Opacity Measurement
2.2.5. Water Vapor Permeability (WVP)
2.2.6. Oxygen Permeability (O2P)
2.2.7. In Vitro Assessment of the Antimycotic Activity of the Films
2.2.8. Assessment of the Active Films on Minas Cheese Preservation
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Films’ Appearance
3.2. Mechanical Properties
3.3. Water Vapor and Oxygen Permeability
3.4. In Vitro Antimycotic Activity
3.5. Application of the Active Packaging in Minas Cheese
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, H.C., Jr.; Maranduba, H.L.; Almeida Neto, J.A.; Rodrigues, L.B. Life cycle assessment of cheese production process in a small-sized dairy industry in Brazil. Environ. Sci. Pollut. Res. 2017, 24, 3470–3482. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Millán, R.; Saavedra, P.; Jaber, J.R.; Raposo, A.; Sanjuán, E. Identification of the risk factors associated with cheese production to implement the hazard analysis and critical control points (HACCP) system on cheese farms. J. Dairy Sci. 2016, 99, 2606–2616. [Google Scholar] [CrossRef] [PubMed]
- Kure, C.F.; Sakaar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Oliveira, T.V.; Freitas, P.A.V.; Pola, C.C.; Terra, L.R.; Silva, J.O.R.; Badaró, A.T.; Junior, N.S.; Oliveira, M.M.; Silva, R.R.A.; Soares, N.F.F. The influence of intermolecular interactions between maleic anhydride, cellulose nanocrystal, and nisin-Z on the structural, thermal, and antimicrobial properties of starch-PVA plasticized matrix. Polysaccharides 2021, 2, 661–676. [Google Scholar] [CrossRef]
- Marques, C.S.; Silva, R.R.A.; Arruda, T.R.; Ferreira, A.L.V.; Oliveira, T.V.; Moraes, A.R.F.; Dias, M.V.; Vanetti, M.C.D.; Soares, N.F.F. Development and investigation of zein and cellulose acetate polymer blends incorporated with garlic essential oil and β-cyclodextrin for potential food packaging application. Polysaccharides 2022, 3, 277–291. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Kaya, D.A.; Andronescu, E. Biodegradable antimicrobial food packaging: Trends and Perspectives. Foods 2020, 9, 1438. [Google Scholar] [CrossRef]
- Li, H.; Luo, J.; Li, H.; Han, S.; Fang, S.; Li, L.; Han, X.; Wu, Y. Consumer cognition analysis of food additives based on Internet public opinion in China. Foods 2022, 11, 2070. [Google Scholar] [CrossRef]
- Yldiril, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active packaging applications for food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.S.; Arruda, T.R.; Silva, R.R.A.; Ferreira, A.L.V.; Oliveira, W.L.A.; Rocha, F.; Mendes, L.A.; Oliveira, T.V.; Vanetti, M.C.D.; Soares, N.F.F. Exposure to cellulose acetate films incorporated with garlic essential oil does not lead to homologous resistance in Listeria innocua ATCC 33090. Food Res. Int. 2022, 160, 111676. [Google Scholar] [CrossRef]
- Takma, D.K.; Korel, F. Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packag. Shelf Life 2019, 19, 210–217. [Google Scholar] [CrossRef]
- Klinmalai, P.; Srisa, A.; Laorenza, Y.; Katekhong, W.; Harnkarnsujarit, N. Antifungal and plasticization effects of carvacrol in biodegradable poly(lactic acid) and poly(butylene adipate terephthalate) blend films for bakery packaging. LWT 2021, 152, 112356. [Google Scholar] [CrossRef]
- Chiabrando, V.; Garavaglia, L.; Giacalone, G. The postharvest quality of fresh sweet cherries and strawberries with an active packaging system. Foods 2019, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Irkin, R.; Esmer, O.K. Novel food packaging systems with natural antimicrobial agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef]
- Meena, M.; Prajapati, P.; Ravichandran, C.; Sehrawat, R. Natamycin: A natural preservative for food applications—A review. Food Sci. Technol. 2021, 30, 1481–1496. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Drosinos, E.H.; Skandamis, P.N. Food recalls and warnings due to the presence of foodborne pathogens—A focus on fresh fruits, vegetables, dairy and eggs. Curr. Opin. Food Sci. 2017, 18, 71–75. [Google Scholar] [CrossRef]
- Grafia, A.L.; Vázquez, M.B.; Bianchinotti, M.V.; Barbosa, S.E. Development of an antifungal film by polyethylene surface modification with natamycin. Food Packag. Shelf Life 2018, 18, 191–200. [Google Scholar] [CrossRef]
- Fayed, A.; Elsayed, H.; Ali, T. Packaging fortified with natamycin nanoparticles for hindering the growth of toxigenic Aspergillus flavus and aflatoxin production in Romy cheese. J. Adv. Vet. Anim. Res. 2021, 8, 58–63. [Google Scholar] [CrossRef]
- Anari, H.N.B.; Majdinasab, M.; Shaghaghian, S.; Khalesi, M. Development of a natamycin-based non-migratory antimicrobial active packaging for extending shelf-life of yogurt drink (Doogh). Food Chem. 2022, 366, 130606. [Google Scholar] [CrossRef]
- Díaz-Montes, E. Polysaccharides: Sources, characteristics, properties, and their application in biodegradable films. Polysaccharides 2022, 3, 480–501. [Google Scholar] [CrossRef]
- Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; Oliveira, T.V.; Stringheta, P.C.; Pires, A.C.S.; Soares, N.F.F. Ionic strength of methylcellulose-based films: An alternative for modulating mechanical performance and hydrophobicity for potential food packaging application. Polysaccharides 2022, 3, 426–440. [Google Scholar] [CrossRef]
- Sid, S.; Mor, R.S.; Kishore, A.; Sharanagat, V.S. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci. Technol. 2021, 115, 87–104. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Sayed, S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr. Polym. 2018, 193, 19–27. [Google Scholar] [CrossRef] [PubMed]
- ASTM D882-12; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM, American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- Ramesh, S.; Radhakrishnan, P. Cellulose nanoparticles from agro-industrial waste for the development of active packaging. Appl. Surf. Sci. 2019, 484, 1274–1281. [Google Scholar] [CrossRef]
- ASTM E96/E96M-10; Standard test method for water vapor transmission of materials. ASTM, American Society for Testing and Materials: West Conshohocken, PA, USA, 2010.
- Zomorodian, K.; Saharkhiz, J.; Pakshir, K.; Immeripour, Z.; Sadatsharifi, A. The composition, antibiofilm and antimicrobial activities of essential oil of Ferula assa-foetida oleo-gum-resin. Biocatal. Agric. Biotechnol. 2018, 14, 300–304. [Google Scholar] [CrossRef]
- Marques, C.S.; Grillo, R.P.; Bravim, D.G.; Pereira, P.V.; Villanova, J.C.O.; Pinheiro, P.F.; Carneiro, J.C.S.; Bernardes, P.C. Preservation of ready-to-eat salad: A study with combination of sanitizers, ultrasound, and essential oil-containing β-cyclodextrin inclusion complex. LWT 2019, 115, 108433. [Google Scholar] [CrossRef]
- Bierhalz, A.C.K.; Silva, M.A.; Kieckbusch, T.G. Natamycin release from alginate/pectin films for food packaging applications. J. Food Eng. 2012, 110, 18–25. [Google Scholar] [CrossRef]
- Oyeoka, H.C.; Ewulonu, C.M.; Nwuzor, I.C.; Obele, C.M.; Nwabanne, J.T. Packaging and degradability properties of poly-vinyl alcohol/gelatin nanocomposites films filled with water hyacinth cellulose nanocrystals. J. Bioresour. Bioprod. 2021, 6, 168–185. [Google Scholar] [CrossRef]
- Yang, W.; Qi, G.; Kenny, J.M.; Puglia, D.; Ma, P. Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers 2020, 12, 1364. [Google Scholar] [CrossRef]
- Azeredo, H.M.; Rosa, M.F.; Mattoso, L.H.C. Nanocellulose in biobased food packaging applications. Ind. Crops Prod. 2017, 97, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.; Liu, Y.-K.; Chiu, F.-C. Fabrication of Cellulose Nanocrystal/Silver/Alginate Bionanocomposite Films with Enhanced Mechanical and Barrier Properties for Food Packaging Application. Nanomaterials 2019, 9, 1523. [Google Scholar] [CrossRef]
- Slavutsky, A.M.; Bertuzzi, M.A. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr. Polym. 2014, 110, 53–61. [Google Scholar] [CrossRef]
- Chakravartula, S.S.N.; Lourenço, R.V.; Balestra, F.; Bittante, A.M.Q.B.; Sobral, P.J.A.; Rosa, M.D. Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packag. Shelf Life 2020, 24, 100498. [Google Scholar] [CrossRef]
- Welscher, Y.M.; Jones, L.; van Leeuwen, M.R.; Dijksterhuis, J.; Kruijff, B.; Eitzen, G.; Breukink, E. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob. Agents Chemother. 2010, 54, 2618–2625. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Zhong, C.; Xia, L.; Li, W.; Wang, Z.; Deng, L.; Li, L.; Long, C. Antifungal activity of natamycin against kiwifruit soft rot caused by Botryosphaeria dothidea and potential mechanisms. Sci. Hortic. 2022, 305, 111344. [Google Scholar] [CrossRef]
- Szomek, M.; Reinholdt, P.; Walther, H.-L.; Scheidt, H.A.; Müller, P.; Obermaier, S.; Poolman, B.; Kongsted, J.; Wüstner, D. Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast. Biochim. Et Biophys. Acta (BBA) Biomembr. 2022, 1864, 184012. [Google Scholar] [CrossRef]
- Geronikou, A.; Srimahaeak, T.; Rantsiou, K.; Triantafillidis, G.; Larsen, N.; Jespersen, L. Occurrence of yeasts in white-brined cheeses: Methodologies for identification, spoilage potential and good manufacturing practices. Front. Microbiol. 2020, 11, 582778. [Google Scholar] [CrossRef]
- Correa, F.T.; de Souza, A.C.; de Souza Júnior, E.A.; Isidoro, S.R.; Piccoli, R.H.; Dias, D.; Abreu, L.R. Effect of Brazilian green propolis on microorganism contaminants of surface of Gorgonzola-type cheese. J. Food Sci. Technol. 2019, 56, 1978–1987. [Google Scholar] [CrossRef]
- Awasti, N.; Anand, S. The Role of Yeast and Molds in Dairy Industry: An Update. In Dairy Processing: Advanced Research to Applications; Minj, J., Sudhakaran, V.A., Kumari, A., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Biango-Daniels, M.N.; Wolfe, B.E. American artisan cheese quality and spoilage: A survey of cheesemakers’ concerns and needs. J. Dairy Sci. 2021, 104, 6283–6294. [Google Scholar] [CrossRef]
Treatments | Coded Levels | Real Values | ||
---|---|---|---|---|
X1 | X2 | CNC (% wt./wt.) | Natamycin (% wt./wt.) | |
1 | −1 | −1 | 0.70 | 0.70 |
2 | +1 | −1 | 4.30 | 0.70 |
3 | −1 | +1 | 0.70 | 4.30 |
4 | +1 | +1 | 4.30 | 4.30 |
5 | −1.41 | 0 | 0 | 2.50 |
6 | +1.41 | 0 | 5.00 | 2.50 |
7 | 0 | −1.41 | 2.50 | 0 |
8 | 0 | +1.41 | 2.50 | 5.00 |
9 | 0 | 0 | 2.50 | 2.50 |
10 | 0 | 0 | 2.50 | 2.50 |
11 | 0 | 0 | 2.50 | 2.50 |
12 | 0 | 0 | 2.50 | 2.50 |
13 | 0 | 0 | 2.50 | 2.50 |
Treatment | b* | OP (%) | YI | Thickness (µm) | UTS (MPa) | EB (%) | YM (MPa) | WVP (10−7 g·cm·m−1·h−1·Pa−1) | O2P (10−13 g·cm·m−1·h−1·Pa−1) |
---|---|---|---|---|---|---|---|---|---|
1 | 2.78 | 16.85 | 4.67 | 163 | 19.74 | 64.21 | 6.59 | 3.14 | 1.03 |
2 | 2.83 | 16.39 | 4.69 | 177 | 29.11 | 72.78 | 9.53 | 4.45 | 1.33 |
3 | 5.19 | 24.18 | 9.18 | 191 | 22.64 | 73.97 | 7.39 | 3.25 | 1.26 |
4 | 5.45 | 21.35 | 9.38 | 182 | 20.64 | 65.66 | 7.63 | 4.61 | 9.40 |
5 | 3.86 | 19.97 | 6.51 | 181 | 21.43 | 79.54 | 6.28 | 4.27 | 1.37 |
6 | 4.04 | 18.57 | 7.49 | 164 | 29.37 | 71.86 | 10.36 | 3.29 | 7.15 |
7 | 1.80 | 16.62 | 3.05 | 146 | 26.79 | 78.83 | 6.53 | 3.97 | 9.34 |
8 | 6.40 | 23.39 | 10.80 | 193 | 22.85 | 71.72 | 7.52 | 3.27 | 1.37 |
9 | 4.64 | 21.29 | 8.12 | 161 | 26.63 | 81.93 | 5.93 | 4.73 | 2.05 |
10 | 4.06 | 18.34 | 6.8 | 172 | 27.73 | 76.78 | 9.28 | 4.52 | 1.41 |
11 | 4.68 | 19.59 | 7.98 | 194 | 27.48 | 74.19 | 7.82 | 5.15 | 8.89 |
12 | 4.46 | 18.65 | 7.18 | 149 | 28.65 | 75.38 | 9.69 | 4.47 | 1.39 |
13 | 4.28 | 19.04 | 7.72 | 163 | 26.65 | 77.07 | 8.05 | 4.49 | 1.43 |
Microorganism | Inhibition Zone (mm) | R²adj |
---|---|---|
Alternaria alternata | IZ = 3.12 +17.13X − 2.37X² | 0.92 |
Aspergillus niger | 34.7 ± 4.4 | - |
Rhizopus stolonifer | 35.4 ± 3.0 | - |
Fusarium semitectum | 34.2 ± 4.0 | - |
Saccharomyces cerevisiae | 36.7 ± 3.5 | - |
Kluyveromyces lactis | 35.0 ± 2.7 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sousa, M.M.; Clemente, V.M.C.; Santos, R.M.d.S.; Oliveira, M.; Silva, J.O.R.; Batista, L.F.; Marques, C.S.; de Souza, A.L.; Medeiros, É.A.A.; Soares, N.d.F.F. Development and Characterization of Sustainable Antimicrobial Films Incorporated with Natamycin and Cellulose Nanocrystals for Cheese Preservation. Polysaccharides 2023, 4, 53-64. https://doi.org/10.3390/polysaccharides4010004
de Sousa MM, Clemente VMC, Santos RMdS, Oliveira M, Silva JOR, Batista LF, Marques CS, de Souza AL, Medeiros ÉAA, Soares NdFF. Development and Characterization of Sustainable Antimicrobial Films Incorporated with Natamycin and Cellulose Nanocrystals for Cheese Preservation. Polysaccharides. 2023; 4(1):53-64. https://doi.org/10.3390/polysaccharides4010004
Chicago/Turabian Stylede Sousa, Miriane Maria, Vânia Miria C. Clemente, Rosilene Maria de S. Santos, Mariane Oliveira, José Osvaldo Ramos Silva, Laís Fernanda Batista, Clara Suprani Marques, Amanda Lélis de Souza, Éber Antônio Alves Medeiros, and Nilda de Fátima Ferreira Soares. 2023. "Development and Characterization of Sustainable Antimicrobial Films Incorporated with Natamycin and Cellulose Nanocrystals for Cheese Preservation" Polysaccharides 4, no. 1: 53-64. https://doi.org/10.3390/polysaccharides4010004
APA Stylede Sousa, M. M., Clemente, V. M. C., Santos, R. M. d. S., Oliveira, M., Silva, J. O. R., Batista, L. F., Marques, C. S., de Souza, A. L., Medeiros, É. A. A., & Soares, N. d. F. F. (2023). Development and Characterization of Sustainable Antimicrobial Films Incorporated with Natamycin and Cellulose Nanocrystals for Cheese Preservation. Polysaccharides, 4(1), 53-64. https://doi.org/10.3390/polysaccharides4010004