Injectables Pharmacotherapies for Obesity: Mechanisms, Efficacy, and Aesthetic Implications
Abstract
:1. Introduction
2. Materials and Methods
3. Pathophysiology of Obesity
4. Injectable Medications for Weight Loss
4.1. GLP-1 Receptor Agonists
4.2. GIP Receptor Agonists
4.3. Mesotherapy Compounds
4.4. Metabolic Accelerators and Optimizers
4.5. Appetite Regulators
5. Common Drug Interactions
6. Injectable Weight Loss Agents and Aesthetic Dysfunctions: Strategies to Combat Skin Laxity with Biostimulators and Technologies
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Véniant, M.M.; Lu, S.C.; Atangan, L.; Komorowski, R.; Stanislaus, S.; Cheng, Y.; Wu, B.; Falsey, J.R.; Hager, T.; Thomas, V.A.; et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat. Metab. 2024, 6, 290–303. [Google Scholar] [PubMed]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef]
- Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2021.
- Rocha, L.P.; Machado, Í.E.; Fogal, A.S.; Malta, D.C.; Velasquez-Melendez, G.; Felisbino-Mendes, M.S. Burden of disease and direct costs to the health system attributable to high body mass index in Brazil. Public Health 2024, 233, 121–129. [Google Scholar]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.R.; Heymsfield, S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar]
- Bray, G.A.; Frühbeck, G.; Ryan, D.H.; Wilding, J.P.H. Management of obesity. Lancet 2016, 387, 1947–1956. [Google Scholar] [CrossRef]
- de Assis, L.V.; da Silva Morais, A.C.; Meireles, I.S.; da Costa, L.F.; Guerra, M.L.A.; Novaes, M.V.G.; Gomes, T.C.A.; Modenesi, V.; Dias, Y.H.F.; Rêgo, R.C.L. Obesidade: Diagnóstico e tratamento farmacológico com Liraglutida, integrado a terapia comportamental e mudanças no estilo de vida. Rev. Eletrônica Acervo Saúde 2021, 13, e6830. [Google Scholar]
- Haykal, D.; Hersant, B.; Cartier, H.; Meningaud, J.P. The Role of GLP-1 Agonists in Esthetic Medicine: Exploring the Impact of Semaglutide on Body Contouring and Skin Health. J. Cosmet. Dermatol. 2025, 24, e16716. [Google Scholar] [PubMed]
- Humphrey, C.D.; Lawrence, A.C. Implications of Ozempic and Other Semaglutide Medications for Facial Plastic Surgeons. Facial Plast. Surg. 2023, 39, 719–721. [Google Scholar]
- Bøkset, M.I.; Jensen, J.P.N. Body Contouring Surgery After Massive Weight Loss; Ugeskrift for Laeger: København, Denmark, 2022; Volume 184. [Google Scholar]
- Hall, K.D.; Kahan, S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med. Clin. N. Am. 2018, 102, 183–197. [Google Scholar]
- Guo, W.; Xu, Z.; Zou, H.; Li, F.; Li, Y.; Feng, J.; Zhu, Z.; Zheng, Q.; Zhu, R.; Wang, B.; et al. Discovery of ecnoglutide—A novel, long-acting, cAMP-biased glucagon-like peptide-1 (GLP-1) analog. Mol. Metab. 2023, 75, 101762. [Google Scholar]
- Baggio, L.L.; Drucker, D.J. Glucagon-like peptide-1 receptors in the brain: Controlling food intake and body weight. J. Clin. Investig. 2014, 124, 4223–4226. [Google Scholar] [PubMed]
- Campbell, J.E. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol. Metab. 2021, 46, 101139. [Google Scholar] [PubMed]
- Holst, J.J.; Madsbad, S. Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor. Surg. Obes. Relat. Dis. 2016, 12, 1236–1242. [Google Scholar]
- Lunagariya, N.A.; Patel, N.K.; Jagtap, S.C.; Bhutani, K.K. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. EXCLI J. 2014, 13, 897–921. [Google Scholar]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar]
- Walker, D.M.; Gore, A.C. Transgenerational neuroendocrine disruption of reproduction. Nat. Rev. Endocrinol. 2011, 7, 197–207. [Google Scholar]
- Filippatos, T.D.; Panagiotopoulou, T.V.; Elisaf, M.S. Adverse Effects of GLP-1 Receptor Agonists. Rev. Diabet. Stud. 2014, 11, 202–230. [Google Scholar] [PubMed]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes–state-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar]
- Schena, G.; Caplan, M.J. Everything You Always Wanted to Know about β3-AR * (* But Were Afraid to Ask). Cells 2019, 8, 357. [Google Scholar] [CrossRef]
- Nalisa, D.L.; Cuboia, N.; Dyab, E.; Jackson, I.L.; Felix, H.J.; Shoki, P.; Mubiana, M.; Oyedeji-Amusa, M.; Azevedo, L.; Jiang, H. Efficacy and safety of Mazdutide on weight loss among diabetic and non-diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Front. Endocrinol. 2024, 15, 1309118. [Google Scholar] [CrossRef]
- Mikhail, N.; Wali, S. Survodutide, a promising agent with novel mechanism of action for treatment of obesity and type 2 diabetes. J. Endocrinol. Disord. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Moll, H.; Frey, E.; Gerber, P.; Geidl, B.; Kaufmann, M.; Braun, J.; Beuschlein, F.; Puhan, M.A.; Yebyo, H.G. GLP-1 receptor agonists for weight reduction in people living with obesity but without diabetes: A living benefit–harm modelling study. EClinicalMedicine 2024, 73, 102661. [Google Scholar] [PubMed]
- Karrar, H.R.; Nouh, M.I.; Nouh, Y.I.; Nouh, M.I.; Alhindi, A.S.K.; Hemeq, Y.H.; Aljameeli, A.M.; Aljuaid, J.A.; Alzahrani, S.J.; Alsatami, A.A.; et al. Tirzepatide-Induced Gastrointestinal Manifestations: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e46091. [Google Scholar] [PubMed]
- Rotunda, A.M.; Suzuki, H.; Moy, R.L.; Kolodney, M.S. Detergent effects of sodium deoxycholate are a major feature of an injectable phosphatidylcholine formulation used for localized fat dissolution. Dermatol. Surg. 2004, 30, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Lafontan, M.; Berlan, M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 1993, 34, 1057–1091. [Google Scholar]
- Galitzky, J.; Taouis, M.; Berlan, M.; Rivière, D.; Garrigues, M.; Lafontan, M. Alpha 2-antagonist compounds and lipid mobilization: Evidence for a lipid mobilizing effect of oral yohimbine in healthy male volunteers. Eur. J. Clin. Investig. 1988, 18, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Lafontan, M.; Berlan, M.; Galitzky, J.; Montastruc, J.L. Alpha-2 adrenoceptors in lipolysis: Alpha 2 antagonists and lipid-mobilizing strategies. Am. J. Clin. Nutr. 1992, 55 (Suppl. S1), 219S–227S. [Google Scholar] [CrossRef]
- Virmani, M.A.; Cirulli, M. The role of L-carnitine in mitochondria, prevention of metabolic inflexibility and disease initiation. Int. J. Mol. Sci. 2022, 23, 2717. [Google Scholar] [CrossRef]
- Faetani, L.; Ghizzoni, D.; Ammendolia, A.; Costantino, C. Safety and efficacy of mesotherapy in musculoskeletal disorders: A systematic review of randomized controlled trials with meta-analysis. J. Rehabil. Med. 2021, 53, jrm00182. [Google Scholar] [CrossRef]
- Sivagnanam, G. Mesotherapy—The French connection. J. Pharmacol. Pharmacother. 2010, 1, 4–8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bragg, R.; Hebel, D.; Vouri, S.M.; Pitlick, J.M. Mirabegron: A Beta-3 Agonist for Overactive Bladder. Consult. Pharm. 2014, 29, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a factor influencing the functioning of the human body—Friend or foe? Nutrients 2021, 13, 3088. [Google Scholar] [CrossRef] [PubMed]
- Lombardini, J.B. Taurine: Retinal function. Brain Res. Rev. 1991, 16, 151–169. [Google Scholar] [CrossRef]
- Shree, N.; Venkategowda, S.; Venkatranganna, M.V.; Datta, I.; Bhonde, R.R. Human adipose tissue mesenchymal stem cells as a novel treatment modality for correcting obesity induced metabolic dysregulation. Int. J. Obes. 2019, 43, 2107–2118. [Google Scholar] [CrossRef]
- Demarquoy, J.; Georges, B.; Rigault, C.; Royer, M.C.; Clairet, A.; Soty, M.; Lekounoungou, S.; Le Borgne, F. Radioisotopic determination of l-carnitine content in foods commonly eaten in Western countries. Food Chem. 2004, 86, 137–142. [Google Scholar] [CrossRef]
- Anderson, J.W.; Smith, B.M.; Gustafson, N.J. Health benefits and practical aspects of high-fiber diets. Am. J. Clin. Nutr. 1994, 59, 1242S–1247S. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Puhl, R.M.; Cummings, D.E.; Eckel, R.H.; Ryan, D.H.; Mechanick, J.I.; Nadglowski, J.; Salas, X.R.; Schauer, P.R.; Twenefour, D.; et al. Joint international consensus statement for ending stigma of obesity. Nat. Med. 2020, 26, 485–497. [Google Scholar] [CrossRef]
- Wallace, T.C.; Blusztajn, J.K.; Caudill, M.A.; Klatt, K.C.; Natker, E.; Zeisel, S.H.; Zelman, K.M. The underconsumed and underappreciated essential nutrient. Nutr. Today 2018, 53, 240–253. [Google Scholar] [CrossRef]
- Formoso, G.; Baldassarre, M.P.A.; Ginestra, F.; Carlucci, M.A.; Bucci, I.; Consoli, A. Inositol and antioxidant supplementation: Safety and efficacy in pregnancy. Diabetes/Metab. Res. Rev. 2019, 35, e3154. [Google Scholar] [CrossRef]
- Aureli, A.; Recupero, R.; Mariani, M.; Manco, M.; Carlomagno, F.; Bocchini, S.; Nicodemo, M.; Marchili, M.R.; Cianfarani, S.; Cappa, M.; et al. Low Levels of Serum Total Vitamin B12 Are Associated with Worse Metabolic Phenotype in a Large Population of Children, Adolescents and Young Adults, from Underweight to Severe Obesity. Int. J. Mol. Sci. 2023, 24, 16588. [Google Scholar] [CrossRef]
- Kurhaluk, N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int. J. Mol. Sci. 2023, 24, 8205. [Google Scholar] [CrossRef]
- Holeček, M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle 2017, 8, 529–541. [Google Scholar] [PubMed]
- Cynober, L. Can arginine and ornithine support gut functions? Gut 1994, 35, S42–S45. [Google Scholar]
- Da Mota, J.C.N.L.; Ribeiro, A.A.; Carvalho, L.M.; Esteves, G.P.; Sieczkowska, S.M.; Goessler, K.F.; Gualano, B.; Nicoletti, C.F. Impact of Methyl-Donor Micronutrient Supplementation on DNA Methylation Patterns: A Systematic Review and Meta-Analysis of in vitro, Animal, and Human Studies. Lifestyle Genom. 2023, 16, 192–213. [Google Scholar] [CrossRef]
- Fernstrom, J.D. Large neutral amino acids: Dietary effects on brain neurochemistry and function. Amino Acids 2013, 45, 419–430. [Google Scholar] [PubMed]
- Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 2013, 4, 1829. [Google Scholar] [PubMed]
- Delanghe, J.; De Slypere, J.P.; Buyzere, M.; De Robbrecht, J.; Wieme, R.; Vermeulen, A. Normal reference values for creatine, creatinine, and carnitine are lower in vegetarians. Clin. Chem. 1989, 35, 1802–1803. [Google Scholar]
- Maffei, M.E. 5-hydroxytryptophan (5-htp): Natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology. Int. J. Mol. Sci. 2021, 22, 181. [Google Scholar] [CrossRef]
- Brandfon, S.; Eylon, A.; Khanna, D.; Parmar, M.S. Advances in Anti-obesity Pharmacotherapy: Current Treatments, Emerging Therapies, and Challenges. Cureus 2023, 15, e46623. [Google Scholar]
- Swift, A.; Liew, S.; Weinkle, S.; Garcia, J.K.; Silberberg, M.B. The Facial Aging Process from the “inside Out”. Aesthet. Surg. J. 2021, 41, 1107–1119. [Google Scholar] [CrossRef]
- de Paula Barbosa, A.; Espasandin, I.; de Lima, L.P.; de Souza Ribeiro, C.; Silva, L.R.; Quintal, T.F.; Lima, E.N.; Vieira, L.C.D.; Soares, T.R.; Colaço, A.R.A. Body Harmonization: The Definition of a New Concept. Clin. Cosmet. Investig. Dermatol. 2023, 16, 3753–3766. [Google Scholar]
- Signori, R.; de Paula Barbosa, A.; Cezar-dos-Santos, F.; Carbone, A.C.; Ventura, S.; de Souza Nobre, B.B.; Neves, M.L.B.B.; Câmara-Souza, M.B.; Poluha, R.L.; De la Torre Canales, G. Efficacy and Safety of Poly-l-Lactic Acid in Facial Aesthetics: A Systematic Review. Polymers 2024, 16, 2564. [Google Scholar] [CrossRef] [PubMed]
- Narins, R.S.; Baumann, L.; Brandt, F.S.; Fagien, S.; Glazer, S.; Lowe, N.J.; Monheit, G.D.; Rendon, M.I.; Rohrich, R.J.; Werschler, W.P. A randomized study of the efficacy and safety of injectable poly-L-lactic acid versus human-based collagen implant in the treatment of nasolabial fold wrinkles. J. Am. Acad. Dermatol. 2010, 62, 448–462. [Google Scholar] [CrossRef]
- Amiri, M.; Meçani, R.; Llanaj, E.; Niehot, C.D.; Phillips, T.L.; Goldie, K.; Kolb, J.; Muka, T.; Daughtry, H. Calcium Hydroxylapatite (CaHA) and Aesthetic Outcomes: A Systematic Review of Controlled Clinical Trials. J. Clin. Med. 2024, 13, 1686. [Google Scholar] [CrossRef]
- Harth, Y.; Lischinsky, D. A novel method for real-time skin impedance measurement during radiofrequency skin tightening treatments. J. Cosmet. Dermatol. 2011, 10, 24–29. [Google Scholar] [PubMed]
- Nowak, A.; Nowak, A.; Bogusz, K.; Cywka, Ł.; Baran, N.; Bielak, A.; Szwed, W.; Maksymowicz, M.; Machowiec, P. Fractional microneedle radiofrequency-mechanism of action and assessment of safety, effectiveness in the treatment, and possible side effects based on a review of scientific literature. J. Educ. Health Sport 2023, 21, 106–114. [Google Scholar] [CrossRef]
- Ayatollahi, A.; Gholami, J.; Saberi, M.; Hosseini, H.; Firooz, A. Systematic review and meta-analysis of safety and efficacy of high-intensity focused ultrasound (HIFU) for face and neck rejuvenation. Lasers Med. Sci. 2020, 35, 1007–1024. [Google Scholar]
- Ortiz, A.E.; Goldman, M.P.; Fitzpatrick, R.E. Ablative CO2 lasers for skin tightening: Traditional versus fractional. Dermatol. Surg. 2014, 40, S147–S151. [Google Scholar]
- Lean, M.E.J.; Malkova, D. Altered gut and adipose tissue hormones in overweight and obese individuals: Cause or consequence. Int. J. Obes. 2016, 40, 622–632. [Google Scholar] [CrossRef]
- Kubota, M.; Yamamoto, K.; Yoshiyama, S. Effect on hemoglobin A1c (HbA1c) and body weight after discontinuation of tirzepatide, a novel glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist: A single-center case series study. Cureus 2023, 15, e46490. [Google Scholar] [CrossRef]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduct. Target Ther. 2024, 9, 234. [Google Scholar] [PubMed]
- Schaffer, S.; Kim, H.W. Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomol. Ther. 2018, 26, 225–241. [Google Scholar] [CrossRef]
- Adewuyi, E.O.; Auta, A. Medical injection and access to sterile injection equipment in low- And middle-income countries: A meta-analysis of Demographic and Health Surveys (2010–2017). Int. Health 2020, 12, 388–394. [Google Scholar] [PubMed]
- Azizi, R. Post-Bariatric Body Contouring. In Global Bariatric Surgery; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 323–333. [Google Scholar]
- Sarubi, J.; Avelar, L.E.T.; Del Nero, M.P.; Kamamoto, C.; Morais, M. Facial rejuvenation on the use of injectable poly-L-lactic acid and hyaluronic acid: Combined technique. J. Cosmet. Dermatol. 2022, 21, 5261–5263. [Google Scholar] [PubMed]
- Kelly, C.A.; Sipos, J.A. Approach to the Patient with Thyroid Nodules: Considering GLP-1 Receptor Agonists. J. Clin. Endocrinol. Metab. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Coskun, T.; Sloop, K.W.; Loghin, C.; Alsina-Fernandez, J.; Urva, S.; Bokvist, K.B.; Cui, X.; Briere, D.A.; Cabrera, O.; Roell, W.C.; et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol. Metab. 2018, 18, 3–14. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar]
Drug Class | Medication Name | Brand Name | Dosage | Administration Interval | Manufacturer | Country of Origin |
---|---|---|---|---|---|---|
GLP-1 Receptor Agonists | Liraglutide | Saxenda® | 0.6 mg to 3 mg per day, subcutaneous | Daily | Novo Nordisk | Denmark |
GLP-1 Receptor Agonists | Mazdutide * | - | 3.0 mg to 10 mg per week, subcutaneous | Weekly | Innovent Biologics | China |
GLP-1 Receptor Agonists | Semaglutide | Wegovy® | 0.25 mg to 2.4 mg per week, subcutaneous | Weekly | Novo Nordisk | Denmark |
GLP-1 Receptor Agonists | Survodutide * | - | 0.3 mg to 4.8 mg per week, subcutaneous | Weekly | Boehringer Ingelheim | Germany |
GLP-1 and GIP Receptor Agonists | Tirzepatide | Mounjaro® | 5 mg to 15 mg per week, subcutaneous | Weekly | Eli Lilly | United States |
Active Ingredient | Classification | Dosage | Mechanism of Action |
---|---|---|---|
5-HTP | Appetite Regulator | 4 mg to 20 mg/day | Precursor of serotonin; reduces food cravings |
Caffeine | Thermogenesis Stimulant | 50 mg to 100 mg/day | Adenosine antagonist; increases thermogenesis |
Choline | Lipolysis Modulator | 200 mg to 500 mg/day | Involved in lipid metabolism and reduces liver fat |
Chromium Picolinate | Lipolysis Modulator | 100 mcg/day | Improves insulin signaling |
Inositol | Lipolysis Modulator | 100 mg to 200 mg/day | Supports lipid metabolism and reduces visceral fat |
L-Arginine | Metabolic Optimizer | 200 mg to 600 mg/day | Precursor of nitric oxide; improves vasodilation |
L-Carnitine | Lipolysis Modulator | 200 mg to 600 mg, 2–3 times/day | Transports fatty acids to the mitochondria |
L-Theanine | Appetite Regulator | 10 mg to 20 mg/day | Modulates GABA receptors; reduces food-related anxiety |
L-Tyrosine | Appetite Regulator | 20 mg to 50 mg/day | Precursor of dopamine; increases energy expenditure |
Methionine | Metabolic Optimizer | 100 mg/day | Methyl group donor; reduces visceral fat |
N-Acetyl | Appetite Regulator | 20 mg to 50 mg/day | Modulates neurotransmitters for appetite control |
Ornithine | Metabolic Optimizer | 200 mg/day | Involved in the urea cycle; reduces ammonia |
Phenylalanine | Appetite Regulator | 50 mg/day | Precursor of dopamine; controls appetite and mood |
Taurine | Thermogenesis Stimulant | 200 mg/day | Promotes lipid metabolism and antioxidant function |
Vitamin B12 | Metabolic Optimizer | 2500 mcg/day | Improves energy metabolism and neurological function |
Yohimbine | Thermogenesis Stimulant | 5 mg to 10 mg/day | α2-Adrenergic receptor antagonists |
Drug/Class | Potential Interactions | Clinical Recommendations |
---|---|---|
5-HTP (Appetite Regulator) | Risk of serotonin syndrome with antidepressants; interaction with thermogenics may cause insomnia | Avoid patients taking antidepressants; monitor insomnia |
Chromium Picolinate (Lipid Modulator) | Mild interactions; potential synergy with metabolic modulators | Assess synergistic impacts; maintain adequate supplementation |
HMB (Metabolic Optimizer) | Generally safe; minimal metabolic interactions with accelerators | General monitoring; considered safe for therapeutic combinations |
L-Arginine (Metabolic Optimizer) | Hypotension in combination with antihypertensives; interaction with thermogenics may exacerbate cardiovascular effects | Monitor hypotension; carefully adjust in combined protocols |
L-Carnitine (Lipid Modulator) | Potential increase in ammonia with combined use; exacerbation of gastrointestinal disorders with thermogenics | Monitor ammonia levels; adjust doses of synergistic agents |
Liraglutide (GLP-1 Agonist) | Risk of reduced absorption of oral medications; potential nausea enhancement with thermogenics | Monitor gastrointestinal symptoms and adjust oral medication doses |
Semaglutide (GLP-1 Agonist) | Risk of interaction with hypoglycemics; enhancement of gastrointestinal symptoms with caffeine | Avoid combinations with potent hypoglycemics; start with low doses |
Tirzepatide (GLP-1 and GIP Agonist) | Risk of pancreatitis; interaction with hypoglycemics can cause hypoglycemia | Monitor blood glucose and signs of pancreatitis; avoid aggressive combinations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, J.M.; Ferreira, A.C.M.; de Paula Barbosa, A. Injectables Pharmacotherapies for Obesity: Mechanisms, Efficacy, and Aesthetic Implications. Obesities 2025, 5, 22. https://doi.org/10.3390/obesities5020022
Gomes JM, Ferreira ACM, de Paula Barbosa A. Injectables Pharmacotherapies for Obesity: Mechanisms, Efficacy, and Aesthetic Implications. Obesities. 2025; 5(2):22. https://doi.org/10.3390/obesities5020022
Chicago/Turabian StyleGomes, Juan Marques, Alan Cristian Marinho Ferreira, and Antony de Paula Barbosa. 2025. "Injectables Pharmacotherapies for Obesity: Mechanisms, Efficacy, and Aesthetic Implications" Obesities 5, no. 2: 22. https://doi.org/10.3390/obesities5020022
APA StyleGomes, J. M., Ferreira, A. C. M., & de Paula Barbosa, A. (2025). Injectables Pharmacotherapies for Obesity: Mechanisms, Efficacy, and Aesthetic Implications. Obesities, 5(2), 22. https://doi.org/10.3390/obesities5020022