The Impact of Obesity on Pain Perception During and After Subcutaneous Injections: A Cross-Sectional Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Sample
2.3. Variables
2.4. Measurement and Data Sources
2.5. Statistical Methods
2.6. Limitations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ray, L.; Lipton, R.B.; Zimmerman, M.E.; Katz, M.J.; Derby, C.A. Mechanisms of association between obesity and chronic pain in the elderly. Pain 2011, 152, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.B.; Patel, K.V.; Twiddy, H.; Sturgeon, J.A.; Palermo, T.M. Age differences in cognitive–affective processes in adults with chronic pain. Eur. J. Pain 2021, 25, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.H.; Huang, W.L.; Akter, S.S.; Binks, M. Obesity and pain: A systematic review. Int. J. Obes. 2020, 44, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Quetele, T.A. Fisica Sociale ossia svolgimento delle facoltá dell’ uomo” Cap. 2: Relazioni tra il peso e la statura. In: Puche RC. El índice de masa corporal y los razonamientos de un astrónomo. Medicina 2005, 65, 361–365. Available online: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0025-76802005000400016 (accessed on 10 January 2024).
- WHO Consultation. Obesity: Preventing and Managing the Global Epidemic; World Health Organization Technical Report Series 894; World Health Organization: Geneva, Switzerland, 2000; pp. 1–253. [Google Scholar]
- IASP Subcommittee on Taxonomy. Pain terms: A list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy. Pain 1979, 6, 249–252. [Google Scholar]
- San Martín Lepe, J. Neurociencia del dolor. In Visión Teórico-Clínica, 1st ed.; UST: Santiago, Chile, 2021. [Google Scholar]
- Barbosa-Cobos, R.E.; Ramos-Cervantes, M.T.; De Montesinos-Sampedro, A.; Rodríguez-Ballesteros, D.C.; García-Moreno-Mutio, S.L.; Jaimes-Santoyo, J.; Toscano-Garibay, J. Sustancia P en la inflamación articular. Rev. Hosp. Juárez México 2015, 82, 49–54. [Google Scholar]
- Coutaux, A.; Adam, F.; Willer, J.C.; Le Bars, D. Hyperalgesia and allodynia: Peripheral mechanisms. Jt. Bone Spine 2005, 72, 359–371. [Google Scholar] [CrossRef]
- Woller, S.A.; Eddinger, K.A.; Corr, M.; Yaksh, T.L. An overview of pathways encoding nociception. Clin. Exp. Rheumatol. 2017, 35 (Suppl. S107), 40–46. [Google Scholar] [PubMed]
- Labrakakis, C. The role of the insular cortex in pain. Int. J. Mol. Sci. 2023, 24, 5736. [Google Scholar] [CrossRef]
- Miranda, C.M.; de Lima, C.; Leite-Almeida, H. Diet, body weight and pain susceptibility—A systematic review of preclinical studies. Neurobiol. Pain 2021, 10, 100066. [Google Scholar] [CrossRef] [PubMed]
- Kurady, B.L.; Mani, S.S.; Shetty, P. An insight on pain modulation with gender and obesity: A systematic review. J. Pharm. Technol. 2020, 13, 6284–6290. [Google Scholar] [CrossRef]
- Hirt, P.A.; Castillo, D.E.; Yosipovitch, G.; Keri, J.E. Skin changes in the obese patient. J. Am. Acad. Dermatol. 2019, 81, 1037–1057. [Google Scholar] [CrossRef]
- Verdú, E.; Homs, J.; Boadas-Vaello, P. Physiological changes and pathological pain associated with sedentary lifestyle-induced body systems fat accumulation and their modulation by physical exercise. Int. J. Environ. Res. Public. Health 2021, 18, 13333. [Google Scholar] [CrossRef]
- Price, R.C.; Asenjo, J.F.; Christou, N.V.; Backman, S.B.; Schweinhardt, P. Papel del exceso de grasa subcutánea en el dolor y la sensibilidad sensorial en la obesidad. Eur. J. Pain 2013, 17, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, K.R.; Cheskin, L.J.; Barofsky, I. Health-related quality of life in obese persons seeking treatment. J. Fam. Pract. 1996, 43, 265–270. [Google Scholar] [PubMed]
- Fernandes, I.M.C.; Pinto, R.Z.; Ferreira, P.; Lira, F.S. Low back pain, obesity, and inflammatory markers: Exercise as potential treatment. J. Exerc. Rehabil. 2018, 14, 168. [Google Scholar] [CrossRef]
- Daguet, I.; Bergeron-Vezina, K.; Harvey, M.P.; Martel, M.; Coulombe-Leveque, A.; Leonard, G. Decreased initial peak pain sensation with aging: A psychophysical study. J. Pain Res. 2020, 13, 2333–2341. [Google Scholar] [CrossRef]
- El Tumi, H.; Johnson, M.I.; Dantas, B.F.; Maynard, M.J.; Tashani, O.A. Age-related changes in pain sensitivity in healthy humans: A systematic review with meta-analysis. Eur. J. Pain 2017, 21, 955–964. [Google Scholar] [CrossRef]
- Neziri, A.Y.; Scaramozzinol, P.; Andersenl, O.K.; Dickensonl, A.H.; Arendt-Nielsenl, L.; Curatolol, M. Reference values of mechanical and thermal pain tests in a pain-free population. Eur. J. Pain 2011, 15, 376–383. [Google Scholar] [CrossRef]
- Lautenbacher, S.; Kunz, M.; Strate, P.; Nielsen, J.; Arendt-Nielsen, L. Age effects on pain thresholds, temporal summation and spatial summation of heat and pressure pain. Pain 2005, 115, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Robb, D.M.; Kanji, Z. Comparison of two needle sizes for subcutaneous administration of Enoxaparin: Effects on size of hematomas and pain on injection. Pharmacother. J. Human Pharmacol. Drug Ther. 2002, 22, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Zayback, A.; Khorshid, L. A study on the effect of the duration of subcutaneous heparin injection on bruising and pain. J. Clin. Nurs. 2008, 17, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Pourghaznein, T.; Azimi, A.V.; Jafarabadi, M.A. The effect of injection duration and injection site on pain and bruising of subcutaneous injection of heparin. J. Clin. Nurs. 2014, 23, 1105–1113. [Google Scholar] [CrossRef]
- Tehrani Neshat, B.; Azizizade Foroozi, M.; Mohhamad Alizade, S. Effects of injection duration on site—Pain intensity associated with subcutaneous heparin. Sci. J. Hamdan Univ. Med. Sci. Health Serv. 2003, 11, 55–59. [Google Scholar]
- St Clair-Jones, A.; Prignano, F.; Goncalves, J.; Paul, M.; Sewerin, P. Understanding and minimizing injection-site pain following subcutaneous administration of biologics: A narrative review. Rheumatol. Ther. 2020, 7, 741–757. [Google Scholar] [CrossRef]
- Usach, I.; Martínez, R.; Festini, T.; Péris, J.E. Inyección subcutánea de fármacos: Revisión de la literatura sobre los factores que influyen en la sensación de dolor en el lugar de la inyección. Adv. Ther. 2019, 36, 2986–2996. [Google Scholar] [CrossRef]
- Fernandez, J.M.; Madsen, S.; Krase, J.M.; Shi, V.Y. Classification and mitigation of negative injection experiences with biologic medications. Dermatol. Ther. 2020, 33, e13240. [Google Scholar] [CrossRef]
- Agencia Española del Medicamento y Productos Sanitarios [AEMPS]. Enoxaparina. Available online: https://cima.aemps.es/cima/dochtml/ft/82490/FT_82490.html (accessed on 13 September 2024).
- Karabey, T.; Karagözoglu, S. The effect of manual pressure after subcutaneous injection on pain and comfort levels. J. Vasc. Nurs. 2021, 39, 134–139. [Google Scholar] [CrossRef]
- Gürdap, Z.; Cengiz, Z. Comparison of cold spray and shotblocker to reduce intramuscular injection pain: A randomized controlled trial. J. Clin. Pharm. Ther. 2022, 47, 1249–1256. Available online: https://onlinelibrary.wiley.com/doi/10.1111/jcpt.13663 (accessed on 5 August 2024). [CrossRef]
- Yilmaz, D.; Ayhan, D.; Yilmaz, D.U.; Düzgün, F. Effect of the coughing technique during subcutaneous heparin injection on pain severity and individual satisfaction. Rev. Lat.-Am. Enferm. 2023, 31, e3924. [Google Scholar] [CrossRef]
- Watkins, L.R.; Maier, S.F.; Goehler, L.E. Immune activation: The role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995, 63, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Vicci, H.; Eblen-Zajjur, A.; López, M.; Crespo, G.; Navarro, M. Enoxaparin pretreatment effect on local and systemic inflammation biomarkers in the animal burn model. Inflammopharmacology 2019, 27, 521–529. [Google Scholar] [CrossRef]
- WHO. Obesity and Overweight. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 2 September 2024).
- Instituto Nacional De Estadística. Available online: https://www.ine.es/buscar/searchResults.do?searchString=obesidad&Menu_botonBuscador=&searchType=DEF_SEARCH&startat=0&L=1 (accessed on 5 August 2024).
- Datarus. Granmo Calculator. Available online: https://www.datarus.eu/en/applications/granmo/ (accessed on 1 June 2023).
- Chapman, C.R.; Casey, K.L.; Dubner, R.; Foley, K.M.; Gracely, R.H.; Reading, A.E. Pain measurement: An overview. Pain 1985, 22, 1–31. [Google Scholar] [CrossRef]
- International Society for the Advancement of Kinanthropometry (ISAK). International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Glasgow, Scotland, 2001. [Google Scholar]
- Blümel, J.E.; Arteaga, E.; Mezones-Holguín, E.; Zúñiga, M.C.; Witis, S.; Vallejo, M.S. Obesity is associated with a higher prevalence of musculoskeletal pain in middle-aged women. Gynecol. Endocrinol. 2017, 33, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Emerson, N.M.; Nahman-Averbuch, H.; Peugh, J.L.; Coghill, R.C. Pain sensitivity does not di Pain sensitivity does not differ between obese and healthy weight individuals. PAIN Rep. 2021, 6, e942. [Google Scholar] [CrossRef]
- Choi, J.E.; Di Nardo, A. Skin Neurogenic Inflammation. Semin. Immunopathol. 2018, 40, 249–259. [Google Scholar] [CrossRef]
- Younger, J.; Kapphahn, K.; Brennan, K.; Suliban, S.D.; Stefanick, M.L. Association of leptin with body pain in women. J. Womens Health 2016, 25, 752–760. [Google Scholar] [CrossRef]
- Ostrom, C.; Bair, E.; Maixner, W.; Dubner, R.; Fillingim, R.B.; Ohrbach, R.; Slade, G.D.; Greenspan, J.D. Demographic Predictors of Pain Sensitivity: Results From the OPPERA Study. J. Pain 2017, 18, 295–307. [Google Scholar] [CrossRef]
- Khan, J.; Korczeniewska, O.; Benoliel, R.; Kalladka, M.; Eliav, E.; Nasri-Heir, C. Age and gender differences in mechanically induced intraoral temporal summation and conditioned pain modulation in healthy subjects. Oral Surg. Oral Med. 2018, 126, 134–141. [Google Scholar] [CrossRef]
- Tashani, O.A.; Astita, R.; Sharp, D.; Johnson, M.I. Body mass index and distribution of body fat can influence sensory detection and pain sensitivity. Eur. J. Pain 2017, 21, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guan, J.; Zhang, X.; Wang, X.; Ji, T.; Hou, D.; Wang, G.; Sun, J. Effect of Cold Application on Pain and Bruising in Patients with Subcutaneous Injection of Low-Molecular-Weight Heparin: A Meta-Analysis. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620905349. [Google Scholar] [CrossRef] [PubMed]
- García, M.M.; Corrales, P.; Huerta, M.A.; Czachorowski, M.J.; López-Miranda, V.; Medina-Gómez, G.; Cobos, E.J.; Goicoechea, C.; Molina-Álvarez, M. Adults with excess weight or obesity, but not with overweight, report greater pain intensities than individuals with normal weight: A systematic review and meta-analysis. Front. Endocrinol. 2024, 6, 1340465. [Google Scholar] [CrossRef] [PubMed]
- Gely, C.; Marín, L.; Gordillo, J.; Mañosa, M.; Bertoletti, F.; Cañete, F.; González-Muñoz, C.; Calafat, M.; Domènech, E.; Garcia-Planella, E. Impact of pain associated with the subcutaneous administration of adalimumab. Gastroenterol. Hepatol. 2020, 43, 9–13. [Google Scholar] [CrossRef] [PubMed]
- González-Roldán, A.M.; Terrasa, J.L.; Sitges, C.; Van der Meulen, M.; Anton, F.; Montoya, P. Age-Related Changes in Pain Perception Are Associated With Altered Functional Connectivity During Resting State. Front. Aging Neurosci. 2020, 12, 116. [Google Scholar] [CrossRef]
- Torensma, B.; Thomassen, I.; Van Velzen, M.; In ‘t Veld, B.A. Pain experience and perception in the obese subject: Systematic review (revised version). Obes. Surg. 2016, 26, 631–639. [Google Scholar] [CrossRef]
- Zijlstra, E.; Jahnke, J.; Fischer, A.; Kapitza, C.; Forst, T. Impact of injection speed, volume, and site on pain sensation. J. Diabetes Sci. Technol. 2018, 12, 163–168. [Google Scholar] [CrossRef]
- Kim, H.; Park, H.; Lee, S.J. Effective method for drug injection into subcutaneous tissue. Sci. Rep. 2017, 7, 9613. [Google Scholar] [CrossRef]
- Green, D.P.; Limjunyawong, N.; Gour, N.; Pundir, P.; Dong, X. A Mast-Cell-Specific Receptor Mediates Neurogenic Inflammation and Pain. Neuron 2019, 101, 412–420.E3. [Google Scholar] [CrossRef]
- Marek-Jozefowicz, L.; Nedoszytko, B.; Grochocka, M.; Żmijewski, M.A.; Czajkowski, R.; Cubała, W.J.; Slominski, A.T. Molecular Mechanisms of Neurogenic Inflammation of the Skin. Int. J. Mol. Sci. 2023, 5, 5001. [Google Scholar] [CrossRef]
- Malfliet, A.; Quiroz Marnef, A.; Nijs, J.; Clarys, P.; Huybrechts, I.; Elma, Ö.; Deliens, T. Obesity Hurts: The Why and How of Integrating Weight Reduction With Chronic Pain Management. Phys. Ther. 2021, 101, pzab198. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Castro, J.M.; Muñoz-López, M.; Ledesma, A.S.-T.; Ranchal-Sanchez, A. Effectiveness of Exercise in Patients with Overweight or Obesity Suffering from Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 10510. [Google Scholar] [CrossRef] [PubMed]
Obesity Classification | Total n (%) | Male n (%) | Female n (%) |
---|---|---|---|
BMI I—Underweight < 18.5 | 0 (0.0) | 0 (0.0) | 0 (0.0) |
BMI II—Normal weight [18.5–24.9] | 56 (27.8) | 12 (5.9) | 44 (21.8) |
BMI III—Overweight [25–29.9] | 60 (29.7) | 24 (11.9) | 36 (17.8) |
BMI IV—Obesity type I [30–34.9] | 73 (36.1) | 36 (17.8) | 37 (18.7) |
BMI V—Obesity type II [35–39.9] | 13 (6.4) | 4 (2.0) | 9 (4.5) |
BMI VI—Extreme obesity ≥ 40 | 0 (0.0) | 0 (0.0) | 0 (0.0) |
ASF | Total n (%) | Male n (%) | Female n (%) |
---|---|---|---|
Quartile I [0–12] | 6 (3.0) | 6 (3.0) | 0 (0.0) |
Quartile II [13–24] | 50 (24.8) | 11 (5.4) | 39 (19.3) |
Quartile III [25–36] | 57 (28.2) | 19 (9.4) | 38 (18.8) |
Quartile IV [37–48] | 89 (44.1) | 40 (19.8) | 49 (24.3) |
Pain during Injection | Pain after Injection | |
---|---|---|
Pain Level | n (%) | n (%) |
Pain 0 | 60 (29.7) | 69 (34.2) |
Pain 1 | 58 (28.7) | 45 (22.3) |
Pain 2 | 56 (27.7) | 21 (10.4) |
Pain 3 | 12 (5.9) | 22 (10.9) |
Pain > 3 | 16 (8.0) | 45 (22.3) |
Pain during Injection | Pain after Injection | |||||||
---|---|---|---|---|---|---|---|---|
Pain Level | ASF I | ASF II | ASF III | ASF IV | ASF I | ASF II | ASF III | ASF IV |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Pain 0 | 6(3.0) | 11(5.4) | 10(5.0) | 33 (16.3) | 6 (3.0) | 19(9.4) | 16 (7.9) | 28 (13.9) |
Pain 1 | 0 (0.0) | 18(8.9) | 16(7.9) | 24 (11.9) | 0 (0.0) | 10(4.9) | 18(8.9) | 14(6.9) |
Pain 2 | 0 (0.0) | 18 8.9) | 24(11.9) | 14 (6.9) | 0 (0.0) | 11(5.4) | 3(1.5) | 6(3.0) |
Pain 3 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 12 (5.9) | 0 (0.0) | 3(1.5) | 6(3.0) | 13(6.4) |
Pain > 3 | 0 (0.0) | 3(1.5) | 7(3.5) | 6 (3.0) | 0 (0.0) | 7(3.5) | 14(6.9) | 28(13.9) |
Mean pain of the four injections | 0.0 | 1.3 | 1.7 | 1.4 | 0.0 | 1.7 | 1.9 | 2.2 |
BMI II | BMI III | BMI IV | BMI V | BMI II | BMI III | BMI IV | BMI V | |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Pain 0 | 17 (8.4) | 18 (8.9) | 25 (12.4) | 0 (0.0) | 21 (10.4) | 21 (10.4) | 24 (11.9) | 3 (1.5) |
Pain 1 | 13 (6.4) | 17 (8.4) | 24 (11.9) | 4 (2.0) | 13 (6.4) | 15 (7.4) | 13 (6.4) | 4 (2.0) |
Pain 2 | 17 (8.4) | 18 (8.9) | 18 (8.9) | 3 (1.5) | 6 (3.0) | 9 (4.5) | 7 (3.5) | 0 (0.0) |
Pain 3 | 0 (0.0) | 3 (1.5) | 3 (1.5) | 3 (1.5) | 3 (1.5) | 7 (3.5) | 7 (3.5) | 3 (1.5) |
Pain > 3 | 9 (4.5) | 4 (2.0) | 3 (1.5) | 3 (1.5) | 13 (6.4) | 8 (4.0) | 22 (10.9) | 3 (1.5) |
Mean pain of the four injections | 1.7 | 1.2 | 1.1 | 2.0 | 2.3 | 1.5 | 1.8 | 2.4 |
Valid | Mean | Std. Deviation | Minimum | Maximum | |
---|---|---|---|---|---|
Gender | 202 | ||||
Pain during (mean) | 202 | 1.4 | 1.35 | 0.00 | 6.00 |
Pain after (mean) | 202 | 1.9 | 2.1 | 0.00 | 8.00 |
Gender: female | 126 | ||||
Pain during (mean) | 126 | 1.6 | 1.5 | 0.00 | 6.00 |
Pain after (mean) | 126 | 2.3 | 2.3 | 0.00 | 8.00 |
Gender: male | 76 | ||||
Pain during (mean) | 76 | 1.0 | 0.9 | 0.00 | 2.00 |
Pain after (mean) | 76 | 1.3 | 1.5 | 0.00 | 5.00 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
| 1.00 | ||||
| −0.06 | 1.00 | |||
| −0.21 ** | 0.73 ** | 1.00 | ||
| −0.10 | 0.05 | 0.01 | 1.00 | |
| −0.16 * | 0.14 * | 0.16 ** | 0.54 ** | 1.00 |
Pain during | Pain after Minus Pain during | |||||||
---|---|---|---|---|---|---|---|---|
M ± SD | Md | N | Range | M ± SD | Md | N | Range | |
Age | ||||||||
30–39 | 2.3 ± 1.3 *** | 2 | 10 | 1–4 | 1.1 ± 0.9 | 1 | 10 | 0–2 |
40–49 | 1.2 ± 0.9 | 1 | 39 | 0–2 | 0.7 ± 1.7 | 1 | 39 | −2–4 |
50–59 | 1.2 ± 0.8 | 1 | 18 | 0–2 | 0.6 ± 1.7 | 0 | 18 | −1–3 |
60–69 | 1.7 ± 1.8 | 2 | 48 | 0–6 | 0.3 ± 1.8 | 0 | 48 | −3–5 |
70–79 | 1.6 ± 1.5 | 1 | 52 | 0–5 | 0.5 ± 1.6 | 0 | 52 | −2–4 |
80–89 | 0.9 ± 0.7 | 1 | 35 | 0–2 | 0.4 ± 2.1 | 0 | 35 | −1–6 |
Gender | ||||||||
Male | 1 ± 0.9 ** | 1 | 76 | 0–2 | 0.2 ± 1.4 | 0 | 76 | −2–3 |
Female | 1.6 ± 1.5 | 1 | 126 | 0–6 | 0.7 ± 1.9 | 0 | 126 | −3–6 |
ENP Dose | ||||||||
40 mg | 1.4 ± 1.4 | 1 | 183 | 0–6 | 0.5 ± 1.8 | 0 | 183 | −3–6 |
60 mg | 1 ± 1.1 | 1 | 6 | 0–2 | 0 ± 0.0 | 0 | 6 | 0–0 |
80 mg | 2 ± 0.9 | 2 | 9 | 1–3 | 1 ± 2.3 | 0 | 9 | −1–4 |
100 mg | 1 ± 0.0 | 1 | 4 | 1–1 | 0 ± 0.0 | 0 | 4 | 0–0 |
Obesity (BMI) | ||||||||
Normal weight | 1.6 ± 1.7 * | 1 | 56 | 0−6 | 0.3 ± 1.8 * | 0 | 56 | −2–6 |
Overweight | 1.3 ± 1.2 | 1 | 60 | 0−4 | 0.2 ± 1.0 | 0 | 60 | −2–2 |
Obesity Type I | 1.2 ± 1.2 | 1 | 73 | 0−5 | 1 ± 1.9 | 0 | 73 | −1–5 |
Obesity Type II | 2.2 ± 0.9 | 2 | 13 | 1−3 | 0.2 ± 2.5 | 0 | 13 | −3–4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-González, C.d.l.M.; Ramal-López, J.M.; de la Rosa-Hormiga, M. The Impact of Obesity on Pain Perception During and After Subcutaneous Injections: A Cross-Sectional Analysis. Obesities 2024, 4, 438-452. https://doi.org/10.3390/obesities4040035
Díaz-González CdlM, Ramal-López JM, de la Rosa-Hormiga M. The Impact of Obesity on Pain Perception During and After Subcutaneous Injections: A Cross-Sectional Analysis. Obesities. 2024; 4(4):438-452. https://doi.org/10.3390/obesities4040035
Chicago/Turabian StyleDíaz-González, Candelaria de la Merced, Josefa María Ramal-López, and Milagros de la Rosa-Hormiga. 2024. "The Impact of Obesity on Pain Perception During and After Subcutaneous Injections: A Cross-Sectional Analysis" Obesities 4, no. 4: 438-452. https://doi.org/10.3390/obesities4040035
APA StyleDíaz-González, C. d. l. M., Ramal-López, J. M., & de la Rosa-Hormiga, M. (2024). The Impact of Obesity on Pain Perception During and After Subcutaneous Injections: A Cross-Sectional Analysis. Obesities, 4(4), 438-452. https://doi.org/10.3390/obesities4040035