Relationship between Carotid-Femoral Pulse Wave Velocity and Diet-Induced Weight Loss
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, A.D.; Finan, C.; Schmidt, A.F. Obesity causes cardiovascular diseases: Adding to the weight of evidence. Eur. Heart J. 2020, 41, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Pineda, E.; Sanchez-Romero, L.M.; Brown, M.; Jaccard, A.; Jewell, J.; Galea, G.; Webber, L.; Breda, J. Forecasting Future Trends in Obesity across Europe: The Value of Improving Surveillance. Obes. Facts. 2018, 11, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Webber, L.; Divajeva, D.; Marsh, T.; McPherson, K.; Brown, M.; Galea, G.; Breda, J. The future burden of obesity-related diseases in the 53 WHO European-Region countries and the impact of effective interventions: A modelling study. BMJ Open 2014, 4, e004787. [Google Scholar] [CrossRef] [Green Version]
- Janssen, F.; Bardoutsos, A.; Vidra, N. Obesity Prevalence in the Long-Term Future in 18 European Countries and in the USA. Obes. Facts. 2020, 13, 514–527. [Google Scholar] [CrossRef]
- Hayes, A.J.; Lung, T.W.; Bauman, A.; Howard, K. Modelling obesity trends in Australia: Unravelling the past and predicting the future. Int. J. Obes. 2017, 41, 178–185. [Google Scholar] [CrossRef]
- Keaver, L.; Xu, B.; Jaccard, A.; Webber, L. Morbid obesity in the UK: A modelling projection study to 2035. Scand. J. Public Health 2020, 48, 422–427. [Google Scholar] [CrossRef]
- O’Neill, M.; Kornas, K.; Rosella, L. The future burden of obesity in Canada: A modelling study. Can. J. Public Health 2019, 110, 768–778. [Google Scholar] [CrossRef] [Green Version]
- Viorela, D.; Ouellette, N.; Camarda, C.G.; Bourbeau, R. Insight on ‘typical’ longevity: An analysis of the modal lifespan by leading causes of death in Canada. Demogr. Res. 2016, 35, 471–504. [Google Scholar]
- Lippi, G.; Plebani, M. Biomarker research and leading causes of death worldwide: A rather feeble relationship. Clin. Chem. Lab. Med. 2013, 51, 1691–1693. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Tang, X.; Luo, Q.; Xu, D.; Yu, B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids. Health Dis. 2019, 18, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasser, S.P.; Arnett, D.K.; McVeigh, G.E.; Finkelstein, S.M.; Bank, A.J.; Morgan, D.J.; Cohn, J.N. Vascular compliance and cardiovascular disease: A risk factor or a marker? Am. J. Hypertens. 1997, 10, 1175–1189. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P. Arterial stiffness: A new surrogate end point for cardiovascular disease? J. Nephrol. 2007, 20 (Suppl. S12), S45–S50. [Google Scholar] [PubMed]
- van Popele, N.M.; Grobbee, D.E.; Bots, M.L.; Asmar, R.; Topouchian, J.; Reneman, R.S.; Hoeks, A.P.; van der Kuip, D.A.; Hofman, A.; Witteman, J.C. Association between arterial stiffness and atherosclerosis: The Rotterdam Study. Stroke 2001, 32, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Genovesi, S.; Salvi, P.; Nava, E.; Tassistro, E.; Giussani, M.; Desimone, I.; Orlando, A.; Battaglino, M.; Lieti, G.; Montemerlo, M.; et al. Blood Pressure and Body Weight Have Different Effects on Pulse Wave Velocity and Cardiac Mass in Children. J. Clin. Med. 2020, 9, 2954. [Google Scholar] [CrossRef]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Pannier, B.; Guerin, A.P.; Marchais, S.J.; Safar, M.E.; London, G.M. Stiffness of capacitive and conduit arteries: Prognostic significance for end-stage renal disease patients. Hypertension 2005, 45, 592–596. [Google Scholar] [CrossRef] [Green Version]
- Lanier, J.B.; Bury, D.C.; Richardson, S.W. Diet and Physical Activity for Cardiovascular Disease Prevention. Am. Fam. Physician. 2016, 93, 919–924. [Google Scholar]
- Sackner-Bernstein, J.; Kanter, D.; Kaul, S. Dietary Intervention for Overweight and Obese Adults: Comparison of Low-Carbohydrate and Low-Fat Diets. A Meta-Analysis. PLoS ONE 2015, 10, e0139817. [Google Scholar] [CrossRef]
- Syed-Abdul, M.M.; Hu, Q.; Jacome-Sosa, M.; Padilla, J.; Manrique-Acevedo, C.; Heimowitz, C.; Parks, E.J. Effect of carbohydrate restriction-induced weight loss on aortic pulse wave velocity in overweight men and women. Appl. Physiol. Nutr. Metab. 2018, 43, 1247–1256. [Google Scholar] [CrossRef]
- Gjuladin-Hellon, T.; Davies, I.G.; Penson, P.; Amiri Baghbadorani, R. Effects of carbohydrate-restricted diets on low-density lipoprotein cholesterol levels in overweight and obese adults: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Sadeghirad, B.; Ball, G.D.C.; da Costa, B.R.; Hitchcock, C.L.; Svendrovski, A.; Kiflen, R.; Quadri, K.; Kwon, H.Y.; Karamouzian, M.; et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ 2020, 369, m696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, P.M.; Keogh, J.B.; Foster, P.R.; Noakes, M. Effect of weight loss on inflammatory and endothelial markers and FMD using two low-fat diets. Int. J. Obes. 2005, 29, 1445–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keogh, J.B.; Brinkworth, G.D.; Noakes, M.; Belobrajdic, D.P.; Buckley, J.D.; Clifton, P.M. Effects of weight loss from a very-low-carbohydrate diet on endothelial function and markers of cardiovascular disease risk in subjects with abdominal obesity. Am. J. Clin. Nutr. 2008, 87, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Heiston, E.M.; Gilbertson, N.M.; Eichner, N.Z.M.; Malin, S.K. A Low-Calorie Diet with or without Exercise Reduces Postprandial Aortic Waveform in Females with Obesity. Med. Sci. Sports Exerc. 2021, 53, 796–803. [Google Scholar] [CrossRef]
- Keogh, J.B.; Brinkworth, G.D.; Clifton, P.M. Effects of weight loss on a low-carbohydrate diet on flow-mediated dilatation, adhesion molecules and adiponectin. Br. J. Nutr. 2007, 98, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Wycherley, T.P.; Brinkworth, G.D.; Keogh, J.B.; Noakes, M.; Buckley, J.D.; Clifton, P.M. Long-term effects of weight loss with a very low carbohydrate and low fat diet on vascular function in overweight and obese patients. J. Intern. Med. 2010, 267, 452–461. [Google Scholar] [CrossRef]
- Joris, P.J.; Plat, J.; Kusters, Y.H.; Houben, A.J.; Stehouwer, C.D.; Schalkwijk, C.G.; Mensink, R.P. Diet-induced weight loss improves not only cardiometabolic risk markers but also markers of vascular function: A randomized controlled trial in abdominally obese men. Am. J. Clin. Nutr. 2017, 105, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Philippou, E.; Bovill-Taylor, C.; Rajkumar, C.; Vampa, M.L.; Ntatsaki, E.; Brynes, A.E.; Hickson, M.; Frost, G.S. Preliminary report: The effect of a 6-month dietary glycemic index manipulation in addition to healthy eating advice and weight loss on arterial compliance and 24-hour ambulatory blood pressure in men: A pilot study. Metabolism 2009, 58, 1703–1708. [Google Scholar] [CrossRef]
- Barinas-Mitchell, E.; Kuller, L.H.; Sutton-Tyrrell, K.; Hegazi, R.; Harper, P.; Mancino, J.; Kelley, D.E. Effect of weight loss and nutritional intervention on arterial stiffness in type 2 diabetes. Diabetes Care 2006, 29, 2218–2222. [Google Scholar] [CrossRef] [Green Version]
- Dengo, A.L.; Dennis, E.A.; Orr, J.S.; Marinik, E.L.; Ehrlich, E.; Davy, B.M.; Davy, K.P. Arterial destiffening with weight loss in overweight and obese middle-aged and older adults. Hypertension 2010, 55, 855–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa, A.; Vicil, F.; Sanchez-Gonzalez, M.A.; Wong, A.; Ormsbee, M.J.; Hooshmand, S.; Daggy, B. Effects of diet and/or low-intensity resistance exercise training on arterial stiffness, adiposity, and lean mass in obese postmenopausal women. Am. J. Hypertens. 2013, 26, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyaki, A.; Maeda, S.; Yoshizawa, M.; Misono, M.; Saito, Y.; Sasai, H.; Endo, T.; Nakata, Y.; Tanaka, K.; Ajisaka, R. Effect of weight reduction with dietary intervention on arterial distensibility and endothelial function in obese men. Angiology 2009, 60, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordstrand, N.; Gjevestad, E.; Hertel, J.K.; Johnson, L.K.; Saltvedt, E.; Roislien, J.; Hjelmesaeth, J. Arterial stiffness, lifestyle intervention and a low-calorie diet in morbidly obese patients-a nonrandomized clinical trial. Obesity 2013, 21, 690–697. [Google Scholar] [CrossRef]
- Weiss, E.P.; Albert, S.G.; Reeds, D.N.; Kress, K.S.; McDaniel, J.L.; Klein, S.; Villareal, D.T. Effects of matched weight loss from calorie restriction, exercise, or both on cardiovascular disease risk factors: A randomized intervention trial. Am. J. Clin. Nutr. 2016, 104, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Wildman, R.P.; Farhat, G.N.; Patel, A.S.; Mackey, R.H.; Brockwell, S.; Thompson, T.; Sutton-Tyrrell, K. Weight change is associated with change in arterial stiffness among healthy young adults. Hypertension 2005, 45, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Desamericq, G.; Tissot, C.M.; Akakpo, S.; Tropeano, A.I.; Millasseau, S.; Macquin-Mavier, I. Carotid-femoral pulse wave velocity is not increased in obesity. Am. J. Hypertens. 2015, 28, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Zuo, J.; Chao, H.; Tang, B.; Avolio, A.P.; Schlaich, M.P.; Nolde, J.M.; Adji, A.; Carnagarin, R. Female Gender Is Associated with Higher Susceptibility of Weight Induced Arterial Stiffening and Rise in Blood Pressure. J. Clin. Med. 2021, 10, 3479. [Google Scholar] [CrossRef]
- Santos, F.L.; Esteves, S.S.; da Costa Pereira, A.; Yancy, W.S., Jr.; Nunes, J.P. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes. Rev. 2012, 13, 1048–1066. [Google Scholar] [CrossRef]
- Theofilis, P.; Oikonomou, E.; Lazaros, G.; Vogiatzi, G.; Anastasiou, M.; Mystakidi, V.C.; Goliopoulou, A.; Christoforatou, E.; Bourouki, E.; Vavouranaki, G.; et al. The association of diabetes mellitus with carotid atherosclerosis and arterial stiffness in the Corinthia study. Nutr. Metab. Cardiovasc. Dis. 2021, 32, 567–576. [Google Scholar] [CrossRef]
- Wang, M.; Huang, J.; Wu, T.; Qi, L. Arterial Stiffness, Genetic Risk, and Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care 2022, 45, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.A.; Yang, Y.; Zhang, L.; Sun, Z.; Jia, G.; Parrish, A.R.; Sowers, J.R. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021, 119, 154766. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, Z.I.; Ramirez-Perez, F.I.; Woodford, M.L.; Morales-Quinones, M.; Mejia, S.; Manrique-Acevedo, C.; Siebenlist, U.; Martinez-Lemus, L.A.; Chandrasekar, B.; Padilla, J. TRAF3IP2 (TRAF3 Interacting Protein 2) Mediates Obesity-Associated Vascular Insulin Resistance and Dysfunction in Male Mice. Hypertension 2020, 76, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Ballard, K.D.; Quann, E.E.; Kupchak, B.R.; Volk, B.M.; Kawiecki, D.M.; Fernandez, M.L.; Seip, R.L.; Maresh, C.M.; Kraemer, W.J.; Volek, J.S. Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins. Nutr. Res. 2013, 33, 905–912. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Alvim, R.; Mourao-Junior, C.A.; de Oliveira, C.M.; de Faria Lima, R.; Horimoto, A.R.; Hong, V.A.; Bortolotto, L.A.; Krieger, J.E.; Pereira, A.C. Glycemic control and arterial stiffness in a Brazilian rural population: Baependi Heart Study. Diabetol. Metab. Syndr. 2015, 7, 86. [Google Scholar] [CrossRef] [PubMed]
Study | N | Age | Sex | Study Population | Intervention | Duration | WL (kg) | WL (%) | Change in cf-PWV (cm/s) |
---|---|---|---|---|---|---|---|---|---|
Barinas-Mitchell et al. [30] | 21 | 50 ± 2 | Both | T2DM + Ob | ER ≤30 g fat ~500 kcal/d | 52 | −9.4 | −9.2 | −50 |
Clifton et al. [23] | 26 | 49 ± 9 | Both | OW | ER (LF-MR) 6026 kj/d 1800 kj in SlimFast replaced breakfast and lunch 3500 kj/d of fruits and vegetables [57.2% carbs, 22.7% fat, 20.1% proteins] | 12 | −6.0 | −6.4 | −124 |
Clifton et al. [23] | 29 | 47 ± 10 | Both | OW | ER (LF) 6047 kj/d [61.7% carbs, 16.8% fat, 21.5% proteins] | 12 | −6.6 | −6.9 | −102 |
Dengo et al. [31] | 25 | 61 ± 1 | Both | OW + Ob | ER 1200–1500 kcals [50 ± 3% carbs, 32 ± 2% fats, 18 ± 1% proteins] | 12 | −7.1 | −8.4 | −187 |
Figueroa et al. [32] | 13 | 54 ± 4 | Female | OW + Ob | ER ~1250 kcal/d [55–60% carbs, 20–25% fats, 20–25% proteins] | 12 | −5.6 | −6.3 | −50 |
Heiston et al. [25] | 12 | 46 ± 4 | Female | Ob | ER (LC) ~1000–1200 kcal/d [reduced total energy intake by −918 ± 221 kcal/d] | 2 | −2.2 | −2.1 | −30 |
Joris et al. [28] | 23 | 52 ± X | Both | Ob | ER (VLCD) ~1500 kcal/d 500 kcal/d liquid meal (50 g carbs, 7 g fats, 52 g proteins) + 250 g/d of fruits and vegetables | 8 | −10.3 | −10.5 | −50 |
Keogh et al. [26] | 13 | 50 ± 1 | Both | OW + Ob | ER (LC) 6000 kj/d [33% carbs, 27% fats, 40% proteins] | 52 | −4.6 | −5.0 | 0 |
Keogh et al. [26] | 13 | 47 ± 2 | Both | OW + Ob | ER (LF) 6000 kj/d [60% carbs, 20% fats, 20% proteins] | 52 | −5.5 | −6.0 | 90 |
Keogh et al. [24] | 52 | 51 ± 8 | Both | OW + Ob | ER (VLCD) 6000–7000 kj/d [4% carbs, 61% fats, 35% proteins] | 8 | −7.5 | −8.0 | −80 |
Keogh et al. [24] | 47 | 49 ± 8 | Both | OW + Ob | ER (LC) 6000–7000 kj/d [46% carbs, 30% fats, 24% proteins] | 8 | −6.2 | −6.4 | −160 |
Miyaki et al. [33] | 12 | 45 ± 7 | Female | OW + Ob | ER 1680 kcal/d Meals containing 840 g carbs, 420 g fats, 420 g proteins [50% carbs, 25% fats, 25% proteins] | 12 | −8.0 | −9.1 | 60 |
Nordstrand et al. [34] | 91 | 42 ± 10 | Both | M-Ob | ER ~900 kcal/d [43% carbs, 20% fats, 37% proteins] | 28 | −9.4 | −6.8 | −20 |
Philippou et al. [29] | 22 | NR | Male | Unknown | ER (Low GI) Reduced total energy intake by −447 ± 499 kal/d [Carbs consumed 224 ± 50 g/d] | 24 | −2.2 | NR | −40 |
Philippou et al. [29] | 16 | NR | Male | Unknown | ER (High GI) Reduced total energy intake by −236 ± 632 kal/d [Carbs consumed 278 ± 7 g/d] | 24 | −3.0 | NR | −30 |
Syed-Abdul et al. [20] | 19 | 40 ± 8 | Both | OW + Ob | ER (VLCD) 1500 kcal/d 20–25 g/d of carbs and 8 oz of non-caloric fluids [14% carbs, 58% fats, 28% proteins] | 4 | −5.7 | −3.8 | −48 |
Weiss et al. [35] | 17 | 57 ± 7 | Both | Ow | ER 1428 ± 85 kcal/d [47 ± 2% carbs, 33 ± 1% fats, 19 ± 1% proteins] | 12–14 * | −5.4 | −6.8 | −10 |
Wycherley et al. [27] | 26 | 50 ± 9 | Both | OW + Ob | ER (VLCD) 6–7 MJ/d [4% carbs, 61% fats, 35% proteins] | 52 | −14.9 | −16.0 | −14 |
Wycherley et al. [27] | 23 | 50 ± 7 | Both | OW + Ob | ER (LC) 6–7 MJ/d [46% carbs, 30% fats, 24% proteins] | 52 | −11.5 | −12.0 | −15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed-Abdul, M.M. Relationship between Carotid-Femoral Pulse Wave Velocity and Diet-Induced Weight Loss. Obesities 2022, 2, 148-156. https://doi.org/10.3390/obesities2020013
Syed-Abdul MM. Relationship between Carotid-Femoral Pulse Wave Velocity and Diet-Induced Weight Loss. Obesities. 2022; 2(2):148-156. https://doi.org/10.3390/obesities2020013
Chicago/Turabian StyleSyed-Abdul, Majid Mufaqam. 2022. "Relationship between Carotid-Femoral Pulse Wave Velocity and Diet-Induced Weight Loss" Obesities 2, no. 2: 148-156. https://doi.org/10.3390/obesities2020013
APA StyleSyed-Abdul, M. M. (2022). Relationship between Carotid-Femoral Pulse Wave Velocity and Diet-Induced Weight Loss. Obesities, 2(2), 148-156. https://doi.org/10.3390/obesities2020013