Relationship of Obesity with Lifestyle and Comorbidities in Public School Teachers—A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Sample Process and Data Collection
2.3. Obesity Assessment
2.4. Work-Related Factors
2.5. Physical Activity Measurements
2.6. Barriers for Physical Activity
2.7. Television Viewing
2.8. Socioeconomic Level
2.9. Smoking, Alcohol Consumption, and Comorbidities
2.10. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 25 November 2021).
- Ramón-Arbués, E.; Martínez-Abadía, B.; Gracia-Tabuenca, T.; Yuste-Gran, C.; Pellicer-García, B.; Juárez-Vela, R.; Guerrero-Portillo, S.; Sáez-Guinoa, M. Prevalence of overweight/obesity and its association with diabetes, hypertension, dyslipidemia and metabolic syndrome: A cross-sectional study of a sample of workers in Aragón, Spain. Nutr. Hosp. 2018, 36, 51–59. [Google Scholar] [CrossRef] [Green Version]
- De Pergola, G.; Silvestris, F. Obesity as a Major Risk Factor for Cancer. J. Obes. 2013, 2013, 291546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brumpton, B.; Langhammer, A.; Romundstad, P.R.; Chen, Y.; Mai, X.-M. The associations of anxiety and depression symptoms with weight change and incident obesity: The HUNT Study. Int. J. Obes. 2012, 37, 1268–1274. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, N.-A.; Kersting, A.; Riedel-Heller, S.G.; Luck-Sikorski, C. Body Dissatisfaction in Individuals with Obesity Compared to Normal-Weight Individuals: A Systematic Review and Meta-Analysis. Obes. Facts 2016, 9, 424–441. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of All-Cause Mortality with Overweight and Obesity Using Standard Body Mass Index Categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Panuganti, K.K.; Nguyen, M.; Kshirsagar, R.K. Obesity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Cornier, M.A.; Despres, J.P.; Davis, N.; Grossniklaus, D.A.; Klein, S.; Lamarche, B.; Lopez-Jimenez, F.; Rao, G.; St-Onge, M.P.; Towfighi, A.; et al. Assessing adiposity: A scientific statement from the American Heart Association. Circulation 2011, 124, 1996–2019. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy Balance and Obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Scheuch, K.; Haufe, E.; Seibt, R. Teachers’ Health. Dtsch. Arztebl. Int. 2015, 112, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Bannai, A.; Ukawa, S.; Tamakoshi, A. Long working hours and psychological distress among school teachers in Japan. J. Occup. Health 2015, 57, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Pirzadeh, A.; Sharifirad, G.; Kamran, A. Healthy lifestyle in teachers. J. Educ. Health Promot. 2012, 1, 46. [Google Scholar] [CrossRef] [PubMed]
- de Souza, S.C.S.; Campanini, M.Z.; de Andrade, S.M.; González, A.D.; de Melo, J.M.; Mesas, A.E. Watching television for more than two hours increases the likelihood of reporting poor sleep quality among Brazilian schoolteachers. Physiol. Behav. 2017, 179, 105–109. [Google Scholar] [CrossRef]
- Committee on Physical Activity and Physical Education in the School Environment; Food and Nutrition Board; Institute of Medicine. 6, Approaches to Physical Activity in Schools. In Educating the Student Body: Taking Physical Activity and Physical Education to School; Kohl, H.W., III, Cook, H.D., Eds.; National Academies Press (US): Washington, DC, USA, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK201495/ (accessed on 7 November 2021).
- Rosales-Ricardo, Y.; Orozco, D.; Yaulema, L.; Parreño, A.; Caiza, V.; Barragán, V. Physical activity and health in teachers. A review. Apunts Med. Esport 2017, 52, 159–166. [Google Scholar] [CrossRef]
- Agranonik, M.; Hirakata, V.N. Sample size calculation: Proportions. Rev. HCPA 2011, 31, 382–388. [Google Scholar]
- WHO–World Health Organization. Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1–452. [Google Scholar]
- Baecke, J.A.; Burema, J.; Frijters, J.E. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 1982, 36, 936–942. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Westerterp, K.R.; Lefevre, J. Doubly Labeled Water Validation of three Physical Activity Questionnaires. Int. J. Sports Med. 1999, 20, 284–289. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Westerterp, K.R.; Lefevre, J. Comparison of Two Questionnaires with a Tri-Axial Accelerometer to Assess Physical Activity Patterns. Int. J. Sports Med. 2001, 22, 34–39. [Google Scholar] [CrossRef]
- Florindo, A.A.; de Oliveira Latorre, M.d.R.D. Validation and reliability of the Baecke questionnaire for the evaluation of habitual physical activity in adult men. Rev. Bras. Med. Esporte 2003, 9, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Justine, M.; Azizan, A.; Hassan, V.; Salleh, Z.; Manaf, H. Barriers to participation in physical activity and exercise among middle-aged and elderly individuals. Singap. Med. J. 2013, 54, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Moyá, M.; Navarrete-Muñoz, E.M.; de la Hera, M.G.; Giménez-Monzo, D.; González-Palacios, S.; Valera-Gran, D.; Sempere-Orts, M.; Vioque, J. Asociación entre horas de televisión, actividad física, horas de sueño y exceso de peso en población adulta joven. Gac. Sanit. 2014, 28, 203–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Instituto Brasileiro de Opinião Pública e Estatística. Levantamento Sócio Econômico-2009-IBOPE. Rio de Janeiro. Available online: www.abep.org/novo/CMS/Utils/FileGenerate.ashx?id=46 (accessed on 13 October 2021).
- Zubery, D.; Kimiywe, J.; Martin, H.D. Prevalence of Overweight and Obesity, and Its Associated Factors among Health-care Workers, Teachers, and Bankers in Arusha City, Tanzania. Diabetes Metab. Syndr. Obes. 2021, 14, 455–465. [Google Scholar] [PubMed]
- Lizana, P.A.; Aballay, J.; Vicente-Rodríguez, G.; Gómez-Bruton, A. Low interest in physical activity and higher rates of obesity among rural teachers. Work 2020, 67, 1015–1022. [Google Scholar] [CrossRef]
- Low, S.; Chin, M.C.; Deurenberg-Yap, M. Review on epidemic of obesity. Ann. Acad. Med. Singap. 2009, 38, 57. [Google Scholar]
- Delfino, L.D.; Tebar, W.; Gil Tebar, F.C.S.; De Souza, J.M.; Romanzini, M.; Fernandes, R.A.; Christofaro, D.G.D. Association between sedentary behavior, obesity and hypertension in public school teachers. Ind. Health 2020, 58, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Delfino, L.D.; Tebar, W.R.; Gil, F.C.; De Souza, J.M.; Romanzini, M.; Fernandes, R.A.; Christofaro, D.G.D. Association of sedentary behaviour patterns with dietary and lifestyle habits among public school teachers: A cross-sectional study. BMJ Open 2020, 10, e034322. [Google Scholar] [CrossRef] [Green Version]
- Kottwitz, M.U.; Gerhardt, C.; Pereira, D.; Iseli, L.; Elfering, A. Teacher’s sleep quality: Linked to social job characteristics? Ind. Health 2018, 56, 53–61. [Google Scholar] [CrossRef] [Green Version]
- de Souza, J.M.; Pinto, R.Z.D.A.; Tebar, W.R.; Gil, F.C.; Delfino, L.D.; Morelhão, P.K.; da Silva, C.C.; Oliveira, C.B.; Christofaro, D.G. Association of musculoskeletal pain with poor sleep quality in public school teachers. Work 2020, 65, 599–606. [Google Scholar] [CrossRef]
- Brito, W.F.; dos Santos, C.L.; Marcolongo, A.D.A.; Campos, M.D.; Bocalini, D.S.; Antonio, E.L.; Junior, J.A.S.; Tucci, P.; Serra, A. Nível de atividade física em professores da rede estadual de ensino. Rev. Saúde Pública 2012, 46, 104–109. [Google Scholar] [CrossRef] [Green Version]
- MacIntosh, B.R.; Murias, J.M.; Keir, D.A.; Weir, J.M. What Is Moderate to Vigorous Exercise Intensity? Front. Physiol. 2021, 12, 1481. [Google Scholar] [CrossRef]
- Costa, S.; Ogilvie, D.; Dalton, A.; Westgate, K.; Brage, S.; Panter, J. Quantifying the physical activity energy expenditure of commuters using a combination of global positioning system and combined heart rate and movement sensors. Prev. Med. 2015, 81, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Heinonen, I.; Helajärvi, H.; Pahkala, K.; Heinonen, O.J.; Hirvensalo, M.; Pälve, K.; Tammelin, T.; Yang, X.; Juonala, M.; Mikkilä, V.; et al. Sedentary behaviours and obesity in adults: The Cardiovascular Risk in Young Finns Study. BMJ Open 2013, 3, e002901. [Google Scholar] [CrossRef] [Green Version]
- Healy, G.N.; Clark, B.K.; Winkler, E.A.; Gardiner, P.A.; Brown, W.J.; Matthews, C.E. Measurement of Adults’ Sedentary Time in Population-Based Studies. Am. J. Prev. Med. 2011, 41, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.L.; Bargh, J.A.; Brownell, K.D. Priming effects of television food advertising on eating behavior. Health Psychol. 2009, 28, 404–413. [Google Scholar] [CrossRef]
- O’Connor, L.; Brage, S.; Griffin, S.J.; Wareham, N.J.; Forouhi, N.G. The cross-sectional association between snacking behaviour and measures of adiposity: The Fenland Study, UK. Br. J. Nutr. 2015, 114, 1286–1293. [Google Scholar] [CrossRef] [Green Version]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Lyon, C.J.; Law, R.E.; Hsueh, W.A. Minireview: Adiposity, Inflammation, and Atherogenesis. Endocrinology 2003, 144, 2195–2200. [Google Scholar] [CrossRef]
- McGill, H.C.; Mcmahan, C.A.; Herderick, E.E.; Zieske, A.W.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Obesity Accelerates the Progression of Coronary Atherosclerosis in Young Men. Circulation 2002, 105, 2712–2718. [Google Scholar] [CrossRef]
- Martin-Taboada, M.; Vila-Bedmar, R.; Medina-Gómez, G. From Obesity to Chronic Kidney Disease: How Can Adipose Tissue Affect Renal Function? Nephron 2021, 145, 609–613. [Google Scholar] [CrossRef]
- Williams, D.P.; Koenig, J.; Carnevali, L.; Sgoifo, A.; Jarczok, M.N.; Sternberg, E.M.; Thayer, J.F. Heart rate variability and inflammation: A meta-analysis of human studies. Brain Behav. Immun. 2019, 80, 219–226. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, X.-M.T.; Lane, J.; Wang, P. Relationship between Obesity and Diabetes in a US Adult Population: Findings from the National Health and Nutrition Examination Survey, 1999–2006. Obes. Surg. 2010, 21, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Wilding, J.P.H. The importance of weight management in type 2 diabetes mellitus. Int. J. Clin. Pract. 2014, 68, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Algoblan, A.; Alalfi, M.; Khan, M. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. Targets Ther. 2014, 7, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Lazar, M.A. How Obesity Causes Diabetes: Not a Tall Tale. Science 2005, 307, 373–375. [Google Scholar] [CrossRef] [Green Version]
- Zorena, K.; Jachimowicz-Duda, O.; Ślęzak, D.; Robakowska, M.; Mrugacz, M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int. J. Mol. Sci. 2020, 21, 3570. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Bakker, E.A.; Sui, X.; Brellenthin, A.G.; Lee, D.-C. Physical activity and fitness for the prevention of hypertension. Curr. Opin. Cardiol. 2018, 33, 394–401. [Google Scholar] [CrossRef]
- Turi, B.C.; Monteiro, H.L.; Lemes, I.R.; Codogno, J.S.; Lynch, K.R.; Mesquita, C.A.A.; Fernandes, R. TV viewing time is associated with increased all-cause mortality in Brazilian adults independent of physical activity. Scand. J. Med. Sci. Sports 2017, 28, 596–603. [Google Scholar] [CrossRef]
n (%) | |||
---|---|---|---|
Variable | Overall Sample (n = 246) | Men (n = 59) | Women (n = 187) |
Age group * | |||
20–29 | 23 (9.3) | 9 (15.2) | 14 (7.5) |
30–39 | 49 (19.9) | 20 (33.9) | 29 (15.5) |
40–49 | 74 (30.2) | 11 (18.7) | 63 (33.7) |
50–59 | 81 (32.9) | 14 (23.7) | 67 (35.8) |
60 and more | 19 (7.7) | 5 (8.5) | 14 (7.5) |
Socioeconomic level * | |||
High | 90 (36.6) | 13 (22.0) | 77 (41.2) |
Medium | 148 (60.2) | 45 (76.3) | 103 (55.1) |
Low | 8 (3.3) | 1 (1.7) | 7 (3.7) |
Weekly worked hours * | |||
20 h or less | 29 (11.8) | 9 (15.3) | 20 (10.7) |
21–40 h | 167 (67.9) | 31 (52.5) | 136 (72.7) |
More than 40 h | 50 (20.3) | 19 (32.2) | 31 (16.6) |
Years of profession * | |||
10 years or less | 62 (25.2) | 26 (44.1) | 32 (17.2) |
11–20 years | 97 (39.4) | 15 (25.4) | 82 (43.9) |
More than 20 years | 87 (35.4) | 18 (30.5) | 69 (36.9) |
Sport practice at leisure | |||
Never, rarely | 147 (59.7) | 32 (54.2) | 115 (61.5) |
Sometimes | 74 (30.1) | 19 (32.2) | 55 (29.4) |
Often, always | 25 (10.2) | 8 (13.6) | 17 (9.1) |
Active commuting by walking or cycling * | |||
Never, rarely | 91 (37.0) | 22 (37.3) | 69 (36.9) |
Sometimes | 108 (43.9) | 18 (30.5) | 90 (48.1) |
Often, always | 47 (19.1) | 19 (32.2) | 28 (15.0) |
TV viewing * | |||
<2 h/day | 167 (67.9) | 32 (54.2) | 135 (72.2) |
≥2 h/day | 79 (32.1) | 27 (45.8) | 52 (27.8) |
Barrier for physical activity * | |||
No barrier | 22 (8.9) | 6 (10.2) | 16 (8.6) |
Laziness, tiredness or discouragement | 88 (35.8) | 23 (39.0) | 65 (34.7) |
Lack of time | 92 (37.4) | 17 (28.8) | 75 (40.1) |
Other barrier | 44 (17.9) | 13 (22.0) | 31 (16.6) |
Smoking * | |||
No | 229 (93.1) | 51 (86.4) | 178 (95.2) |
Yes | 17 (6.9) | 8 (13.6) | 9 (4.8) |
Alcohol consumption * | |||
No | 137 (55.7) | 26 (44.1) | 111 (59.4) |
Yes | 109 (44.3) | 33 (55.9) | 76 (40.6) |
Hypertension | |||
No | 196 (79.7) | 46 (78.0) | 150 (80.2) |
Yes | 50 (20.3) | 13 (22.0) | 37 (19.8) |
Diabetes | |||
No | 236 (95.9) | 57 (96.6) | 179 (95.7) |
Yes | 10 (4.1) | 2 (3.4) | 8 (4.3) |
Dyslipidemia | |||
No | 212 (86.2) | 55 (93.2) | 157 (84.0) |
Yes | 34 (13.8) | 4 (6.8) | 30 (16.0) |
Obesity (Body Mass Index ≥ 30 kg/m²) | ||
---|---|---|
OR (95% CI) | p-Value | |
Sex | ||
Men | Reference | - |
Women | 1.18 (0.61; 2.27) | 0.614 |
Age group | ||
20–29 | Reference | - |
30–39 | 2.05 (0.59; 7.09) | 0.259 |
40–49 | 2.25 (0.69; 7.39) | 0.181 |
50–59 | 1.45 (0.44; 4.81) | 0.545 |
60 and more | 4.00 (0.94; 16.9) | 0.060 |
Socioeconomic level | ||
High | Reference | - |
Medium | 0.62 (0.36; 1.10) | 0.101 |
Low | 0.58 (0.11; 3.02) | 0.514 |
Hours worked weekly | ||
20 h or less | Reference | - |
21–40 h | 0.93 (0.39; 2.21) | 0.867 |
More than 40 h | 0.53 (0.18; 1.52) | 0.236 |
Years in the profession | ||
10 years or less | Reference | - |
11–20 years | 1.52 (0.74; 3.14) | 0.253 |
More than 20 years | 1.40 (0.67; 2.93) | 0.377 |
Obesity (Body Mass Index ≥ 30 kg/m²) | ||
---|---|---|
OR (95% CI) | p-Value | |
Sport practice | ||
Never, rarely | Reference (1.00) | - |
Sometimes | 0.89 (0.48; 1.66) | 0.724 |
Often, always | 0.22 (0.05; 0.98) | 0.047 |
Active commuting by walking or cycling | ||
Never, rarely | Reference (1.00) | - |
Sometimes | 0.54 (0.30; 0.99) | 0.047 |
Often, always | 0.26 (0.10; 0.64) | 0.004 |
TV viewing | ||
<2 h/day | Reference | - |
≥2 h/day | 2.07 (1.17; 3.66) | 0.012 |
Barrier to physical activity | ||
No barrier | Reference | - |
Laziness, tiredness, or discouragement | 6.79 (1.48; 31.03) | 0.014 |
Lack of time | 3.11 (0.67; 14.47) | 0.146 |
Other barrier | 3.68 (0.74; 18.25) | 0.111 |
Smoking | ||
No | Reference | - |
Yes | 0.29 (0.06; 1.30) | 0.105 |
Alcohol consumption | ||
No | Reference | - |
Yes | 1.31 (0.75; 2.26) | 0.341 |
Hypertension | ||
No | Reference | - |
Yes | 2.66 (1.40; 5.05) | 0.003 |
Diabetes | ||
No | Reference | - |
Yes | 5.82 (1.46; 23.16) | 0.013 |
Dyslipidemia | ||
No | Reference | - |
Yes | 1.51 (0.71; 3.21) | 0.282 |
Obesity (Body Mass Index ≥ 30 kg/m²) | |||
---|---|---|---|
Step 1 | Step 2 | Step 3 | |
OR (95% CI), p-Value | OR (95% CI), p-Value | OR (95% CI), p-Value | |
Sport practice | |||
Never, rarely | Reference (1.00) | - | - |
Sometimes | 1.81 (0.81; 4.04), 0.147 | - | - |
Often, always | 0.63 (0.13; 3.17), 0.575 | - | - |
Active commuting by walking or cycling | |||
Never, rarely | Reference (1.00) | Reference (1.00) | Reference (1.00) |
Sometimes | 0.70 (0.33; 1.50), 0.359 | 0.86 (0.44; 1.71), 0.671 | 0.75 (0.39; 1.46), 0.395 |
Often, always | 0.26 (0.08; 0.88), 0.262 | 0.30 (0.10; 0.93), 0.037 | 0.22 (0.08; 0.67), 0.007 |
TV viewing | |||
<2 h/day | Reference (1.00) | Reference (1.00) | Reference (1.00) |
≥2 h/day | 1.75 (0.89; 3.44), 0.104 | 1.85 (0.95; 3.60), 0.071 | 2.10 (1.10; 4.02), 0.025 |
Barrier to physical activity | |||
No barrier | Reference (1.00) | Reference (1.00) | - |
Laziness, tiredness, or discouragement | 4.50 (0.78; 26.04), 0.093 | 4.66 (0.82; 26.62), 0.083 | - |
Lack of time | 2.46 (0.43; 14.22), 0.315 | 2.57 (0.45; 14.69), 0.288 | - |
Other barrier | 2.94 (0.48; 17.98), 0.243 | 3.09 (0.51; 18.61), 0.218 | - |
Hypertension | |||
No | Reference (1.00) | Reference (1.00) | Reference (1.00) |
Yes | 2.94 (1.35; 6.41), 0.007 | 2.79 (1.30; 5.96), 0.008 | 2.62 (1.25; 5.49), 0.010 |
Diabetes | |||
No | Reference (1.00) | Reference (1.00) | Reference (1.00) |
Yes | 5.57 (0.95; 32.67), 0.057 | 5.06 (0.92; 27.88), 0.063 | 4.14 (0.87; 19.74), 0.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tebar, W.R.; Gil, F.C.S.; Delfino, L.D.; Souza, J.M.; Mota, J.; Christofaro, D.G.D. Relationship of Obesity with Lifestyle and Comorbidities in Public School Teachers—A Cross-Sectional Study. Obesities 2022, 2, 52-63. https://doi.org/10.3390/obesities2010006
Tebar WR, Gil FCS, Delfino LD, Souza JM, Mota J, Christofaro DGD. Relationship of Obesity with Lifestyle and Comorbidities in Public School Teachers—A Cross-Sectional Study. Obesities. 2022; 2(1):52-63. https://doi.org/10.3390/obesities2010006
Chicago/Turabian StyleTebar, William R., Fernanda C. S. Gil, Leandro D. Delfino, Jefferson M. Souza, Jorge Mota, and Diego G. D. Christofaro. 2022. "Relationship of Obesity with Lifestyle and Comorbidities in Public School Teachers—A Cross-Sectional Study" Obesities 2, no. 1: 52-63. https://doi.org/10.3390/obesities2010006
APA StyleTebar, W. R., Gil, F. C. S., Delfino, L. D., Souza, J. M., Mota, J., & Christofaro, D. G. D. (2022). Relationship of Obesity with Lifestyle and Comorbidities in Public School Teachers—A Cross-Sectional Study. Obesities, 2(1), 52-63. https://doi.org/10.3390/obesities2010006