Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications
Abstract
1. Introduction
Aspect | Characteristics | Research Gap | Reference |
---|---|---|---|
National strategies | Ambitious targets Updated goals | Strategic plans vs. practical feasibility | [1,3] |
Electrolyzer Renewables limitations | Long lead times Renewable intermittency | Lack of analyses addressing real technical and infrastructural barriers | [4,5,6,7,8,9,10] |
Industrial dominance | The largest consumers of H2 Major emitters | Non-industrial applications remain underexplored | [11] |
Alternative H2 applications | Potential beyond the industry | Absence of systematic competitiveness assessment | [12,14] |
International infrastructure | Large-scale network planning | Need for transition to integrated strategies | [15,16] |
2. Materials and Methods
2.1. Hydrogen Applications
- Utilization of hydrogen produced as the end-use application at the same location.
- Transportation of hydrogen from the production place to the location of final use.
2.2. Criteria and MCDA Approach
2.3. Methodology: On-Site Application
Type of H2 Use | CAPEX, mil. EUR | η, % | TRL | LCOH, EUR/kg H2 | CO2,eq, g CO2/kg H2 | P, bar | ||||
---|---|---|---|---|---|---|---|---|---|---|
SOEC | PEM | ALK | SOEC | PEM | ALK | |||||
Heating [17,33,35,36,37] | 9.65 | 46 | 6 | 12.2 | 15.6 | 16.0 | 349 | 59 | 82 | 41 |
Power generation [38,39,40,41,42,43] | 11.37 | 35 | 7 | 12.0 | 15.4 | 15.8 | 360 | 79 | 103 | 50 |
Light-duty vehicle [17,44,45,46,47,48,49,50] | 45.37 | 26 | 8 | 13.2 | 16.6 | 17.1 | 640 | 348 | 371 | 700 |
Heavy-duty vehicle [17,44,45,46,47,48,51,52] | 66.31 | 30 | 8 | 13.9 | 17.3 | 17.7 | 552 | 272 | 296 | 350 |
2.4. Methodology: Transport of H2
3. Results and Discussion
3.1. On-Site Application
3.2. Transport of H2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic hierarchy process |
ALK | Alkaline electrolysis |
CAPEX | Capital expenditures, mil. EUR |
CUT | Cost of utilities, mil. EUR/y |
CEPCI | Chemical Engineering Plant Cost Index |
CI | Consistency index |
CO2,eq | Carbon dioxide emissions, g CO2/kg H2 |
CR | Consistency ratio |
CF | Cost of feedstock, mil. EUR/y |
η | Energy efficiency, % |
Matrix eigenvalue | |
LCA | Life-cycle assessment |
LCOH | Levelized cost of hydrogen, EUR/kg H2 |
LOHC | Liquid organic hydrogen carrier |
M | Number of consistent criterion combinations |
MCDA | Multi-criteria decision analysis |
N | Number of criteria |
NG | Natural gas |
OPEX | Operational expenditures, mil. EUR/y |
P | Pressure, bar |
r | Discount rate |
R | Lifetime of the unit, year |
PEM | Proton-exchange membrane electrolysis |
RFNBO | Renewable fuel of non-biological origin |
RI | Random consistency index |
SAF | Sustainable aviation fuel |
SFannual | Annual consumption of hydrogen, kg/y |
SOEC | Solid oxide electrolysis |
TRL | Technology readiness level |
Appendix A
References
- Homann, Q.; Rosas, J.; Kerr, C.; Tatarenko, O. The Case for Recalibrating Europe’s Hydrogen Strategy. 2025. Available online: https://rmi.org/the-case-for-re-calibrating-europes-hydrogen-strategy/ (accessed on 20 May 2025).
- Johnston, R.; Revest, M. Hydrogen for a Clean EU Economy: Focusing the EU’s Framework to Capture the Opportunities of Hydrogen. 2025. Available online: https://www.e3g.org/publications/hydrogen-for-a-clean-eu-economy-focusing-the-eu-s-framework-to-capture-the-opportunities-of-hydrogen/ (accessed on 18 May 2025).
- Ministerstvo průmyslu a obchodu České republiky. Vodíková Strategie České Republiky Aktualizace 2024. 2024. Available online: https://mpo.gov.cz/assets/cz/prumysl/strategicke-projekty/2024/7/Vodikova-strategie-CR-aktualizace-2024.pdf (accessed on 20 May 2025).
- Stargate Hydrogen. Hydrogen Electrolyser Manufacturers: What You Need to Know Before You Buy. 2024. Available online: https://stargatehydrogen.com/blog/hydrogen-electrolyser-manufacturers/ (accessed on 14 June 2025).
- Odenweller, A.; Ueckerdt, F. The Green Hydrogen Ambition and Implementation Gap. Nat. Energy 2025, 10, 110–123. [Google Scholar] [CrossRef]
- Masihy, C.E.; Carvajal, D.; Oliva, H.S. Impact of Delivery Time, Local Renewable Sources, and Generation Curtailment on the Levelized Cost of Hydrogen. Appl. Energy 2024, 364, 123143. [Google Scholar] [CrossRef]
- Ganter, A.; Ruggles, T.H.; Gabrielli, P.; Sansavini, G.; Caldeira, K. Utilizing Curtailed Wind and Solar Power to Scale Up Electrolytic Hydrogen Production in Europe. Environ. Sci. Technol. 2025, 59, 3495–3507. [Google Scholar] [CrossRef] [PubMed]
- Collins, L. The Impact of Intermittency on Electrolysers and Green Hydrogen Production: What We Know and What We Don’t. 2024. Available online: https://www.hydrogeninsight.com/electrolysers/the-impact-of-intermittency-on-electrolysers-and-green-hydrogen-production-what-we-know-and-what-we-don-t/2-1-1656097?zephr_sso_ott=o0RML2 (accessed on 14 June 2025).
- Future Bridge. The Intermittency Issues in Electrolyzer Operations. Available online: https://netzero-events.com/can-ppa-solve-intermittency-issues-in-electrolyzer-operations/ (accessed on 24 May 2025).
- Amireh, S.F.; Heineman, N.N.; Vermeulen, P.; Barros, R.L.G.; Yang, D.; van der Schaaf, J.; de Groot, M.T. Impact of Power Supply Fluctuation and Part Load Operation on the Efficiency of Alkaline Water Electrolysis. J. Power Sources 2023, 560, 232629. [Google Scholar] [CrossRef]
- Vezzoni, R. How “Clean” Is the Hydrogen Economy? Tracing the Connections between Hydrogen and Fossil Fuels. Environ. Innov. Soc. Transit. 2024, 50, 100817. [Google Scholar] [CrossRef]
- Ruth, M.; Jadun, P.; Gilroy, N.; Connelly, E.; Boardman, R.; Simon, A.J.; Elgowainy, A.; Zuboy, J. The Technical and Economic Potential of the H2@Scale Hydrogen Concept within the United States. 2020. Available online: https://research-hub.nrel.gov/en/publications/the-technical-and-economic-potential-of-the-h2scale-hydrogen-conc (accessed on 20 May 2025).
- Loncar, M. Hydrogen Heating Systems and Why They Are Important. 2025. Available online: https://h2-heat.eu/blog/hydrogen-heating-system/ (accessed on 28 May 2025).
- Rosenow, J. A Meta-Review of 54 Studies on Hydrogen Heating. Cell Rep. Sustain. 2024, 1, 100010. [Google Scholar] [CrossRef]
- European Hydrogen Backbone EHB Publishes. Five Potential Hydrogen Supply Corridors to Meet Europe’s Accelerated 2030 Hydrogen Goals. 2022. Available online: https://www.ehb.eu/newsitem/ehb-publishes-five-potential-hydrogen-supply-corridors-to-meet-europe-s-accelerated-2030-hydrogen-goals (accessed on 14 May 2025).
- European Hydrogen Backbone. The European Hydrogen Backbone (EHB) Initiative. Available online: https://www.ehb.eu/ (accessed on 14 May 2025).
- IEA. Global Hydrogen Review 2023. 2024. Available online: www.iea.org (accessed on 15 May 2025).
- Hydrogen Europe. Hydrogen Infrastructure: The Recipe for a Hydrogen Grid Plan. Available online: https://hydrogeneurope.eu/policy-priorities/position-papers/ (accessed on 24 August 2025).
- Shekhovtsov, A.; Rafiei Oskooei, A.; Wątróbski, J.; Sałabun, W. Analyzing Customer Preferences for Hydrogen Cars: A Characteristic Objects Method Approach. Artif. Intell. Rev. 2024, 58, 52. [Google Scholar] [CrossRef]
- Chen, P.S.-L.; Fan, H.; Abdussamie, N. Evaluation of Hydrogen Shipping Cost for Potential Trade Routes. WMU J. Marit. Aff. 2025, 24, 315–338. [Google Scholar] [CrossRef]
- Haase, M.; Wulf, C.; Baumann, M.; Ersoy, H.; Koj, J.C.; Harzendorf, F.; Mesa Estrada, L.S. Multi-Criteria Decision Analysis for Prospective Sustainability Assessment of Alternative Technologies and Fuels for Individual Motorized Transport. Clean. Technol. Environ. Policy 2022, 24, 3171–3197. [Google Scholar] [CrossRef]
- Walker, S.; Al-Zakwani, S.; Maroufmashat, A.; Fowler, M.; Elkamel, A. Multi-Criteria Examination of Power-to-Gas Pathways under Stochastic Preferences. Energies 2020, 13, 3151. [Google Scholar] [CrossRef]
- Diesing, P.; Blechinger, P.; Breyer, C. Electrification versus Hydrogen: A Data-Driven Comparison Framework for Energy-Intensive Industries. Energy Convers. Manag. 2025, 342, 120145. [Google Scholar] [CrossRef]
- Janošovský, J.; Boháčiková, V.; Kraviarová, D.; Variny, M. Multi-Criteria Decision Analysis of Steam Reforming for Hydrogen Production. Energy Convers. Manag. 2022, 263, 115722. [Google Scholar] [CrossRef]
- Kügemann, M.; Polatidis, H. Multi-Criteria Decision Analysis of Alternative Fuel Buses: Methodology and Case-Study. Int. J. Green. Energy 2024, 21, 2493–2513. [Google Scholar] [CrossRef]
- Lu, X.; Krutoff, A.-C.; Wappler, M.; Fischer, A. Key Influencing Factors on Hydrogen Storage and Transportation Costs: A Systematic Literature Review. Int. J. Hydrogen Energy 2025, 105, 308–325. [Google Scholar] [CrossRef]
- Sinay, J.; Weiterschütz, J.; Jesný, M.; Blaškovitš, P.; Sulík, R. Národná Vodíková Stratégia: Pripravení na budúcnosť. 2021. Available online: https://www.enviroportal.sk/energetika/dokumenty/narodna-vodikova-strategia-pripraveni-na-buducnost-2021 (accessed on 8 September 2023).
- Kraviarová, D.; Janošovský, J.; Variny, M. The Feasibility Study of Alternative Fuels Production Following National Hydrogen Strategy in Slovakia. Int. J. Hydrogen Energy 2024, 86, 1386–1400. [Google Scholar] [CrossRef]
- Kokare, S.; Oliveira, J.P.; Godina, R. Life Cycle Assessment of Additive Manufacturing Processes: A Review. J. Manuf. Syst. 2023, 68, 536–559. [Google Scholar] [CrossRef]
- Zardari, N.H.; Ahmed, K.; Shirazi, S.M.; Yusop, Z. Bin Weighting Methods and Their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-12585-5. [Google Scholar]
- Karthikeyan, R.; Venkatesan, K.G.S.; Chandrasekar, A. A Comparison of Strengths and Weaknesses for Analytical Hierarchy Process. J. Chem. Pharm. Sci. 2016, 9, 12–15. [Google Scholar]
- Zúñiga-Saiz, P.; Sánchez-Díaz, C. Design of a Hydrogen Refueling Station with Hydrogen Production by Electrolysis, Storage and Dispensing for a Bus Fleet in the City of Valencia. Int. J. Hydrogen Energy 2025, 104, 651–664. [Google Scholar] [CrossRef]
- Rutten, L. H2 Industrial Boiler. 2024. Available online: https://energy.nl/data/h%E2%82%82-industrial-boiler/ (accessed on 5 June 2025).
- Caponi, R.; Bocci, E.; Del Zotto, L. Techno-Economic Model for Scaling Up of Hydrogen Refueling Stations. Energies 2022, 15, 7518. [Google Scholar] [CrossRef]
- Hydrogen Technologies Dynamic Combustion Chamber (DCCTM). 2022. Available online: https://solarimpulse.com/solutions-explorer/dynamic-combustion-chamber (accessed on 12 October 2025).
- Baldino, C.; O’Malley, J.; Searle, S.; Zhou, Y.; Christensen, A. Hydrogen for Heating? Decarbonization Options for Households in the United Kingdom in 2050. 2020. Available online: https://theicct.org/sites/default/files/publications/Hydrogen-heating-UK-dec2020.pdf (accessed on 28 May 2025).
- H2Heat. H2HEAT Project. 2023. Available online: https://h2-heat.eu/technology/ (accessed on 15 August 2025).
- Freitag, P.; Stolle, D.; Kullmann, F.; Linssen, J.; Stolten, D. A Techno-Economic Analysis of Future Hydrogen Reconversion Technologies. Int. J. Hydrogen Energy 2024, 77, 1254–1267. [Google Scholar] [CrossRef]
- Öberg, S.; Odenberger, M.; Johnsson, F. Exploring the Competitiveness of Hydrogen-Fueled Gas Turbines in Future Energy Systems. Int. J. Hydrogen Energy 2022, 47, 624–644. [Google Scholar] [CrossRef]
- Turbotec. Hydrogen Gas Turbine. Available online: https://www.turbotec.be/hydrogen-gas-turbine/ (accessed on 25 May 2025).
- Pashchenko, D. Green Hydrogen as a Power Plant Fuel: What Is Energy Efficiency from Production to Utilization? Renew. Energy 2024, 223, 120033. [Google Scholar] [CrossRef]
- ETN Global. The Path Towards a Zero-Carbon Gas Turbine. Available online: https://www.etn.global/wp-content/uploads/2019/06/ETN-brochure.pdf (accessed on 24 August 2025).
- Indlekofer, T. HyPowerGT—Demonstrating a Hydrogen-Powered Gas-Turbine Engine Fuelled with up to 100% H2. 2024. Available online: https://www.sintef.no/en/projects/2024/hypowergt/ (accessed on 24 August 2025).
- Hydrogen Council. Path to Hydrogen Competitiveness: A Cost Perspective. 2020. Available online: https://hydrogencouncil.com/en/path-to-hydrogen-competitiveness-a-cost-perspective/ (accessed on 28 May 2025).
- Hyfindr. Hydrogen Refueling. 2023. Available online: https://hyfindr.com/en/hydrogen-knowledge/hydrogen-refueling (accessed on 28 May 2025).
- Hydrogen Europe. Long-Term Outlook on Zero-Emission Mobility. 2024. Available online: https://hydrogeneurope.eu/long-term-outlook-on-zero-emission-mobility-report-published/ (accessed on 30 May 2025).
- Hiperbaric. How Does the Energy Efficiency of Compressed Hydrogen Compare to Other Alternative Fuels? 2024. Available online: https://www.hiperbaric.com/en/how-does-the-energy-efficiency-of-compressed-hydrogen-compare-to-other-alternative-fuels/ (accessed on 27 May 2025).
- McGregor, C.; Young, B.D.; Hildebrandt, D. Risk Assessment Framework for Green Hydrogen Megaprojects: Balancing Climate Goals with Project Viability. Appl. Therm. Eng. 2025, 262, 125197. [Google Scholar] [CrossRef]
- Hyundai. Hyundai NEXO Sales in Europe Exceed 1000. 2021. Units. Available online: https://www.hyundai.news/eu/articles/press-releases/hyundai-nexo-sales-in-europe-exceed-1000-units.html (accessed on 24 August 2025).
- Reuters. Europe’s Hydrogen Infrastructure Faces 2–3 Year Delay, Enagas CEO Says. 2025. Available online: https://www.reuters.com/sustainability/boards-policy-regulation/europes-hydrogen-infrastructure-faces-2-3-year-delay-enagas-ceo-says-2025-07-22/ (accessed on 26 August 2025).
- Hyundai. XCIENT Fuel Cell Truck. Available online: https://ecv.hyundai.com/global/en/products/xcient-fuel-cell-truck-fcev (accessed on 24 August 2025).
- Urban Transport Magazine. JIVE 2: Europe’s Largest Fuel Cell Bus Project Has Been Concluded. 2025. Available online: https://www.urban-transport-magazine.com/en/jive-2-europes-largest-fuel-cell-bus-project-has-concluded/ (accessed on 24 August 2025).
- Rekik, S.; El Alimi, S. A Spatial Ranking of Optimal Sites for Solar-Driven Green Hydrogen Production Using GIS and Multi-Criteria Decision-Making Approach: A Case of Tunisia. Energy Explor. Exploit. 2024, 42, 2150–2190. [Google Scholar] [CrossRef]
- Yılmaz, T.; Uyan, M. Optimal Site Selection for Green Hydrogen Production Plants Based on Solar Energy in Konya/Türkiye. Int. J. Hydrogen Energy 2025, 115, 252–264. [Google Scholar] [CrossRef]
- Adekola, K.; Ghafoori, S.; Dechamp, F.; Prada, A. Electricity Supply Configurations for Green Hydrogen Hubs: A European Case Study on Decarbonizing Urban Transport. Int. J. Hydrogen Energy 2024, 85, 539–559. [Google Scholar] [CrossRef]
- Clean Hydrogen Partnership. Hydrogen Valleys. 2025. Available online: https://www.clean-hydrogen.europa.eu/get-involved/hydrogen-valleys_en (accessed on 26 March 2025).
- Solargis. Solar Resource Maps of Slovakia. 2021. Available online: https://solargis.com/maps-and-gis-data/download/slovakia (accessed on 1 June 2024).
- Eustream. Energy Transformation Projects. Available online: https://www.eustream.sk/en/transparency/network-development/energy-transformation-projects/ (accessed on 26 March 2025).
- Hinkley, J.T.; Heenan, A.R.; Low, A.C.S.; Watson, M. Hydrogen as an Export Commodity—Capital Expenditure and Energy Evaluation of Hydrogen Carriers. Int. J. Hydrogen Energy 2022, 47, 35959–35975. [Google Scholar] [CrossRef]
- Sinha, J. Innovations and Challenges of Green Hydrogen Applications in Energy Transition. 2024. Available online: https://www.linkedin.com/pulse/innovations-challenges-green-hydrogen-applications-energy-sinha-stw9c/ (accessed on 27 May 2025).
- Mishra, D.K.; Hussain, R.; Pugazhenthi, G.; Banerjee, T. Catalytic Effect of Ionic Liquid Induced H2-Release from Morpholine Borane Complex: An Efficient Hydrogen Storage Carrier. ACS Sustain. Chem. Eng. 2022, 10, 6157–6164. [Google Scholar] [CrossRef]
- Sterner, M.; Hofrichter, A.; Meisinger, A.; Bauer, F.; Pinkwart, K.; Maletzko, A.; Dittmar, F.; Cremers, C. 19 Import Options for Green Hydrogen and Derivatives—An Overview of Efficiencies and Technology Readiness Levels. Int. J. Hydrogen Energy 2024, 90, 1112–1127. [Google Scholar] [CrossRef]
- Energy Transitions Commision. Making the Hydrogen Economy Possible – Accelerating Clean Hydrogen in an Electrified Economy. 2021. Available online: https://www.energy-transitions.org/publications/making-clean-hydrogen-possible/ (accessed on 27 May 2025).
- Olympios, A.V.; Kourougianni, F.; Arsalis, A.; Papanastasiou, P.; Pantaleo, A.M.; Markides, C.N.; Georghiou, G.E. A Holistic Framework for the Optimal Design and Operation of Electricity, Heating, Cooling and Hydrogen Technologies in Buildings. Appl. Energy 2024, 370, 123612. [Google Scholar] [CrossRef]
- Billerbeck, A.; Kiefer, C.P.; Winkler, J.; Bernath, C.; Sensfuß, F.; Kranzl, L.; Müller, A.; Ragwitz, M. The Race between Hydrogen and Heat Pumps for Space and Water Heating: A Model-Based Scenario Analysis. Energy Convers. Manag. 2024, 299, 117850. [Google Scholar] [CrossRef]
- Mukelabai, M.D.; Blanchard, R.E. The Triadic Impact of Hydrogen Production, Electricity Generation, and Policies on Hydrogen Feasibility. Appl. Energy 2025, 394, 126191. [Google Scholar] [CrossRef]
- Busch, T.; Derichs, J.; Klütz, T.; Linßen, J.; Stolten, D. The Hydrogen Supply Chain—A Comprehensive Literature Review Incorporating Purity Analysis. Int. J. Hydrogen Energy 2025, 164, 149367. [Google Scholar] [CrossRef]
- Mendler, F.; Müller, N.; Voglstätter, C.; Smolinka, T.; Hebling, C.; Koch, B. Optimisation of Possible Transformation Pathways for Hydrogen Valleys: Case Study Southern Upper Rhine Region. Int. J. Hydrogen Energy 2025, 138, 985–1003. [Google Scholar] [CrossRef]
- Curcio, E. Techno-Economic Analysis of Hydrogen Production: Costs, Policies, and Scalability in the Transition to Net-Zero. Int. J. Hydrogen Energy 2025, 128, 473–487. [Google Scholar] [CrossRef]
- Cvetkovska, R.; Wechner, L.; Kienberger, T. Techno-Economic Assessment of Hydrogen Supply Solutions for Industrial Site. Int. J. Hydrogen Energy 2025, 104, 611–622. [Google Scholar] [CrossRef]
- European Commission. Towards a Roadmap for Accelerating the Deployment of Hydrogen Valleys across Europe: Challenges and Opportunities. Brussels. 2024. Available online: https://research-and-innovation.ec.europa.eu/document/download/e5e75789-d4d8-42aa-8c99-3f33b2f5b935_en?filename=ec_rtd_swd-2024-159-f1.pdf (accessed on 5 September 2025).
- European Hydrogen Backbone. News. 2024. Available online: https://ehb.eu/newsitems?utm_source#ehb-launches-a-new-report-implementation-roadmap-public-support-as-catalyst-for-hydrogen-infrastructure (accessed on 5 September 2025).
- Sayani, J.K.S.; Wang, M.; Ma, Z.; Sharan, P.; Mehana, M.; Chen, B. Techno-Economic Analysis of Hydrogen Transport via Repurposed Natural Gas Pipelines: Flow Dynamics and Infrastructure Tradeoffs. Int. J. Hydrogen Energy 2025, 147, 150033. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bae, K.-O.; Jaeyeong, P.; Nahm, S.H.; Baek, U.B. Damage Associated with Interactions between Microstructural Characteristics and Hydrogen/Methane Gas Mixtures of Pipeline Steels. Int. J. Hydrogen Energy 2022, 47, 31499–31520. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Hu, W.; Li, K.; Wang, Y.; Lin, Y. Hydrogen Embrittlement Behavior and Applicability of X52 Steel in Pure Hydrogen Pipelines. Materials 2025, 18, 3417. [Google Scholar] [CrossRef]
- Jamali, D.H.; Ganzer, C.; Sundmacher, K. Hydrogen Network Topology Optimization by MINLP: Comparing Retrofit with New-Built Design Scenarios. Appl. Energy 2025, 400, 126292. [Google Scholar] [CrossRef]
- López, C.; Pacheco-Álvarez, S.; Jaques, A. Prediction of Permeation-Related Hydrogen Losses in Pipelines Based on Machine Learning. Energy Rep. 2025, 13, 5266–5280. [Google Scholar] [CrossRef]
- Maxwell, C. Cost Indices. 2025. Available online: https://toweringskills.com/financial-analysis/cost-indices/ (accessed on 4 September 2025).
- Zun, M.T.; McLellan, B.C. Cost Projection of Global Green Hydrogen Production Scenarios. Hydrogen 2023, 4, 932–960. [Google Scholar] [CrossRef]
- Research and Markets. Hydrogen Pipelines Length and Capital Expenditure Outlook Report 2025-2030: Hydrogen Pipeline Expansion to Reduce Costs and Boost Clean Energy Use. 2025. Available online: https://www.globenewswire.com/news-release/2025/07/07/3110997/28124/en/Hydrogen-Pipelines-Length-and-Capital-Expenditure-Outlook-Report-2025-2030-Hydrogen-Pipeline-Expansion-to-Reduce-Costs-and-Boost-Clean-Energy-Use.html (accessed on 4 September 2025).
- Grahn, M.; Malmgren, E.; Korberg, A.D.; Taljegard, M.; Anderson, J.E.; Brynolf, S.; Hansson, J.; Skov, I.R.; Wallington, T.J. Review of Electrofuel Feasibility—Cost and Environmental Impact. Prog. Energy 2022, 4, 032010. [Google Scholar] [CrossRef]
- Janke, L.; Ruoss, F.; Hahn, A.; Weinrich, S.; Nordberg, Å. Modelling Synthetic Methane Production for Decarbonising Public Transport Buses: A Techno-Economic Assessment of an Integrated Power-to-Gas Concept for Urban Biogas Plants. Energy Convers. Manag. 2022, 259, 115574. [Google Scholar] [CrossRef]
- Fambri, G.; Diaz-Londono, C.; Mazza, A.; Badami, M.; Sihvonen, T.; Weiss, R. Techno-Economic Analysis of Power-to-Gas Plants in a Gas and Electricity Distribution Network System with High Renewable Energy Penetration. Appl. Energy 2022, 312, 11874. [Google Scholar] [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Modell. 1987, 9, 161–176. [Google Scholar] [CrossRef]
H2 Transport | Min | Max | Average |
---|---|---|---|
(g) H2 | 3.0% | 5.8% | 3.9% |
(l) H2 | 5.5% | 8.6% | 6.7% |
LOHC | 3.0% | 6.9% | 4.8% |
H2 pipelines (new) | 5.0% | 10.2% | 6.9% |
Retrofit NG pipelines | 1.4% | 6.4% | 3.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polakovičová, D.; Variny, M. Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications. Hydrogen 2025, 6, 86. https://doi.org/10.3390/hydrogen6040086
Polakovičová D, Variny M. Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications. Hydrogen. 2025; 6(4):86. https://doi.org/10.3390/hydrogen6040086
Chicago/Turabian StylePolakovičová, Dominika, and Miroslav Variny. 2025. "Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications" Hydrogen 6, no. 4: 86. https://doi.org/10.3390/hydrogen6040086
APA StylePolakovičová, D., & Variny, M. (2025). Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications. Hydrogen, 6(4), 86. https://doi.org/10.3390/hydrogen6040086