Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrocatalysts’ Characterization
3.2. Electrochemical Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Li, Z.; Liu, T.; Zhao, S.; Guan, D.; Chen, D.; Shao, Z.; Ni, M. Morphology Control and Electronic Tailoring of CoxAy (A = P, S, Se) Electrocatalysts for Water Splitting. Chem. Eng. J. 2023, 460, 141674. [Google Scholar] [CrossRef]
- Chen, R.X.; Long, S.; He, L.; Wang, C.; Chai, F.; Kong, X.; Wan, Z.; Song, X.; Tu, Z. Performance evaluation on thermodynamics-economy-environment of PEMFC vehicle power system under dynamic condition. Energy Convers. Manag. 2022, 269, 116082. [Google Scholar] [CrossRef]
- Bagherabadi, K.M.; Skjong, S.; Pedersen, E. Dynamic modelling of PEM fuel cell system for simulation and sizing of marine power systems. Int. J. Hydrogen Energy 2022, 47, 17699–17712. [Google Scholar] [CrossRef]
- Voloshchenko, G.N.; Zasypkina, A.A.; Spasov, D.D. Model Study of a Cold Start of a Power Plant Based on a Polymer Electrolyte Membrane Fuel Cells in the Conditions of Arctic Temperatures. Nanotechnol. Russ. 2020, 15, 326–332. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Bakirov, A.V.; Fateev, V.N. PEMFC performance at nonstandard operating conditions: A review. Int. J. Hydrogen Energy 2024, 96, 664–679. [Google Scholar] [CrossRef]
- Lei, L.; He, P.; He, P.; Tao, W.Q. A comparative study: The effect of current loading modes on the cold start-up process of PEMFC stack. Energy Convers. Manag. 2022, 251, 114991. [Google Scholar] [CrossRef]
- Gießgen, T.; Jahnke, T. Assisted cold start of a PEMFC with a thermochemical preheater: A numerical study. Appl. Energy 2023, 331, 120387. [Google Scholar] [CrossRef]
- Jiang, W.; Song, K.; Zheng, B.; Xu, Y.; Fang, R. Study on Fast Cold Start-Up Method of Proton Exchange Membrane Fuel Cell Based on Electric Heating Technology. Energies 2020, 13, 4456. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Ming, P.; Yang, D.; Li, B.; Zhang, C. Experimental study on rapid cold start-up performance of PEMFC system. Int. J. Hydrogen Energy 2023, 48, 21898–21907. [Google Scholar] [CrossRef]
- Liu, P.; Xu, S. A review of low-temperature proton exchange membrane fuel cell degradation caused by repeated freezing start. Int. J. Hydrogen Energy 2023, 48, 8216–8246. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Y.; Gao, L.; Zeng, G.; Li, M.; Huang, H. Stabilizing Pt-Based Electrocatalysts for Oxygen Reduction Reaction: Fundamental Understanding and Design Strategies. Adv. Mater. 2021, 33, 2006494. [Google Scholar] [CrossRef]
- Zasypkina, A.A.; Ivanova, N.A.; Spasov, D.D.; Mensharapov, R.M.; Sinyakov, M.V.; Grigoriev, S.A. Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review. Catalysts 2024, 14, 303. [Google Scholar] [CrossRef]
- Bayan, Y.; Paperzh, K.; Pankov, I.; Alekseenko, A. Influence of a carbon support on the catalytic activity and durability of the Pt-based electrocatalysts. Mater. Lett. 2024, 368, 136670. [Google Scholar] [CrossRef]
- Paperzh, K.; Alekseenko, A.; Pankov, I.; Guterman, V. Accelerated stress tests for Pt/C electrocatalysts: An ap-proach to understanding the degradation mechanisms. J. Electroanal. Chem. 2024, 952, 117972. [Google Scholar] [CrossRef]
- Alekseenko, A.; Belenov, S.; Mauer, D.; Moguchikh, E.; Falina, I.; Bayan, J.; Pankov, I.; Alekseenko, D.; Guterman, V. Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content. Inorganics 2024, 12, 23. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Spasov, D.D.; Ivanova, N.A.; Zasypkina, A.A.; Smirnov, S.A.; Grigoriev, S.A. Screening of Carbon-Supported Platinum Electrocatalysts Using Frumkin Adsorption Isotherms. Inorganics 2023, 11, 103. [Google Scholar] [CrossRef]
- Hussain, S.; Erikson, H.; Kongi, N.; Sarapuu, A.; Solla-Gullón, J.; Maia, G.; Kannan, A.M.; Alonso-Vante, N.; Tammeveski, K. Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: A review. Int. J. Hydrogen Energy 2020, 45, 31775–31797. [Google Scholar] [CrossRef]
- Jithul, K.P.; Tamilarasi, B.; Pandey, J. Electrocatalyst for the oxygen reduction reaction (ORR): Towards an active and stable electrocatalyst for low-temperature PEM fuel cell. Ionics 2024, 30, 6757–6787. [Google Scholar] [CrossRef]
- Xu, G.; Dong, X.; Xue, B.; Huang, J.; Wu, J.; Cai, W. Recent Approaches to Achieve High Temperature Operation of Nafion Membranes. Energies 2023, 16, 1565. [Google Scholar] [CrossRef]
- Rodríguez-Garnica, P.; Alatorre-Ordaz, A.; Pierna, Á.R.; Guereño, M.S.; Martín, A.L. Silica based hybrid organic-inorganic materials for PEMFC application. Int. J. Hydrogen Energy 2020, 45, 16698–16707. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, S.; Li, Y.; Li, X.; Zhang, J.; Lu, S.; He, Q. Effects of microstructure on the retention of proton conductivity of Nafion/SiO2 composite membranes at elevated temperatures: An in situ SAXS study. Polymer 2023, 273, 125869. [Google Scholar] [CrossRef]
- Meyer, Q.; Yang, C.; Cheng, Y.; Zhao, C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2023, 6, 16. [Google Scholar] [CrossRef]
- Feng, K.; Tang, B.; Wu, P. Sulfonated graphene oxide–silica for highly selective Nafion-based proton exchange membranes. J. Mater. Chem. A 2014, 2, 16083–16092. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Hao, Y.; Gao, F.; Zhou, M.; Zhao, L. Impact of SiO2 Modification on the Performance of NafionComposite Membrane. Int. J. Polym. Sci. 2024, 1, 6309923. [Google Scholar] [CrossRef]
- Ganesan, A.; Narayanasamy, M.; Shunmugavel, K. Self-humidifying manganese oxide-supported Pt electrocatalysts for highly-durable PEM fuel cells. Electrochim. Acta 2018, 285, 47–59. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Lin, Y.; Tang, H.; Pan, M.; Zhang, H. Metal Oxides as Water Retention Materials For Low Humidity Proton Exchange Membrane Applications. New Dev. Met. Oxides Res. 2013, 2, 81–108. [Google Scholar]
- Blesa, M.A.; Weisz, A.D.; Morando, P.J.; Salfity, J.A.; Magaz, G.E.; Regazzoni, A.E. The interaction of metal oxide surfaces with complexing agents dissolved in water. Coord. Chem. Rev. 2000, 196, 31–63. [Google Scholar] [CrossRef]
- Leão, V.N.S.; Araújo, E.S. Metal Oxide Heteronanostructures Prepared by Electrospinning for the Humidity Detection: Fundamentals and Perspectives: 07. J. Mater. Sci. Chem. Eng. 2019, 7, 43. [Google Scholar] [CrossRef]
- Miao, Z.; Yu, H.; Song, W.; Hao, L.; Shao, Z.; Shen, Q.; Hou, J.; Yi, B. Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers. Int. J. Hydrogen Energy 2010, 35, 5552–5557. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Selvaganesh, S.V.; Rathishkumar, A.; Bhat, S.D. Designing self-humidified platinum anchored silica decorated carbon electrocatalyst for boosting the durability and performance of polymer electrolyte fuel cell stack. Int. J. Hydrogen Energy 2021, 46, 8143–8155. [Google Scholar] [CrossRef]
- Dundar, F.; Uzunoglu, A.; Ata, A.; Wynne, K.J. Durability of carbon–silica supported catalysts for proton exchange membrane fuel cells. J. Power Sources 2012, 202, 184–189. [Google Scholar] [CrossRef]
- Wu, A.; Wei, G.; Min, Y.; Huang, J.; Gao, A.; Wang, L. Enhanced cell performance: Incorporation of hydrophobic mesoporous silica into the triple-phase boundary of catalyst layer. J. Power Sources 2024, 602, 234142. [Google Scholar] [CrossRef]
- Kong, Z.; Wu, J.; Liu, Z.; Yan, D.; Wu, Z.; Zhong, C. Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials. Exploration 2023. [Google Scholar] [CrossRef]
- Lee, D.W.; Yuk, S.; Choi, S.; Lee, D.-H.; Doo, G.; Hyun, J.; Kwen, J.; Kim, J.Y.; Kim, H.-T. Preferential Protection of Low Coordinated Sites in Pt Nanoparticles for Enhancing Durability of Pt/C Catalyst. Energies 2021, 14, 1419. [Google Scholar] [CrossRef]
- Seselj, N.; Alfaro, S.M.; Bompolaki, E.; Cleemann, J.N.; Torres, T.; Azizi, K. Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. Adv. Mater. 2023, 35, 2302207. [Google Scholar] [CrossRef]
- Park, K.; Ohnishi, T.; Goto, M.; So, M.; Takenaka, S.; Tsuge, Y.; Inoue, G. Improvement of cell performance in catalyst layers with silica-coated Pt/carbon catalysts for polymer electrolyte fuel cells. Int. J. Hydrogen Energy 2020, 45, 1867–1877. [Google Scholar] [CrossRef]
- Park, K.; Goto, M.; So, M.; Takenaka, S.; Tsuge, Y.; Inoue, G. Influence of Cathode Catalyst Layer with SiO2-Coated Pt/Ketjen Black Catalysts on Performance for Polymer Electrolyte Fuel Cells. Catalysts 2021, 11, 1517. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, T.; Zhang, R.; Gan, Z. Effect of freeze–thaw cycles on membrane electrodeassembly of proton exchange membrane fuel cells and itsfault diagnosis method. Fuel Cells 2024, 24, 78–89. [Google Scholar] [CrossRef]
- Lin, R.; Zhong, D.; Lan, S.; Guo, R.; Ma, Y.; Cai, X. Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer. Appl. Energy 2021, 300, 117306. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Dong, F. Study on ice-melting performance of gradient gas diffusion layer in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2022, 47, 22981–22992. [Google Scholar] [CrossRef]
- Inaba, M.; Suzuki, T.; Hatanaka, T.; Morimoto, Y. Fabrication and Cell Analysis of a Pt/SiO2 Platinum Thin Film Electrode. J. Electrochem. Soc. 2015, 162, F634–F638. [Google Scholar] [CrossRef]
- Sarapuu, A.; Lilloja, J.; Akula, S.; Zagal, J.H.; Specchia, S.; Tammeveski, K. Recent Advances in Non-Precious Metal Single-Atom Electrocatalysts for Oxygen Reduction Reaction in Low-Temperature Polymer-Electrolyte Fuel Cells. ChemCatChem 2023, 15, e202300849. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Mensharapov, R.M.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Nanostructured Pt20/SiO2x/C Electrocatalysts for Water-Balance Stabilization in a Proton Exchange Membrane Fuel Cell. Nanotechnol Russ. 2022, 17, 320–327. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Kukueva, E.V.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Carbon-Supported Pt-SnO2 Catalysts for Oxygen Reduction Reaction over a Wide Temperature Range: Rotating Disk Electrode Study. Catalysts 2021, 11, 1469. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Pushkarev, A.S.; Pushkareva, I.V.; Presnyakova, N.N.; Chumakov, R.G.; Presnyakov, M.Y.; Grigoriev, S.A.; Fateev, V.N. On the Influence of Composition and Structure of Carbon-Supported Pt-SnO2 Hetero-Clusters onto Their Electrocatalytic Activity and Durability in PEMFC. Catalysts 2019, 9, 803. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, X.; Chen, F.; Kuang, X.; Min, J.; Duan, H.; Li, J.; Chen, J. Oxygen Vacancy Induced Interaction between Pt and TiO2 to Improve the Oxygen Reduction Performance. J. Colloid Interface Sci. 2023, 650, 901–912. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-Phase Perovskite Oxide with Super-Exchange Induced Atomic-Scale Synergistic Active Centers Enables Ultrafast Hydrogen Evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ma, P.; Wang, R.; Cao, H.; Bao, J. A Janus Platinum/Tin Oxide Heterostructure for Durable Oxygen Reduction Reaction. Small 2024, 20, 2405234. [Google Scholar] [CrossRef]
- Katrib, A.; Stanislaus, A.; Yousef, R.M. XPS Investigations of Metal—Support Interactions in Pt/SiO2, Ir/SiO2 and Ir/Al2O3 Systems. J. Mol. Struct. 1985, 129, 151–163. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X. A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal. Angew. Chem. 2011, 123, 442–446. [Google Scholar] [CrossRef]
- Paperzh, K.O.; Alekseenko, A.A.; Volochaev, V.A.; Pankov, I.V.; Safronenko, O.A.; Guterman, V.E. Stability and Activity of Platinum Nanoparticles in the Oxygen Electroreduction Reaction: Is Size or Uniformity of Primary Importance? Beilstein J. Nanotechnol. 2021, 12, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Pinchuk, O.A.; Dundar, F.; Ata, A.; Wynne, K.J. Improved Thermal Stability, Properties, and Electrocatalytic Activity of Sol-Gel Silica Modified Carbon Supported Pt Catalysts. Int. J. Hydrogen Energy 2012, 37, 2111–2120. [Google Scholar] [CrossRef]
- Markovic, N.; Gasteiger, H.; Ross, P.N. Kinetics of Oxygen Reduction on Pt (Hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts. J. Electrochem. Soc. 1997, 144, 1591. [Google Scholar] [CrossRef]
- Esfahani, R.A.M.; Moghaddam, R.B.; Ebralidze, I.I.; Easton, E.B. A Hydrothermal Approach to Access Active and Durable Sulfonated Silica-Ceramic Carbon Electrodes for PEM Fuel Cell Applications. Appl. Catal. B Environ. 2018, 239, 125–132. [Google Scholar] [CrossRef]
- Jäger, R.; Härk, E.; Steinberg, V.; Lust, E. Influence of Temperature on the Oxygen Electroreduction Activity at Nanoporous Carbon Support. ECS Trans. 2015, 66, 47. [Google Scholar] [CrossRef]
- Paulus, U.A.; Schmidt, T.J.; Gasteiger, H.A.; Behm, R.J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 2001, 495, 134–145. [Google Scholar] [CrossRef]
jk, mA cm−2 | Sa, mA cm−2 | Ma, mA mg−1 | |
---|---|---|---|
Pt/C | 4.6 ± 0.1 | 0.14 ± 0.01 | 56 ± 1 |
Pt/C [50] | – | 0.21 | 90 |
Pt/C [51] | – | 0.19 | 122 |
Pt20/SiO23/C | 6.9 ± 0.3 | 0.25 ± 0.01 | 223 ± 9 |
Pt20/SiO27/C | 6.5 ± 0.1 | 0.21 ± 0.01 | 170 ± 3 |
Pt46.4/SiO24.4/C [52] | – | 0.14 | 50 |
Pt41.5/SiO26/C [52] | – | 0.14 | 60 |
T, K | 274 | 283 | 293 | 303 | 323 |
---|---|---|---|---|---|
Pt/C (ESA = 42 m2 g−1) | |||||
jk, mA cm−2 | 3.7 ± 0.2 | 4.3 ± 0.3 | 4.6 ± 0.1 | 5.2 ± 0.2 | 5.7 ± 0.2 |
Sa, mA cm−2 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.16 ± 0.01 | 0.17 ± 0.01 |
Ma, mA mg−1 | 47 ± 2 | 51 ± 4 | 56 ± 1 | 62 ± 2 | 69 ± 2 |
Pt20/SiO23/C (ESA = 88 m2 g−1) | |||||
jk, mA cm−2 | 3.2 ± 0.1 | 4.6 ± 0.02 | 6.9 ± 0.27 | 8.7 ± 0.1 | 12.5 ± 0.3 |
Sa, mA cm−2 | 0.12 ± 0.01 | 0.17 ± 0.01 | 0.25 ± 0.01 | 0.32 ± 0.01 | 0.46 ± 0.01 |
Ma, mA mg−1 | 104 ± 3 | 150 ± 5 | 223 ± 9 | 280 ± 3 | 402 ± 9 |
Pt20/SiO27/C (ESA = 81 m2 g−1) | |||||
jk, mA cm−2 | 3.3 ± 0.1 | 4.5 ± 0.1 | 6.4 ± 0.1 | 9.3 ± 0.4 | 13.6 ± 0.6 |
Sa, mA cm−2 | 0.11 ± 0.01 | 0.15 ± 0.01 | 0.21 ± 0.01 | 0.31 ± 0.01 | 0.44 ± 0.02 |
Ma, mA mg−1 | 88 ± 2 | 118 ± 3 | 170 ± 3 | 248 ± 10 | 359 ± 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mensharapov, R.M.; Spasov, D.D.; Sinyakov, M.V.; Grineva, D.E.; Nagorny, S.V.; Chumakov, R.G.; Bakirov, A.V.; Ivanova, N.A. Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study. Hydrogen 2025, 6, 5. https://doi.org/10.3390/hydrogen6010005
Mensharapov RM, Spasov DD, Sinyakov MV, Grineva DE, Nagorny SV, Chumakov RG, Bakirov AV, Ivanova NA. Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study. Hydrogen. 2025; 6(1):5. https://doi.org/10.3390/hydrogen6010005
Chicago/Turabian StyleMensharapov, Ruslan M., Dmitry D. Spasov, Matvey V. Sinyakov, Darya E. Grineva, Seraphim V. Nagorny, Ratibor G. Chumakov, Artem V. Bakirov, and Nataliya A. Ivanova. 2025. "Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study" Hydrogen 6, no. 1: 5. https://doi.org/10.3390/hydrogen6010005
APA StyleMensharapov, R. M., Spasov, D. D., Sinyakov, M. V., Grineva, D. E., Nagorny, S. V., Chumakov, R. G., Bakirov, A. V., & Ivanova, N. A. (2025). Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study. Hydrogen, 6(1), 5. https://doi.org/10.3390/hydrogen6010005