Effect of Hydrogen Co-Firing with Natural Gas on Thermal Efficiency and CO2 Emissions in Gas Turbine Power Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Description
2.2. System Configuration
2.3. Software Modeling
2.4. Co-Firing Parameter
2.5. Thermodynamic Analysis
2.6. Emission Analysis
- The emission rate, which represents the total amount of CO2 emissions released over a specific period, is expressed in kg CO2/h.
- The emission intensity, which indicates the amount of CO2 emissions per unit of electrical energy produced, is expressed in kg CO2/kWh.
3. Results and Discussion
3.1. Model Validation
3.2. Co-Firing Simulation Results
3.2.1. Effect of Hydrogen Co-Firing on the Compressor
3.2.2. Effect of Hydrogen Co-Firing on the Turbine
3.2.3. Effect of Hydrogen Co-Firing on the Cycle
3.2.4. Effect of Hydrogen Co-Firing on CO2 Emission
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MEMR. Handbook of Energy & Economy Statistics of Indonesia 2022; Ministry of Energy and Mineral Resources Republic of Indonesia: Jakarta, Indonesia, 2023. [Google Scholar]
- IESR. Indonesia Energy Transition Outlook 2023: Tracking Progress of Energy Transition in Indonesia: Pursuing Energy Security in the Time of Transition; Institute for Essential Services Reform (IESR): Jakarta, Indonesia, 2022. [Google Scholar]
- Siregar, Y.I. Pathways Towards Net-Zero Emissions in Indonesia’s Energy Sector. Energy 2024, 308, 133014. [Google Scholar] [CrossRef]
- Bilgili, M.; Tumse, S.; Nar, S. Comprehensive Overview on the Present State and Evolution of Global Warming, Climate Change, Greenhouse Gasses and Renewable Energy. Arab. J. Sci. Eng. 2024, 49, 14503–14531. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef] [PubMed]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J.; et al. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- IESR. Climate Transparency Report 2022: Comparing G20 Climate Action; Institute for Essential Service Reform (IESR): Jakarta, Indonesia, 2022. [Google Scholar]
- MEMR. Electricity Statistics 2022, 36th ed.; Ministry of Energy and Mineral Resources Republic of Indonesia: Jakarta, Indonesia, 2023; ISBN 2829-0992. [Google Scholar]
- Karmellos, M.; Kopidou, D.; Diakoulaki, D. A Decomposition Analysis of the Driving Factors of CO2 (Carbon Dioxide) Emissions from the Power Sector in the European Union Countries. Energy 2016, 94, 680–692. [Google Scholar] [CrossRef]
- Wijayanto, T.; Hakam, D.F.; Kemala, P.N. Vision for Indonesia’s 2050 Power Generation: Scenarios of Hydrogen Integration, Nuclear Energy Prospects, and Coal Phase-Out Impact. Sustain. Futur. 2025, 9, 100438. [Google Scholar] [CrossRef]
- Febijanto, I.; Nadirah, N.; Rosmeika; Nugroho, A.S.; Guardi, A.; Yanuar, A.I.; Bahua, H.; Herdioso, R.; Sihombing, A.L.S.M.; Susila, I.M.A.D.; et al. Life Cycle Greenhouse Gas Emissions Assessment: Converting an Early Retirement Coal-Fired Power Plant to a Biomass Power Plant. Renew. Energy Focus 2024, 51, 100643. [Google Scholar] [CrossRef]
- IFHE; BRIN. Indonesia Hidrogen Roadmap; Indonesia Fuel Cell and Hydrogen Energy (IFHE): Banten, Indonesia; dan Badan Riset dan Inovasi Nasional (BRIN): Jakarta, Indonesia, 2023. [Google Scholar]
- Ahmad, A.H.; Darmanto, P.S.; Juangsa, F.B. Thermodynamic Study on Decarbonization of Combined Cycle Power Plant. J. Eng. Technol. Sci. 2023, 55, 613–626. [Google Scholar] [CrossRef]
- Jeong, J.H.; Park, H.S.; Park, Y.K.; Kim, T.S. Analysis of the Influence of Hydrogen Co-Firing on the Operation and Performance of the Gas Turbine and Combined Cycle. Case Stud. Therm. Eng. 2024, 54, 104061. [Google Scholar] [CrossRef]
- Speight, J.G. Natural Gas: A Basic Handbook, 2nd ed.; Gulf Professional Publishing: Cambridge, MA, USA, 2019; ISBN 978-0-12-809570-6. [Google Scholar]
- Boretti, A. Phased Transition from Methane to Hydrogen in Internal Combustion Engines: Utilizing Hythane and Direct Injection Jet Ignition for Enhanced Efficiency and Reduced Emissions. Int. J. Hydrogen Energy 2024, 80, 1255–1265. [Google Scholar] [CrossRef]
- Ihsan Shahid, M.; Rao, A.; Farhan, M.; Liu, Y.; Ahmad Salam, H.; Chen, T.; Ma, F. Hydrogen Production Techniques and Use of Hydrogen in Internal Combustion Engine: A Comprehensive Review. Fuel 2024, 378, 132769. [Google Scholar] [CrossRef]
- Le, O.; Loubar, K. Natural Gas: Physical Properties and Combustion Features. In Natural Gas; IntechOpen: London, UK, 2010. [Google Scholar] [CrossRef]
- Algayyim, S.J.M.; Saleh, K.; Wandel, A.P.; Fattah, I.M.R.; Yusaf, T.; Alrazen, H.A. Influence of Natural Gas and Hydrogen Properties on Internal Combustion Engine Performance, Combustion, and Emissions: A Review. Fuel 2024, 362, 130844. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Mehra, R.K.; Duan, H.; Juknelevičius, R.; Ma, F.; Li, J. Progress in Hydrogen Enriched Compressed Natural Gas (HCNG) Internal Combustion Engines—A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 80, 1458–1498. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Long, W.; Tian, H.; Dong, P. Numerical Investigation on Knock Intensity, Combustion, and Emissions of a Heavy-Duty Natural Gas Engine with Different Hydrogen Mixing Strategies. Int. J. Hydrogen Energy 2024, 62, 551–561. [Google Scholar] [CrossRef]
- Wang, J.; Ouyang, X.; Lei, C.; Peng, S.; Wang, Z.; Wang, J. Investigation on Adaptability of Physical Property State Equation Model for Hydrogen-Blended Natural Gas. Int. J. Hydrogen Energy 2024, 81, 1256–1277. [Google Scholar] [CrossRef]
- Jayaprabakar, J.; Arunkumar, T.; Rangasamy, G.; Parthipan, J.; Anish, M.; Varshini, G.; Kiran Kumar, B. Prospectus of Hydrogen Enrichment in Internal Combustion Engines: Methodological Insights on Its Production, Injection, Properties, Performance and Emissions. Fuel 2024, 363, 131034. [Google Scholar] [CrossRef]
- Xi, Z.; Lian, T.; Shi, X.; Liu, Z.; Han, S.; Yang, X.; Zhang, J.; Li, W.; Mei, B.; Li, Y. Co-Firing Hydrogen and Dimethyl Ether in a Gas Turbine Model Combustor: Influence of Hydrogen Content and Comparison with Methane. Int. J. Hydrogen Energy 2022, 47, 38432–38444. [Google Scholar] [CrossRef]
- Inoue, K.; Miyamoto, K.; Domen, S.; Tamura, I.; Kawakami, T.; Tanimura, S. Development of Hydrogen and Natural Gas Co-firing Gas Turbine. Mitsubishi Heavy Ind. Tech. Rev. 2018, 55, 1–6. [Google Scholar]
- Nose, M.; Kawakami, T.; Araki, H.; Senba, N.; Tanimura, S. Hydrogen-Fired Gas Turbine Targeting Realization of CO2-Free Society. Mitsubishi Heavy Ind. Tech. Rev. 2018, 55, 1–7. [Google Scholar]
- Mendoza Morales, M.J.; Blondeau, J.; De Paepe, W. Assessing the Impact of CH4/H2 Blends on the Thermodynamic Performance of Aero-Derivative Gas Turbine CHP Configurations. Int. J. Hydrogen Energy 2024, 67, 159–171. [Google Scholar] [CrossRef]
- Amrouche, F.; Boudjemaa, L.; Bari, O.K. Hydrogen-Natural Gas Blending for Enhanced Performance of the MS-5002C Gas Turbine in Southern Algeria. Int. J. Hydrogen Energy 2025, 106, 1144–1157. [Google Scholar] [CrossRef]
- Normann, F.; Andersson, K.; Leckner, B.; Johnsson, F. High-Temperature Reduction of Nitrogen Oxides in Oxy-Fuel Combustion. Fuel 2008, 87, 3579–3585. [Google Scholar] [CrossRef]
- Babahammou, H.R.; Merabet, A.; Miles, A. Technical Modelling and Simulation of Integrating Hydrogen from Solar Energy into a Gas Turbine Power Plant to Reduce Emissions. Int. J. Hydrogen Energy 2024, 59, 343–353. [Google Scholar] [CrossRef]
- Alikulov, K.; Aminov, Z.; Anh, L.H.; Tran Dang, X.; Kim, W. Effect of Ammonia and Hydrogen Blends on the Performance And Emissions of an Existing Gas Turbine Unit. Int. J. Hydrogen Energy 2024, 61, 432–443. [Google Scholar] [CrossRef]
- Himmelblau, D.M.; Riggs, J.B. Basic Principles and Calculations in Chemical Engineering, 9th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2023; ISBN ISBN-13: 978-0-13-732717-1. [Google Scholar]
- Abdin, Z. Bridging the Energy Future: The Role and Potential of Hydrogen Co-Firing with Natural Gas. J. Clean. Prod. 2024, 436, 140724. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Lim, H. An Overview of Water Electrolysis Technologies for Green Hydrogen Production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Park, Y.; Choi, M.; Choi, G. Thermodynamic Performance Study of Large-Scale Industrial Gas Turbine with Methane/Ammonia/Hydrogen Blended Fuels. Energy 2023, 282, 128731. [Google Scholar] [CrossRef]
- MEMR. Cilegon Combine Cycle Power Plant Greenhouse Gas Emission Report. Available online: https://apple-gatrik.esdm.go.id/tingkat-fasilitas/rekap-emisi (accessed on 17 January 2025).
- Ang, B.W.; Su, B. Carbon Emission Intensity in Electricity Production: A Global Analysis. Energy Policy 2016, 94, 56–63. [Google Scholar] [CrossRef]
- Liu, Z.; Karimi, I.A. Simulation and Optimization of a Combined Cycle Gas Turbine Power Plant for Part-Load Operation. Chem. Eng. Res. Des. 2018, 131, 29–40. [Google Scholar] [CrossRef]
- MHI PT PLN (Persero). Cilegon Combined Cycle Power Plant (740 MW) Design Manual; Mitsubishi Heavy Industries, Ltd.: Takasago, Japan, 2006. [Google Scholar]
- Liu, Z.; Karimi, I.A. Simulating Combined Cycle Gas Turbine Power Plants in Aspen HYSYS. Energy Convers. Manag. 2018, 171, 1213–1225. [Google Scholar] [CrossRef]
- Ghoderao, P.N.P.; Narayan, M.; Dalvi, V.H.; Byun, H.S. Patel-Teja Cubic Equation of State—A Review of Modifications and Applications till 2022. Fluid Phase Equilib. 2023, 567, 113707. [Google Scholar] [CrossRef]
- Lopez-Echeverry, J.S.; Reif-Acherman, S.; Araujo-Lopez, E. Peng-Robinson Equation of State: 40 Years Through Cubics. Fluid Phase Equilib. 2017, 447, 39–71. [Google Scholar] [CrossRef]
- Valderrama, J.O. The State of the Cubic Equations of State. Ind. Eng. Chem. Res. 2003, 42, 1603–1618. [Google Scholar] [CrossRef]
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 13 978-0470-49590-2. [Google Scholar]
- Jiang, X.; Liu, Y.; Wei, M.; Cheng, X.; Wang, Z. A Thermodynamics-Informed Deep Learning Approach for Lightweight Modeling of Gas Turbine Performance. Eng. Appl. Artif. Intell. 2025, 143, 110022. [Google Scholar] [CrossRef]
- Cong, L.; Zhijun, S.; Yimin, L.; Zhongning, Z.; Lina, M. Experimental Study on the Performance of Micro Gas Turbines Under Different Intake Environments. Case Stud. Therm. Eng. 2024, 58, 104415. [Google Scholar] [CrossRef]
- Fatehi, M.; Campaldini, G.; Renzi, M. Micro Gas Turbine Fed by Ammonia with Steam Injection: Performance and Combustion Analysis. Appl. Therm. Eng. 2025, 264, 125428. [Google Scholar] [CrossRef]
- Kok, J.B.W.; Haselhoff, E.A. Thermodynamic Analysis of the Thermal And Exergetic Performance of a Mixed Gas-Steam Aero Derivative Gas Turbine Engine for Power Generation. Heliyon 2023, 9, e18927. [Google Scholar] [CrossRef]
- Alomar, O.R.; Ali, B.M.; Ali, O.M.; Mustafa, A.N. Impacts of Environmental Conditions on Thermal, Emissions and Economic Performance of Gas Turbine Using Different Types of Fuels: An Experimental Investigation. Results Eng. 2024, 24, 103402. [Google Scholar] [CrossRef]
- Hu, H.; Wang, T.; Ren, Y.; Zhang, F.; Zhang, B.; Li, J. A Case Study of Thermal Performance of Gas-Steam Combined Cycle with Gas Turbine Inlet Air Cooling And Condenser Deep Cooling. Case Stud. Therm. Eng. 2024, 60, 104747. [Google Scholar] [CrossRef]
- Akhtar, S.; Hui, Y.; Yu, J.; Yu, A. Heat Transfer Performance Analysis of Hydrogen-Ammonia Combustion in a Micro Gas Turbine for Sustainable Energy Solutions. Int. J. Hydrogen Energy 2025, 105, 619–631. [Google Scholar] [CrossRef]
- Harper, J.; Cloyd, S.; Pigon, T.; Thomas, B.; Wilson, J.; Johnson, E.; Noble, D.R. Hydrogen Co-Firing Demonstration at Georgia Power’s Plant McDonough: M501G Gas Turbine. In Education; Electric Power; Energy Storage; Fans and Blowers; American Society of Mechanical Engineers: New York, NY, USA, 2023; Volume 6, pp. 1–11. [Google Scholar]
- Munther, H.; Hassan, Q.; Mohammed, A.; Hanoon, T.M.; Algburi, S. Techno-Economic and Environmental Evaluation of Green Hydrogen Co-Firing in a 570 MWe Gas Turbine Combined Cycle Power Plant in Iraq. Unconv. Resour. 2025, 6, 100163. [Google Scholar] [CrossRef]
- Electric Power Research Institute (EPRI). Taking Gas Turbine Hydrogen Blending to the Next Level; EPRI: California, CA, USA, 2022. [Google Scholar]
Parameters | Load | ||
---|---|---|---|
100% | 75% | 50% | |
Inlet air temperature [°C] | 30 | 30 | 30 |
Inlet air pressure [bar] | 1.01325 | 1.01325 | 1.01325 |
Inlet air mass flow [kg/h] | 2,188,000 | 1,949,720 | 1,642,430 |
Compressed air temperature [°C] | 448 | 418 | 389 |
Compressed air pressure [bar] | 15.80 | 13.00 | 10.40 |
Natural gas temperature [°C] | 200 | 200 | 200 |
Natural gas pressure [bar] | 43 | 43 | 43 |
Natural gas mass flow [kg/h] | 54,400 | 44,220 | 34,180 |
Natural gas LHV [kJ/kg] | 43,377 | 43,377 | 43,377 |
Flue gas temperature [°C] | 610 | 567 | 556 |
Flue gas pressure [bar] | 1.01883 | 1.01687 | 1.01354 |
Cycle work [kW] | 238,500 | 178,800 | 119,200 |
Cycle efficiency [%] | 36.39 | 33.56 | 28.94 |
Compressor adiabatic head [m] | 36,884 | 33,244 | 29,312 |
Compressor adiabatic efficiency [%] | 81.80 | 79.69 | 76.17 |
Component | Composition [%mol.] | ||
---|---|---|---|
Inlet Air | Natural Gas | Hydrogen | |
Oxygen (O2) | 21 | - | 0.10 |
Carbon dioxide (CO2) | - | 5.00 | - |
Nitrogen (N2) | 79 | 0.61 | - |
Methane (CH4) | - | 84.49 | - |
Ethane (C2H6) | - | 4.91 | - |
Propane (C3H8) | - | 2.88 | - |
i-Butane (iC4) | - | 0.79 | - |
n-Butane (nC4) | - | 0.60 | - |
i-Pentane (iC5) | - | 0.27 | - |
n-Pentane (nC5) | - | 0.17 | - |
Hexane (C6) | - | 0.15 | - |
Heptane plus (C7+) | - | 0.12 | - |
Hydrogen (H2) | - | - | 99.90 |
Load 100% | |||
Parameters | Reference | Simulation | Dev. [%] |
Inlet air temperature [°C] | 30 | 30 | 0.000 |
Inlet air pressure [bar] | 1.01325 | 1.01325 | 0.000 |
Inlet air mass flow [kg/h] | 2,188,000 | 2,188,000 | 0.000 |
Compressed air temperature [°C] | 448.00 | 448.22 | 0.049 |
Compressed air pressure [bar] | 15.80 | 15.80 | 0.000 |
Natural gas temperature [°C] | 200 | 200 | 0.000 |
Natural gas pressure [bar] | 43 | 43 | 0.000 |
Natural gas mass flow [kg/h] | 54,400 | 54,400 | 0.000 |
Natural gas LHV [kJ/kg] | 43,377 | 43,385 | 0.018 |
Flue gas temperature [°C] | 610 | 610 | 0.000 |
Flue gas pressure [bar] | 1.01884 | 1.01884 | 0.000 |
Flue gas mass flow [kg/h] | 2,242,400 | 2,242,391 | 0.000 |
Cycle work [kW] | 238,500 | 240,003 | 0.630 |
Cycle efficiency [%] | 36.39 | 36.61 | 0.612 |
Load 75% | |||
Parameters | Reference | Simulation | Dev. [%] |
Inlet air temperature [°C] | 30 | 30 | 0.000 |
Inlet air pressure [bar] | 1.01325 | 1.01325 | 0.000 |
Inlet air mass flow [kg/h] | 1,949,720 | 1,949,720 | 0.000 |
Compressed air temperature [°C] | 418.00 | 418.07 | 0.016 |
Compressed air pressure [bar] | 13.00 | 13.00 | 0.000 |
Natural gas temperature [°C] | 200 | 200 | 0.000 |
Natural gas pressure [bar] | 43 | 43 | 0.000 |
Natural gas mass flow [kg/h] | 44,220 | 44,220 | 0.000 |
Natural gas LHV [kJ/kg] | 43,377 | 43,385 | 0.018 |
Flue gas temperature [°C] | 567 | 567 | 0.000 |
Flue gas pressure [bar] | 1.01688 | 1.01688 | 0.000 |
Flue gas mass flow [kg/h] | 1,993,940 | 1,993,933 | 0.000 |
Cycle work [kW] | 178,800 | 179,842 | 0.583 |
Cycle efficiency [%] | 33.56 | 33.75 | 0.564 |
Load 50% | |||
Parameters | Reference | Simulation | Dev. [%] |
Inlet air temperature [°C] | 30 | 30 | 0.000 |
Inlet air pressure [bar] | 1.01325 | 1.01325 | 0.000 |
Inlet air mass flow [kg/h] | 1,642,430 | 1,642,430 | 0.000 |
Compressed air temperature [°C] | 389.00 | 388.80 | −0.050 |
Compressed air pressure [bar] | 10.40 | 10.39 | −0.096 |
Natural gas temperature [°C] | 200 | 200 | 0.000 |
Natural gas pressure [bar] | 43 | 43 | 0.000 |
Natural gas mass flow [kg/h] | 34,180 | 34,180 | 0.000 |
Natural gas LHV [kJ/kg] | 43,377 | 43,385 | 0.018 |
Flue gas temperature [°C] | 556 | 556 | 0.000 |
Flue gas pressure [bar] | 1.01354 | 1.01354 | 0.000 |
Flue gas mass flow [kg/h] | 1,676,610 | 1,676,604 | 0.000 |
Cycle work [kW] | 119,200 | 120,390 | 0.998 |
Cycle efficiency [%] | 28.94 | 29.23 | 0.980 |
Load 100% | |||||||
Co-firing Ratio [vol.%] | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
Natural gas mass flow [kg/h] | 54,400 | 53,425 | 52,382 | 51,263 | 50,060 | 48,764 | 47,362 |
Hydrogen mass flow [kg/h] | 0 | 352 | 730 | 1134 | 1569 | 2037 | 2544 |
Mixed fuel mass flow [kg/h] | 54,400 | 53,777 | 53,112 | 52,397 | 51,629 | 50,801 | 49,906 |
Mixed fuel LHV [kJ/kg] | 43,385 | 43,885 | 44,436 | 45,039 | 45,708 | 46,450 | 47,281 |
Mixed fuel heat input [kW] | 655,596 | 655,561 | 655,573 | 655,534 | 655,514 | 655,472 | 655,451 |
Excess air ratio | 2.34 | 2.34 | 2.34 | 2.34 | 2.34 | 2.34 | 2.34 |
Inlet air mass flow [kg/h] | 2,188,000 | 2,177,053 | 2,165,341 | 2,152,780 | 2,139,276 | 2,124,718 | 2,108,976 |
Inlet air temperature [°C] | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Compressed air temperature [°C] | 448 | 447 | 445 | 443 | 442 | 440 | 438 |
Hot gas mass flow [kg/h] | 2,242,391 | 2,230,821 | 2,218,444 | 2,205,168 | 2,190,896 | 2,175,510 | 2,158,873 |
Hot gas temperature [°C] | 1266 | 1268 | 1271 | 1273 | 1276 | 1279 | 1282 |
Flue gas mass flow [kg/h] | 2,242,391 | 2,230,821 | 2,218,444 | 2,205,168 | 2,190,896 | 2,175,510 | 2,158,873 |
Flue gas temperature [°C] | 610 | 610 | 610 | 610 | 610 | 610 | 610 |
Load 75% | |||||||
Co-firing Ratio [vol.%] | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
Natural gas mass flow [kg/h] | 44,220 | 43,427 | 42,580 | 41,670 | 40,692 | 39,638 | 38,499 |
Hydrogen mass flow [kg/h] | 0 | 286 | 593 | 922 | 1275 | 1656 | 2068 |
Mixed fuel mass flow [kg/h] | 44,220 | 43,714 | 43,173 | 42,592 | 41,968 | 41,295 | 40,567 |
Mixed fuel LHV [kJ/kg] | 43,385 | 43,886 | 44,435 | 45,039 | 45,707 | 46,450 | 47,282 |
Mixed fuel heat input [kW] | 532,912 | 532,896 | 532,879 | 532,861 | 532,841 | 532,820 | 532,797 |
Excess air ratio | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 |
Inlet air mass flow [kg/h] | 1,949,720 | 1,939,965 | 1,929,528 | 1,918,336 | 1,906,302 | 1,893,329 | 1,879,302 |
Inlet air temperature [°C] | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Compressed air temperature [°C] | 418 | 417 | 416 | 415 | 413 | 412 | 410 |
Hot gas mass flow [kg/h] | 1,993,933 | 1,983,672 | 1,972,694 | 1,960,921 | 1,948,263 | 1,934,617 | 1,919,862 |
Hot gas temperature [°C] | 1158 | 1160 | 1163 | 1165 | 1168 | 1171 | 1175 |
Flue gas mass flow [kg/h] | 1,993,933 | 1,983,672 | 1,972,694 | 1,960,921 | 1,948,263 | 1,934,617 | 1,919,862 |
Flue gas temperature [°C] | 567 | 567 | 567 | 567 | 567 | 567 | 567 |
Load 50% | |||||||
Co-firing Ratio [vol.%] | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
Natural gas mass flow [kg/h] | 34,180 | 33,567 | 32,912 | 32,209 | 31,453 | 30,639 | 29,758 |
Hydrogen mass flow [kg/h] | 0 | 221 | 458 | 712 | 986 | 1280 | 1599 |
Mixed fuel mass flow [kg/h] | 34,180 | 33,789 | 33,370 | 32,922 | 32,439 | 31,919 | 31,356 |
Mixed fuel LHV [kJ/kg] | 43,385 | 43,886 | 44,435 | 45,039 | 45,707 | 46,450 | 47,282 |
Mixed fuel heat input [kW] | 411,916 | 411,904 | 411,891 | 411,877 | 411,861 | 411,845 | 411,827 |
Excess air ratio | 2.79 | 2.79 | 2.79 | 2.79 | 2.79 | 2.79 | 2.79 |
Inlet air mass flow [kg/h] | 1,642,430 | 1,634,213 | 1,625,421 | 1,615,992 | 1,605,855 | 1,594,927 | 1,583,111 |
Inlet air temperature [°C] | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Compressed air temperature [°C] | 389 | 388 | 387 | 386 | 385 | 384 | 383 |
Hot gas mass flow [kg/h] | 1,676,604 | 1,667,996 | 1,658,786 | 1,648,908 | 1,638,289 | 1,626,840 | 1,614,462 |
Hot gas temperature [°C] | 1073 | 1076 | 1078 | 1081 | 1084 | 1087 | 1090 |
Flue gas mass flow [kg/h] | 1,676,604 | 1,667,996 | 1,658,786 | 1,648,908 | 1,638,289 | 1,626,840 | 1,614,462 |
Flue gas temperature [°C] | 556 | 556 | 556 | 556 | 556 | 556 | 556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugraha, R.R.; Silviana, S.; Widayat, W. Effect of Hydrogen Co-Firing with Natural Gas on Thermal Efficiency and CO2 Emissions in Gas Turbine Power Plant. Hydrogen 2025, 6, 18. https://doi.org/10.3390/hydrogen6010018
Nugraha RR, Silviana S, Widayat W. Effect of Hydrogen Co-Firing with Natural Gas on Thermal Efficiency and CO2 Emissions in Gas Turbine Power Plant. Hydrogen. 2025; 6(1):18. https://doi.org/10.3390/hydrogen6010018
Chicago/Turabian StyleNugraha, Rizcky Rahadian, S. Silviana, and Widayat Widayat. 2025. "Effect of Hydrogen Co-Firing with Natural Gas on Thermal Efficiency and CO2 Emissions in Gas Turbine Power Plant" Hydrogen 6, no. 1: 18. https://doi.org/10.3390/hydrogen6010018
APA StyleNugraha, R. R., Silviana, S., & Widayat, W. (2025). Effect of Hydrogen Co-Firing with Natural Gas on Thermal Efficiency and CO2 Emissions in Gas Turbine Power Plant. Hydrogen, 6(1), 18. https://doi.org/10.3390/hydrogen6010018