Unstable Metal Hydrides for Possible On-Board Hydrogen Storage
Abstract
:1. Introduction
2. Intermetallic Compounds
2.1. AB2-Type Laves Phase Alloys
2.1.1. TiCr2-Based Alloys
2.1.2. ZrFe2-Based Alloys
2.2. Solid Solution Alloys
3. Complex Hydrides
3.1. Transition Metal Alanates
3.1.1. Overview of Known Transition Metal Alanates
3.1.2. Synthesis
3.1.3. Dehydrogenation and Hydrogenation Behavior
3.2. Transition Metal Boranates
3.2.1. Overview of Known Transition Metal Boranates
3.2.2. Synthesis
3.2.3. Dehydrogenation and Hydrogenation Behavior
3.2.4. Stability and Diborane Formation
4. Summary and Perspective
Funding
Acknowledgments
Conflicts of Interest
References
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Marbán, G.; Valdés-Solís, T. Towards the hydrogen economy? Int. J. Hydrogen Energy 2007, 32, 1625–1637. [Google Scholar] [CrossRef]
- Wu, Y.; Ghalkhani, M.; Ashrafzadeh Afshar, E.; Karimi, F.; Xia, C.; Le, Q.V.; Vasseghian, Y. Recent progress in Biomass-derived nanoelectrocatalysts for the sustainable energy development. Fuel 2022, 323, 124349. [Google Scholar] [CrossRef]
- Bockris, J.O. The hydrogen economy: Its history. Int. J. Hydrogen Energy 2013, 38, 2579–2588. [Google Scholar] [CrossRef]
- Hwang, H.T.; Varma, A. Hydrogen storage for fuel cell vehicles. Curr. Opin. Chem. Eng. 2014, 5, 42–48. [Google Scholar] [CrossRef]
- Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. Engl. 2009, 48, 6608–6630. [Google Scholar] [CrossRef] [PubMed]
- Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 2007, 120, 246–256. [Google Scholar] [CrossRef]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.T.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C.; et al. Enabling large-scale hydrogen storage in porous media—The scientific challenges. Energy Environ. Sci. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Zohuri, B. Hydrogen Energy: Challanges and Solution for a Cleaner Future; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Yoshida, T.; Kojima, K. Toyota MIRAI Fuel Cell Vehicle and Progress toward a Future Hydrogen Society. Electrochem. Soc. Interface 2015, 24, 45–49. [Google Scholar] [CrossRef]
- Takeichi, N. “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material. Int. J. Hydrogen Energy 2003, 28, 1121–1129. [Google Scholar] [CrossRef]
- Mori, D.; Hirose, K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int. J. Hydrogen Energy 2009, 34, 4569–4574. [Google Scholar] [CrossRef]
- Mori, D.; Hirose, K.; Haraikawa, N.; Takiguchi, T.; Shinozawa, T.; Matsunaga, T.; Toh, K.; Fujita, K.; Kumano, A.; Kubo, H. SAE Technical Paper Series; SAE International400 Commonwealth Drive: Warrendale, PA, USA, 2007. [Google Scholar]
- Kojima, Y.; Kawai, Y.; Towata, S.; Matsunaga, T.; Shinozawa, T.; Kimbara, M. Development of metal hydride with high dissociation pressure. J. Alloys Compd. 2006, 419, 256–261. [Google Scholar] [CrossRef]
- Matsunaga, T.; Kon, M.; Washio, K.; Shinozawa, T.; Ishikiriyama, M. TiCrVMo alloys with high dissociation pressure for high-pressure MH tank. Int. J. Hydrogen Energy 2009, 34, 1458–1462. [Google Scholar] [CrossRef]
- Mori, D.; Haraikawa, N.; Kobayashi, N.; Kubo, H.; Toh, K.; Tsuzuki, M.; Shinozawa, T.; Matsunaga, T. High-pressure metal hydride tank for fuel cell vehicles. MRS Online Proc. Libr. 2005, 884, 72–78. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Chen, C.-P.; Geng, W.-X.; Wang, Q.-D. The hydrogen storage properties of Ti–Mn-based C14 Laves phase intermetallics as hydrogen resource for PEMFC. Int. J. Hydrogen Energy 2001, 26, 593–596. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Fetcenko, M.A. Pressure–composition–temperature hysteresis in C14 Laves phase alloys: Part 1. Simple ternary alloys. J. Alloys Compd. 2009, 480, 428–433. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Tolj, I.; Pickering, L.; Sita, C.; Barbir, F.; Yartys, V. The use of metal hydrides in fuel cell applications. Prog. Nat. Sci. Mater. Int. 2017, 27, 3–20. [Google Scholar] [CrossRef]
- Marques, F.; Balcerzak, M.; Winkelmann, F.; Zepon, G.; Felderhoff, M. Review and outlook on high-entropy alloys for hydrogen storage. Energy Environ. Sci. 2021, 14, 5191–5227. [Google Scholar] [CrossRef]
- Shoemaker, D.P.; Shoemaker, C.B. Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases. J. Less-Common Met. 1979, 68, 43–58. [Google Scholar] [CrossRef]
- Westlake, D.G. Site occupancies and stoichiometries in hydrides of intermetallic compounds: Geometric considerations. J. Less-Common Met. 1983, 90, 251–273. [Google Scholar] [CrossRef]
- Westlake, D.G. Hydrides of intermetallic compounds: A review of stabilities, stoichiometries and preferred hydrogen sites. J. Less-Common Met. 1983, 91, 1–20. [Google Scholar] [CrossRef]
- Bodega, J.; Fernández, J.F.; Leardini, F.; Ares, J.R.; Sánchez, C. Synthesis of hexagonal C14/C36 and cubic C15 ZrCr2 Laves phases and thermodynamic stability of their hydrides. J. Phys. Chem. Solids 2011, 72, 1334–1342. [Google Scholar] [CrossRef]
- Merlino, R.; Luna, C.R.; Juan, A.; Pronsato, M.E. A DFT study of hydrogen storage in Zr(Cr0.5Ni0.5)2 Laves phase. Int. J. Hydrogen Energy 2016, 41, 2700–2710. [Google Scholar] [CrossRef]
- Ivey, D.G.; Northwood, D.O. Storing Hydrogen in AB2 Laves-Type Compounds. Z. Phys. Chem. 1986, 147, 191–209. [Google Scholar] [CrossRef]
- Johnson, J.R.; Reilly, J.J. Reaction of hydrogen with the low-temperature form (C15) of titanium-chromium (TiCr2). Inorg. Chem. 1978, 17, 3103–3108. [Google Scholar] [CrossRef]
- Johnson, J.R. Reaction of hydrogen with the high temperature (C14) form of TiCr2. J. Less-Common Met. 1980, 73, 345–354. [Google Scholar] [CrossRef]
- Klyamkin, S. Effect of substitution on F.C.C. and B.C.C. hydride phase formation in the TiCr2-H2 system. Int. J. Hydrogen Energy 1999, 24, 149–152. [Google Scholar] [CrossRef]
- Murashkina, T.L.; Syrtanov, M.S.; Laptev, R.S.; Stepanova, E.N.; Lider, A.M. Structure and defects evolution at temperature and activation treatments of the TiCr2 intermetallic compound of Laves phase C36-type. Int. J. Hydrogen Energy 2019, 44, 10732–10743. [Google Scholar] [CrossRef]
- Murashkina, T.L.; Syrtanov, M.S.; Laptev, R.S.; Lider, A.M. Cyclic stability of the C36-type TiCr2 Laves phase synthesized in the abnormal glow discharge plasma under hydrogenation. Int. J. Hydrogen Energy 2019, 44, 6709–6719. [Google Scholar] [CrossRef]
- Murashkina, T.L.; Syrtanov, M.S.; Shabunin, A.S.; Laptev, R.S. The Synthesis Method of Intermetallic Alloys Based on Ti–Cr with C14 and C36 Laves Phases for Hydrogen Storage. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2019, 13, 146–153. [Google Scholar] [CrossRef]
- Moriwaki, Y.; Gamo, T.; Iwaki, T. Control of hydrogen equilibrium pressure for C14-type laves phase alloys. J. Less-Common Met. 1991, 172–174, 1028–1035. [Google Scholar] [CrossRef]
- Nagasako, N.; Fukumoto, A.; Miwa, K. First-principles calculations of C14-type Laves phase Ti-Mn hydrides. Phys. Rev. B 2002, 66, 155106. [Google Scholar] [CrossRef]
- Kandavel, M.; Bhat, V.V.; Rougier, A.; Aymard, L.; Nazri, G.-A.; Tarascon, J.-M. Improvement of hydrogen storage properties of the AB2 Laves phase alloys for automotive application. Int. J. Hydrogen Energy 2008, 33, 3754–3761. [Google Scholar] [CrossRef]
- Li, F.; Zhao, J.; Tian, D.; Zhang, H.; Ke, X.; Johansson, B. Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles. J. Appl. Phys. 2009, 105, 43707. [Google Scholar] [CrossRef]
- Nong, Z.-S.; Zhu, J.-C.; Cao, Y.; Yang, X.-W.; Lai, Z.-H.; Liu, Y. A first-principles study on the structural, elastic and electronic properties of the C14 Laves phase compounds TiX2 (X = Cr, Mn, Fe). Phys. B Condens. Matter 2013, 419, 11–18. [Google Scholar]
- Nong, Z.-S.; Zhu, J.-C.; Yang, X.-W.; Cao, Y.; Lai, Z.-H.; Liu, Y.; Sun, W. First-principles calculations of the stability and hydrogen storage behavior of C14 Laves phase compound TiCrMn. Solid State Sci. 2014, 32, 1–7. [Google Scholar] [CrossRef]
- Guo, X.; Wu, E. Thermodynamics of hydrogenation for Ti1−xZrxMnCr Laves phase alloys. J. Alloys Compd. 2008, 455, 191–196. [Google Scholar]
- Guo, X.; Wu, E.; Wang, S. Hydrogen storage properties of Laves phase Ti1−xZrx(Mn0.5Cr0.5)2 alloys. Rare Met. 2006, 25, 218–223. [Google Scholar] [CrossRef]
- Li, W.; Wu, E.; Ma, P.; Sun, K.; Chen, D. Hydrogen storage properties of Ti1−xScxMnCr Laves phase alloys. Int. J. Energy Res. 2013, 37, 686–697. [Google Scholar] [CrossRef]
- Reilly, J.J. Metal Hydride Technology. Z. Phys. Chem. 1979, 117, 155–184. [Google Scholar] [CrossRef]
- Johnson, J.R.; Reilly, J.J. The Metal Hydride Research and Development Program at Brookhaven National Laboratory; Brookhaven National Lab.: Upton, NY, USA, 1978. [Google Scholar]
- Johnson, J.R.; Reilly, J.J.; Reidinger, F.; Corliss, L.M.; Hastings, J.M. On the existence of f.c.c. TiCr1.8H5.3. J. Less-Common Met. 1982, 88, 107–114. [Google Scholar] [CrossRef]
- Beeri, O.; Cohen, D.; Gavra, Z.; Johnson, J.R.; Mintz, M.H. Thermodynamic characterization and statistical thermodynamics of the TiCrMn–H2(D2) system. J. Alloys Compd. 2000, 299, 217–226. [Google Scholar] [CrossRef]
- Beeri, O.; Cohen, D.; Gavra, Z.; Mintz, M.H. Sites occupation and thermodynamic properties of the TiCr2−xMnx–H2 (0≤x≤1) system: Statistical thermodynamics analysis. J. Alloys Compd. 2003, 352, 111–122. [Google Scholar] [CrossRef]
- dos Santos, D.S.; Bououdina, M.; Fruchart, D. Structural and thermodynamic properties of the pseudo-binary TiCr2−xVx compounds with 0.0≤x≤1.2. J. Alloys Compd. 2002, 340, 101–107. [Google Scholar] [CrossRef]
- Ulmer, U.; Dieterich, M.; Pohl, A.; Dittmeyer, R.; Linder, M.; Fichtner, M. Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys. Int. J. Hydrogen Energy 2017, 42, 20103–20110. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Yang, J.; Fetcenko, M.A. Studies of off-stoichiometric AB2 metal hydride alloy: Part 1. Structural characteristics. Int. J. Hydrogen Energy 2011, 36, 11137–11145. [Google Scholar] [CrossRef]
- Young, K.; Nei, J.; Huang, B.; Fetcenko, M.A. Studies of off-stoichiometric AB2 metal hydride alloy: Part 2. Hydrogen storage and electrochemical properties. Int. J. Hydrogen Energy 2011, 36, 11146–11154. [Google Scholar] [CrossRef]
- Lee, S.-M.; Lee, H.; Kim, J.-H.; Lee, P.S.; Lee, J.-Y. A study on the development of hypo-stoichiometric Zr-based hydrogen storage alloys with ultra-high capacity for anode material of Ni/MH secondary battery. J. Alloys Compd. 2000, 308, 259–268. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kim, S.-H.; Jeon, S.-W.; Lee, J.-Y. Study on the Electrode Characteristics of Hypostoichiometric Zr-Ti-V-Mn-Ni Hydrogen Storage Alloys. J. Electrochem. Soc. 2000, 147, 4464–4469. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, G.; Chen, C.; Wang, Q.; Wang, X. The structure and electrode properties of non-stoichiometric A1.2B2A1.2B2 type C14 Laves alloy and the effect of surface modification. Int. J. Hydrogen Energy 2007, 32, 1050–1058. [Google Scholar] [CrossRef]
- Marinin, V.S.; Umerenkova, K.R.; Volovchuk, O.V. Hydrogen sorption properties of hexagonal laves phase TiMn1.5 intermetallic compound. Int. J. Hydrogen Energy 2011, 36, 1359–1363. [Google Scholar] [CrossRef]
- Park, J.-G.; Jang, H.-Y.; Han, S.-C.; Lee, P.S.; Lee, J.-Y. The thermodynamic properties of Ti–Zr–Cr–Mn Laves phase alloys. J. Alloys Compd. 2001, 325, 293–298. [Google Scholar] [CrossRef]
- Pourpoint, T.L.; Velagapudi, V.; Mudawar, I.; Zheng, Y.; Fisher, T.S. Active cooling of a metal hydride system for hydrogen storage. Int. J. Heat Mass Transfer 2010, 53, 1326–1332. [Google Scholar] [CrossRef]
- Cao, Z.; Ouyang, L.; Wang, H.; Liu, J.; Sun, D.; Zhang, Q.; Zhu, M. Advanced high-pressure metal hydride fabricated via Ti–Cr–Mn alloys for hybrid tank. Int. J. Hydrogen Energy 2015, 40, 2717–2728. [Google Scholar] [CrossRef]
- Cao, Z.; Ouyang, L.; Wang, H.; Liu, J.; Sun, L.; Zhu, M. Composition design of Ti–Cr–Mn–Fe alloys for hybrid high-pressure metal hydride tanks. J. Alloys Compd. 2015, 639, 452–457. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, X.; Chen, L.; Fan, X.; Liu, L.; Li, S.; Ge, H.; Wang, Q. Development of Ti–Cr–Mn–Fe based alloys with high hydrogen desorption pressures for hybrid hydrogen storage vessel application. Int. J. Hydrogen Energy 2013, 38, 12803–12810. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, X.; Chen, L.; Fan, X.; Liu, L.; Li, S.; Ge, H.; Wang, Q. Influence of Ti super-stoichiometry on the hydrogen storage properties of Ti1+xCr1.2Mn0.2Fe0.6 (x = 0–0.1) alloys for hybrid hydrogen storage application. J. Alloys Compd. 2014, 585, 307–311. [Google Scholar] [CrossRef]
- Liu, L.; Chen, L.; Xiao, X.; Xu, C.; Sun, J.; Li, S.; Ge, H.; Jiang, L. Influence of annealing treatment on the microstructure and hydrogen storage performance of Ti1.02Cr1.1Mn0.3Fe0.6 alloy for hybrid hydrogen storage application. J. Alloys Compd. 2015, 636, 117–123. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, L.; Xiao, X.; Wang, C.; Jiang, L.; Chen, L. Effect of Rare Earth Doping on the Hydrogen Storage Performance of Ti1.02Cr1.1Mn0.3Fe0.6 Alloy for Hybrid Hydrogen Storage Application. J. Alloys Compd. 2018, 731, 524–530. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Jiang, X.; Li, X. Study on the hydrogen storage property of (TiZr0.1)xCr1.7−yFeyMn0.3 (1.05 < x < 1.2, 0.2 < y < 0.6) alloys. Prog. Nat. Sci. Mater. Int. 2018, 28, 470–477. [Google Scholar]
- Li, J.; Jiang, X.; Li, G.; Li, X. Development of Ti1.02Cr2−x−yFexMny (0.6≤x≤0.75, y = 0.25, 0.3) alloys for high hydrogen pressure metal hydride system. Int. J. Hydrogen Energy 2019, 44, 15087–15099. [Google Scholar] [CrossRef]
- Li, J.; Jiang, X.; Li, Z.; Jiang, L.; Li, X. High-pressure hydrogen storage properties of TixCr1−yFeyMn1.0 alloys. Int. J. Energy Res. 2019, 43, 5759–5774. [Google Scholar] [CrossRef]
- Puszkiel, J.; Bellosta von Colbe, J.M.; Jepsen, J.; Mitrokhin, S.V.; Movlaev, E.; Verbetsky, V.; Klassen, T. Designing an AB2-Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept. Energies 2020, 13, 2751. [Google Scholar] [CrossRef]
- Granovsky, M.S.; Arias, D. Intermetallic phases in the iron-rich region of the ZrFe phase diagram. J. Nucl. Mater. 1996, 229, 29–35. [Google Scholar] [CrossRef]
- Zotov, T.; Movlaev, E.; Mitrokhin, S.; Verbetsky, V. Interaction in (Ti,Sc)Fe2–H2 and (Zr,Sc)Fe2–H2 systems. J. Alloys Compd. 2008, 459, 220–224. [Google Scholar] [CrossRef]
- Filipek, S.M.; Jacob, I.; Paul-Boncour, V.; Percheron-Guegan, A.; Marchuk, I.; Mogilyanski, D.; Pielaszek, J. ChemInform Abstract: Investigation of ZrFe2 and ZrCo2 under Very High Pressure of Gaseous Hydrogen and Deuterium. ChemInform 2002, 33. [Google Scholar] [CrossRef]
- Paul-Boncour, V.; Bourée-Vigneron, F.; Filipek, S.M.; Marchuk, I.; Jacob, I.; Percheron-Guégan, A. Neutron Diffraction Study of ZrM2Dx Deuterides (M = Fe, Co). J. Alloys Compd. 2003, 356–357, 69–72. [Google Scholar] [CrossRef]
- Koultoukis, E.D.; Makridis, S.S.; Pavlidou, E.; de Rango, P.; Stubos, A.K. Investigation of ZrFe2-type materials for metal hydride hydrogen compressor systems by substituting Fe with Cr or V. Int. J. Hydrogen Energy 2014, 39, 21380–21385. [Google Scholar] [CrossRef]
- Banerjee, S.; Kumar, A.; Pillai, C. Improvement on the hydrogen storage properties of ZrFe2 Laves phase alloy by vanadium substitution. Intermetallics 2014, 51, 30–36. [Google Scholar] [CrossRef]
- Jain, A.; Jain, R.K.; Agarwal, S.; Sharma, R.K.; Kulshrestha, S.K.; Jain, I.P. Structural and Mössbauer spectroscopic study of cubic phase ZrFe2−xMnx hydrogen storage alloy. J. Alloys Compd. 2008, 454, 31–37. [Google Scholar] [CrossRef]
- Sivov, R.B.; Zotov, T.A.; Verbetsky, V.N.; Filimonov, D.S.; Pokholok, K.V. Synthesis, Properties and Mössbauer Study of ZrFe2−xNix Hydrides (x = 0.2–0.8). J. Alloys Compd. 2011, 509, S763–S769. [Google Scholar] [CrossRef]
- Sivov, R.B.; Somenkov, V.A.; Glazkov, V.P.; Verbetsky, V.N. Crystal structure of the ZrFe1.8Ni0.2D3.4 and ZrFe1.2Ni0.8D3.6 deuterides. Inorg. Mater. 2012, 48, 792–795. [Google Scholar] [CrossRef]
- Yartys, V.A.; Denys, R.V.; Webb, C.J.; Mæhlen, J.P.; Gray, E.M.; Blach, T.; Isnard, O.; Barnsley, L.C. High pressure in situ diffraction studies of metal–hydrogen systems. J. Alloys Compd. 2011, 509, S817–S822. [Google Scholar] [CrossRef]
- Sivov, R.B.; Zotov, T.A.; Verbetsky, V.N. Interaction of ZrFe2 doped with Ti and Al with hydrogen. Inorg. Mater. 2010, 46, 372–376. [Google Scholar] [CrossRef]
- Mendelsohn, M.H.; Gruen, D.M. Intermetallic compounds as bulk getters. J. Less-Common Met. 1980, 74, 449–453. [Google Scholar] [CrossRef]
- Zhang, T.B.; Wang, X.F.; Hu, R.; Li, J.S.; Yang, X.W.; Xue, X.Y.; Fu, H.Z. Hydrogen absorption properties of Zr(V1−xFex)2 intermetallic compounds. Int. J. Hydrogen Energy 2012, 37, 2328–2335. [Google Scholar] [CrossRef]
- Yadav, T.P.; Shahi, R.R.; Srivastava, O.N. Synthesis, characterization and hydrogen storage behaviour of AB2 (ZrFe2, Zr(Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 type materials. Int. J. Hydrogen Energy 2012, 37, 3689–3696. [Google Scholar] [CrossRef]
- Kanematsu, K. Magnetic Moment in Laves Phase Compound. II. Zr(Fe1−xMnx)2 and Zr(Fe1−xCox)2. J. Phys. Soc. Jpn. 1971, 31, 1355–1360. [Google Scholar] [CrossRef]
- Fujii, H.; Sinha, V.K.; Pourarian, F.; Wallace, W.E. Effect of hydrogen absorption on the magnetic properties of ZrMn2−xFex ternaries with a C14 structure. J. Less-Common Met. 1982, 85, 43–54. [Google Scholar] [CrossRef]
- Jain, A.; Jain, R.K.; Agarwal, S.; Ganesan, V.; Lalla, N.P.; Phase, D.M.; Jain, I.P. Synthesis, characterization and hydrogenation of ZrFe2−xNix (x= 0.2, 0.4, 0.6, 0.8) alloys. Int. J. Hydrogen Energy 2007, 32, 3965–3971. [Google Scholar] [CrossRef]
- Hirosawa, S.; Pourarian, F.; Sinha, V.K.; Wallace, W.E. Magnetic properties of Zr(Cr1−xCox)2 alloys and their hydrides. J. Magn. Magn. Mater. 1983, 38, 159–164. [Google Scholar] [CrossRef]
- Bereznitsky, M.; Jacob, I.; Bloch, J.; Mintz, M.H. Thermodynamic and structural aspects of hydrogen absorption in the Zr(AlxFe1−x)2 system. J. Alloys Compd. 2003, 351, 180–183. [Google Scholar] [CrossRef]
- Coaquira, J.; Rechenberg, H.R.; Mestnik Filho, J. Magnetic properties of Zr(Cr1−xFex)2 alloys and their hydrides. J. Magn. Magn. Mater. 1999, 196–197, 677–679. [Google Scholar] [CrossRef]
- Coaquira, J.; Rechenberg, H.R.; Mestnik Filho, J. Structural and Mössbauer spectroscopic study of hexagonal Laves-phase Zr(FexCr1−x)2 alloys and their hydrides. J. Alloys Compd. 1999, 288, 42–49. [Google Scholar] [CrossRef]
- Yu, G.Y.; Wallace, W.E. The effect of hyperstoichiometric iron on the hydrogen storage properties of ZrMnFe ternary. J. Solid State Chem. 1986, 65, 356–362. [Google Scholar] [CrossRef]
- Sinha, V.; Pourarian, F.; Wallace, W. Hydrogenation characteristics of Zr1−xTixMnFe alloys. J. Less-Common Met. 1982, 87, 283–296. [Google Scholar] [CrossRef]
- Zotov, R.S.T.; Mitrohkin, E.; Movlaev, E.A.; Verbetsky, V. Carbon Nanomaterials in Clean Energy Hydrogen Systems; Springer: Dordrecht, The Netherlands, 2008; pp. 699–704. [Google Scholar]
- Zotov, T.A.; Sivov, R.B.; Movlaev, E.A.; Mitrokhin, S.V.; Verbetsky, V.N. IMC hydrides with high hydrogen dissociation pressure. J. Alloys Compd. 2011, 509, S839–S843. [Google Scholar] [CrossRef]
- Davidson, D.J.; Srivastava, O.N. Studies on the hydrogen absorption/desorption properties of Zr1−xMmxFe1.4Cr0.6 and Zr1−2xMmxTixFe1.4Cr0.6 (x = 0, 0.05, 0.1 and 0.2) Laves phase alloys. Int. J. Hydrogen Energy 2001, 26, 219–223. [Google Scholar] [CrossRef]
- Davidson, D.J.; Raman, S.S.; Lototsky, M.V.; Srivastava, O.N. On the computer simulation of the P–C isotherms of ZrFe2 type hydrogen storage materials. Int. J. Hydrogen Energy 2003, 28, 1425–1431. [Google Scholar] [CrossRef]
- Sivov, R.B.; Zotov, T.A.; Verbetsky, V.N. Hydrogen sorption properties of ZrFex (1.9 ≤ x ≤ 2.5) alloys. Int. J. Hydrogen Energy 2011, 36, 1355–1358. [Google Scholar] [CrossRef]
- Jiang, L.; Tu, Y.; Tu, H.; Chen, L. Microstructures and hydrogen storage properties of ZrFe2.05−xVx (x = 0.05–0.20) alloys with high dissociation pressures for hybrid hydrogen storage vessel application. J. Alloys Compd. 2015, 627, 161–165. [Google Scholar] [CrossRef]
- Cao, Z.; Ouyang, L.; Wang, H.; Liu, J.; Sun, L.; Felderhoff, M.; Zhu, M. Development of Zrsingle bondFesingle bondV alloys for hybrid hydrogen storage system. Int. J. Hydrogen Energy 2016, 41, 11242–11253. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, H.; Ouyang, L.Z.; Liu, J.W.; Zhu, M. Achieving high equilibrium pressure and low hysteresis of Zr–Fe based hydrogen storage alloy by Cr/V substitution. J. Alloys Compd. 2019, 806, 1436–1444. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, C.; Ouyang, L.; Liu, J.; Zhu, M.; Sun, T.; Wang, H. High-pressure hydrogen storage performances of ZrFe2 based alloys with Mn, Ti, and V addition. Int. J. Hydrogen Energy 2020, 45, 9836–9844. [Google Scholar] [CrossRef]
- Kandavel, M.; Ramaprabhu, S. The effect of non-stoichiometry on the hydrogen storage properties of Ti-substituted AB2 alloys. J. Phys. Condens. Matter 2003, 15, 7501–7517. [Google Scholar] [CrossRef]
- Li, S.L.; Cheng, H.H.; Deng, X.X.; Chen, W.; Chen, D.M.; Yang, K. Investigation of hydrogen absorption/desorption properties of ZrMn0.85−xFe1+x alloys. J. Alloys Compd. 2008, 460, 186–190. [Google Scholar] [CrossRef]
- Kandavel, M.; Ramaprabhu, S. Hydriding properties of Ti-substituted non-stoichiometric AB2 alloys. J. Alloys Compd. 2004, 381, 140–150. [Google Scholar] [CrossRef]
- Akiba, E.; Iba, H. Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 1998, 6, 461–470. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Xia, B.; Huang, T.; Chen, J.; Wang, Z.; Xu, N. Hydrogen storage in Ti–V-based body-centered-cubic phase alloys. J. Mater. Res. 2003, 18, 2533–2536. [Google Scholar] [CrossRef]
- Nomura, K.; Akiba, E. H2 Absorbing-desorbing characterization of the Tisingle bondVsingle bondFe alloy system. J. Alloys Compd. 1995, 231, 513–517. [Google Scholar] [CrossRef]
- Yukawa, H.; Teshima, A.; Yamashita, D.; Ito, S.; Yamaguchi, S.; Morinaga, M. Alloying effects on the hydriding properties of vanadium at low hydrogen pressures. J. Alloys Compd. 2002, 337, 264–268. [Google Scholar] [CrossRef]
- Yoo, J.-H.; Shim, G.; Park, C.-N.; Kim, W.-B.; Cho, S.-W. Influence of Mn or Mn plus Fe on the hydrogen storage properties of the Ti-Cr-V alloy. Int. J. Hydrogen Energy 2009, 34, 9116–9121. [Google Scholar] [CrossRef]
- Arashima, H.; Takahashi, F.; Ebisawa, T.; Itoh, H.; Kabutomori, T. Correlation between hydrogen absorption properties and homogeneity of Ti–Cr–V alloys. J. Alloys Compd. 2003, 356–357, 405–408. [Google Scholar] [CrossRef]
- Wu, C.; Yan, Y.; Chen, Y.; Tao, M.; Zheng, X. Effect of rare earth (RE) elements on V-based hydrogen storage alloys. Int. J. Hydrogen Energy 2008, 33, 93–97. [Google Scholar] [CrossRef]
- Ono, S.; Nomura, K.; Ikeda, Y. The reaction of hydrogen with alloys of vanadium and titanium. J. Less-Common Met. 1980, 72, 159–165. [Google Scholar] [CrossRef]
- Nowak, B.; Hayashi, S.; Hayamizu, K.; Yamamoto, O. X-ray diffraction and 1h and 51V NMR study of the structure of a Ti V H alloy in relation to preparation conditions. J. Less-Common Met. 1986, 123, 75–84. [Google Scholar] [CrossRef]
- Matsuda, J.; Akiba, E. Lattice defects in V–Ti BCC alloys before and after hydrogenation. J. Alloys Compd. 2013, 581, 369–372. [Google Scholar] [CrossRef]
- Lynch, J.F.; Reilly, J.J.; Millot, F. The absorption of hydrogen by binary vanadium-chromium alloys. Solid State Commun. 1978, 26, iv–v. [Google Scholar] [CrossRef]
- Verbetsky, V.N.; Zotov, T.A.; Tatarintsev, A.V.; Movlaev, E.A. Hydrogen sorption properties of V1−xCrx (x = 0.1–0.5) alloys. Inorg. Mater. 2013, 49, 149–152. [Google Scholar] [CrossRef]
- Asano, K.; Hayashi, S.; Nakamura, Y.; Akiba, E. Effect of substitutional Cr on hydrogen diffusion and thermal stability for the BCT monohydride phase of the V–H system studied by 1H NMR. J. Alloys Compd. 2012, 524, 63–68. [Google Scholar] [CrossRef]
- Asano, K.; Hayashi, S.; Nakamura, Y.; Akiba, E. Effect of substitutional Mo on diffusion and site occupation of hydrogen in the BCT monohydride phase of V–H system studied by 1H NMR. J. Alloys Compd. 2010, 507, 399–404. [Google Scholar] [CrossRef]
- Verbetsky, V.N.; Zotov, T.A.; Movlaev, E.A. Absorption of hydrogen by V-Mo and V-Mo-Ti alloys. Inorg. Mater. Appl. Res. 2014, 5, 70–74. [Google Scholar] [CrossRef]
- Phung, T.V.B.; Ogawa, H.; Dinh, V.A.; Nguyen, O.H.; Shibutani, Y.; Asano, K.; Nakamura, Y.; Akiba, E. Effects of substitutional Mo and Cr on site occupation and diffusion of hydrogen in the β-phase vanadium hydride by first principles calculations. Theor. Chem. Acc. 2019, 138, 16. [Google Scholar] [CrossRef]
- Miraglia, S.; de Rango, P.; Rivoirard, S.; Fruchart, D.; Charbonnier, J.; Skryabina, N. Hydrogen sorption properties of compounds based on BCC Ti1−xV1−yCr1+x+y alloys. J. Alloys Compd. 2012, 536, 1–6. [Google Scholar] [CrossRef]
- Tamura, T.; Kazumi, T.; Kamegawa, A.; Takamura, H.; Okada, M. Protium absorption properties and protide formations of Ti–Cr–V alloys. J. Alloys Compd. 2003, 356–357, 505–509. [Google Scholar] [CrossRef]
- Itoh, H.; Arashima, H.; Kubo, K.; Kabutomori, T.; Ohnishi, K. Improvement of cyclic durability of BCC structured Ti–Cr–V alloys. J. Alloys Compd. 2005, 404–406, 417–420. [Google Scholar] [CrossRef]
- Lynch, J.F.; Maeland, A.J.; Libowitz, G.G. Lattice Parameter Variation and Thermodynamics of Dihydride Formation in the Vanadium-Rich V—Ti—Fe/H2 System. Z. Phys. Chem. 1985, 145, 51–59. [Google Scholar] [CrossRef]
- Fu, G.; Wang, F.; Wang, J.; Rong, M.H.; Wang, Z.M.; Rao, G.H.; Zhou, H.Y. Microstructure and Hydrogen Storage Properties of Ti-V-Fe Alloys. Mater. Sci. Forum 2016, 847, 3–7. [Google Scholar]
- Guéguen, A.; Joubert, J.-M.; Latroche, M. Influence of the C14 Ti35.4V32.3Fe32.3 Laves phase on the hydrogenation properties of the body-centered cubic compound Ti24.5V59.3Fe16.2. J. Alloys Compd. 2011, 509, 3013–3018. [Google Scholar] [CrossRef]
- Callear, S.K.; Ramirez-Cuesta, A.J.; Kamazawa, K.; Towata, S.; Noritake, T.; Parker, S.F.; Jones, M.O.; Sugiyama, J.; Ishikiriyama, M.; David, W.I.F. Understanding composition-property relationships in Ti-Cr-V-Mo alloys for optimisation of hydrogen storage in pressurised tanks. Phys. Chem. Chem. Phys. 2014, 16, 16563–16572. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Shashikala, K.; Sengupta, P.; Kulshrestha, S.K. Hydrogen absorption properties of Ti–V–Fe alloys: Effect of Cr substitution. Int. J. Hydrogen Energy 2007, 32, 4973–4977. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Y.; Liang, H.; Wu, C.; Tao, M.; Mingjing, T. Effect of Al on hydrogen storage properties of V30Ti35Cr25Fe10 alloy. J. Alloys Compd. 2006, 426, 253–255. [Google Scholar] [CrossRef]
- Kuriiwa, T.; Maruyama, T.; Kamegawa, A.; Okada, M. Effects of V content on hydrogen storage properties of V–Ti–Cr alloys with high desorption pressure. Int. J. Hydrogen Energy 2010, 35, 9082–9087. [Google Scholar] [CrossRef]
- Goshome, K.; Endo, N.; Tetsuhiko, M. Evaluation of a BCC alloy as metal hydride compressor via 100 MPa-class high-pressure hydrogen apparatus. Int. J. Hydrogen Energy 2019, 44, 10800–10807. [Google Scholar] [CrossRef]
- Selvaraj, S.; Jain, A.; Kumar, S.; Zhang, T.; Isobe, S.; Miyaoka, H.; Kojima, Y.; Ichikawa, T. Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor. Int. J. Hydrogen Energy 2018, 43, 2881–2889. [Google Scholar] [CrossRef]
- Nonobe, Y. Development of the fuel cell vehicle mirai. IEEJ Trans. Electr. Electron. Eng. 2017, 12, 5–9. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, A.; Ichikawa, T.; Kojima, Y.; Dey, G.K. Development of vanadium based hydrogen storage material: A review. Renew. Sustain. Energy Rev. 2017, 72, 791–800. [Google Scholar] [CrossRef]
- Lys, A.; Fadonougbo, J.O.; Faisal, M.; Suh, J.-Y.; Lee, Y.-S.; Shim, J.-H.; Park, J.; Cho, Y.W. Enhancing the Hydrogen Storage Properties of AxBy Intermetallic Compounds by Partial Substitution: A Short Review. Hydrogen 2020, 1, 38–63. [Google Scholar] [CrossRef]
- Young, K.; Wong, D.F.; Yasuoka, S.; Ishida, J.; Nei, J.; Koch, J. Different failure modes for V-containing and V-free AB2 metal hydride alloys. J. Power Sources 2014, 251, 170–177. [Google Scholar] [CrossRef]
- Bibienne, T.; Gosselin, C.; Bobet, J.-L.; Huot, J. Replacement of Vanadium by Ferrovanadium in a Ti-Based Body Centred Cubic (BCC) Alloy: Towards a Low-Cost Hydrogen Storage Material. J. Appl. Sci. 2018, 8, 1151. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Y.; Wu, C.; Tao, M.; Liang, H. A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity. J. Power Sources 2007, 164, 799–802. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, X.; Chen, Y.; Tao, M.; Tong, G.; Zhou, J. Hydrogen storage and cyclic properties of V60Ti(21.4+x)Cr(6.6−x)Fe12 (0≤x≤3) alloys. Int. J. Hydrogen Energy 2010, 35, 8130–8135. [Google Scholar] [CrossRef]
- Mao, Y.; Yang, S.; Wu, C.; Luo, L.; Chen, Y. Preparation of (FeV80)48Ti26+xCr26(x=0–4) alloys by the hydride sintering method and their hydrogen storage performance. J. Alloys Compd. 2017, 705, 533–538. [Google Scholar] [CrossRef]
- Yang, S.; Yang, F.; Wu, C.; Chen, Y.; Mao, Y.; Luo, L. Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40−xZrx (0≤x≤2) alloys. J. Alloys Compd. 2016, 663, 460–465. [Google Scholar] [CrossRef]
- Ley, M.B.; Jepsen, L.H.; Lee, Y.-S.; Cho, Y.W.; Bellosta von Colbe, J.M.; Dornheim, M.; Rokni, M.; Jensen, J.O.; Sloth, M.; Filinchuk, Y.; et al. Complex hydrides for hydrogen storage—New perspectives. Mater. Today 2014, 17, 122–128. [Google Scholar] [CrossRef]
- Bogdanović, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 1997, 253–254, 1–9. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; Tena-Garcia, J.R.; Guerrero-Ortiz, R. Alanates, a Comprehensive Review. Materials 2019, 12, 2724. [Google Scholar] [CrossRef]
- Monnier, G. Sur les hydrures complexes des métaux de transition. Bull. Soc. Chim. Fr. 1955, 1138. [Google Scholar]
- Kost, M.E.; Golovanova, A.I. Reaction of lithium tetrahydroaluminate with transition metal halides. Izv. Akad. Nauk SSSR Neorg. Mater. 1978, 14, 1732–1734. [Google Scholar]
- Neumaier, H.; Büchel, D.; Ziegelmaier, G. Über die Umsetzung von Eisen(III)-chlorid mit Lithiumalanat bei tiefen Temperaturen. Z. Anorg. Allg. Chem. 1966, 345, 46–52. [Google Scholar] [CrossRef]
- Kost, M.E.; Golovanova, A.I. Interaction of Titanium and Iron Halides with Lithium Alanate in Diethylether. Izv. Akad. Nauk SSSR Ser. Khim. 1975, 5, 991–994. [Google Scholar]
- Kuznetsov, N.T.; Mal’tseva, N.N.; Golovanova, A.I. Synthesis and properties of etherate of scandium alumohydride. Russ. J. Inorg. Chem. 1985, 30, 1604–1606. [Google Scholar]
- Monnier, G. Les hydrures métalliques et l’éther anhydre. Ann. Chim. 1957, 13, 33. [Google Scholar]
- Weidenthaler, C.; Pommerin, A.; Felderhoff, M.; Sun, W.; Wolverton, C.; Bogdanović, B.; Schüth, F. Complex rare-earth aluminum hydrides: Mechanochemical preparation, crystal structure and potential for hydrogen storage. J. Am. Chem. Soc. 2009, 131, 16735–16743. [Google Scholar] [CrossRef] [PubMed]
- Wiberg, E.; Henle, W. Notizen: Zur Kenntnis eines Quecksilberwasserstoffs HgH2. Z. Naturforsch. B 1951, 6, 461–462. [Google Scholar] [CrossRef]
- Wiberg, E.; Neumaier, H. Zur Frage der Existenz eines Gold (III)-Hydrids AuH3. Inorg. Nucl. Chem. Lett. 1965, 1, 35–37. [Google Scholar] [CrossRef]
- Wiberg, E.; Henle, W. Notizen: Zur Kenntnis eines Cadmiumwasserstoffs CdH2. Z. Naturforsch. B 1951, 6, 461. [Google Scholar] [CrossRef]
- Neumaier, H. Dissertation; Ludwig-Maximilians-Universität: München, Germany, 1961. [Google Scholar]
- Habermann, F.; Burkmann, K.; Hansel, B.; Störr, B.; Schimpf, C.; Seidel, J.; Bertau, M.; Mertens, F. Hydrogen absorption and desorption in the V-Al-H system. Dalton Trans. 2023, 52, 4880–4890. [Google Scholar] [CrossRef]
- Wiberg, E.; Usón, R. Zur Kenntnis eines Zinkwasserstoffs ZnH2. Z. Naturforsch. B 1951, 6, 393–394. [Google Scholar] [CrossRef]
- Golovanova, I.; Kost, M.E.; Mikheeva, V.I. Interaction of tantalum halides with lithium aluminum hydride in ether. Bull. Acad. Sci. USSR Div. Chem. Sci. Engl. Transl. 1973, 22, 1410–1413. [Google Scholar] [CrossRef]
- Jander, G.; Kraffczyk, K. Ionenreaktionen in absolutem Diäthyläther als Lösungsmittel. II. Konduktometrische Titrationen von einigen organischen und anorganischen Verbindungstypen mit Lithiumaluminiumhydrid in absolutem Diäthyläther. Z. Anorg. Allg. Chem. 1956, 283, 217–229. [Google Scholar] [CrossRef]
- Wiberg, E.; Henle, W. Zur Kenntnis eines Silber-aluminium-wasserstoffs AgAlH4. Z. Naturforsch. B 1952, 7, 250–251. [Google Scholar] [CrossRef]
- Reid, W.E.; Bish, J.M.; Brenner, A. Electrodeposition of Metals from Organic Solutions. J. Electrochem. Soc. 1957, 104, 21–29. [Google Scholar] [CrossRef]
- Soloveichik, G.L.; Bulychev, B.M. Bimetallic Transition Metal Hydride Complexes. Russ. Chem. Rev. 1983, 52, 43–60. [Google Scholar] [CrossRef]
- Ashby, E.C.; Kovar, R.A. Reaction of Lithium Aluminum Hydride with Copper(I) and Mercury(II) Salts. Nature of the Reactive Species in the Conjugate Reducing Agent LiAlH4-CuI. Inorg. Chem. 1977, 16, 1437–1440. [Google Scholar] [CrossRef]
- Ashby, E.C.; Prasad, H.S. Reactions of Aluminum Hydride with Group 1b, 2a, and 2b Metal Halides. Inorg. Chem. 1975, 14, 1608–1614. [Google Scholar] [CrossRef]
- Pommerin, A.; Wosylus, A.; Felderhoff, M.; Schüth, F.; Weidenthaler, C. Synthesis, crystal structures, and hydrogen-storage properties of Eu(AlH4)2 and Sr(AlH4)2 and of their decomposition intermediates, EuAlH5 and SrAlH5. Inorg. Chem. 2012, 51, 4143–4150. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, G.W.; Roscoe, J.S.; Stewart, A.C. The Reduction of Iron(III) Chloride with Lithium Aluminohydride and Lithium Borohydride: Iron(II) Borohydride. J. Am. Chem. Soc. 1956, 78, 729–733. [Google Scholar] [CrossRef]
- Kost, M.E.; Golovanova, A.I. Reaction of niobium pentachloride with lithium tetrahydroaluminate in diethyl ether. Zh. Neorg. Khim. 1977, 22, 977–979. [Google Scholar]
- Wiberg, E.; Neumaier, H. Zur Kenntnis von Doppel- und Tripelhydriden der Übergangsmetalle. I. Über die Umsetzung von Niob(V)-chlorid mit Lithiumalanat. Z. Anorg. Allg. Chem. 1965, 340, 189–200. [Google Scholar] [CrossRef]
- Wiberg, E.; Usón, R. Zur Kenntnis eines Titan-aluminium-wasserstoffs Ti(AlH4)4. Z. Naturforsch. B 1951, 6, 392–393. [Google Scholar] [CrossRef]
- Kost, M.E.; Golovanova, A.I. Production of yttrium alanate. Zh. Neorg. Khim. 1977, 22, 832–833. [Google Scholar]
- Cao, Z.; Ouyang, L.; Wang, H.; Liu, J.; Felderhoff, M.; Zhu, M. Reversible hydrogen storage in yttrium aluminum hydride. J. Mater. Chem. A 2017, 5, 6042–6046. [Google Scholar] [CrossRef]
- Cao, Z.; Felderhoff, M. Mechanochemical synthesis and dehydrogenation properties of Yb(AlH4)3. Int. J. Hydrogen Energy 2021, 46, 26437–26444. [Google Scholar] [CrossRef]
- Li, H.-W.; Yan, Y.; Orimo, S.-I.; Züttel, A.; Jensen, C.M. Recent Progress in Metal Borohydrides for Hydrogen Storage. Energies 2011, 4, 185–214. [Google Scholar] [CrossRef]
- Vajo, J.J.; Mertens, F.; Ahn, C.C.; Bowman, R.C.; Fultz, B. Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si. J. Phys. Chem. B 2004, 108, 13977–13983. [Google Scholar] [CrossRef]
- Vajo, J.J.; Skeith, S.L.; Mertens, F. Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 2005, 109, 3719–3722. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; Tena García, J.R. Metal Borohydrides beyond Groups I and II: A Review. Materials 2021, 14, 2561–2616. [Google Scholar] [CrossRef]
- Nöth, H.; Seitz, M. Preparation and Characterization of Chromium(II) Tetrahydroborate–Tetrahydrofuran (1/2). J. Chem. Soc. Chem. Commun. 1976, 24, 1004a. [Google Scholar] [CrossRef]
- Lobkovskii, B.; Kravchenko, S.E.; Semenenko, K.N. X-Ray Structure Study of Crystals of the Tetrahydrofuranate of Scandium Borohydride. J. Struct. Chem. 1977, 18, 312–314. [Google Scholar] [CrossRef]
- Morris, J.H.; Smith, W.E. Synthesis and Characterisation of a Tetrahydrofuran Derivative of Scandium Tetrahydroborate. J. Chem. Soc. D 1970, 4, 245a. [Google Scholar] [CrossRef]
- Nöth, H.; Winter, L.P. Metallboranate und Boranato-metallate. V. Solvate des Cadmiumboranats und Boranatocadmate. Z. Anorg. Allg. Chem. 1972, 389, 225–234. [Google Scholar] [CrossRef]
- Nakamori, Y.; Li, H.; Miwa, K.; Towata, S.; Orimo, S.-I. Syntheses and Hydrogen Desorption Properties of Metal-Borohydrides M(BH4)n (M=Mg, Sc, Zr, Ti, and Zn; n=2–4) as Advanced Hydrogen Storage Materials. Mater. Trans. 2006, 47, 1898–1901. [Google Scholar] [CrossRef]
- Nakamori, Y.; Li, H.-W.; Kikuchi, K.; Aoki, M.; Miwa, K.; Towata, S.; Orimo, S. Thermodynamical stabilities of metal-borohydrides. J. Alloys Compd. 2007, 446–447, 296–300. [Google Scholar] [CrossRef]
- Nakamori, Y.; Li, H.-W.; Matsuo, M.; Miwa, K.; Towata, S.; Orimo, S. Development of metal borohydrides for hydrogen storage. J. Phys. Chem. Solids 2008, 69, 2292–2296. [Google Scholar] [CrossRef]
- Jeon, E.; Cho, Y. Mechanochemical synthesis and thermal decomposition of zinc borohydride. J. Alloys Compd. 2006, 422, 273–275. [Google Scholar] [CrossRef]
- Song, M.Y.; Kwak, Y.J.; Kwon, S.N.; Lee, S.H.; Park, I.W. Synthesis of Zn(BH4)2 and Gas Absorption and Release Characteristics of Zn(BH4)2, Ni, or Ti-Added MgH2–Based Alloys. Korean J. Met. Mater. 2015, 53, 500–505. [Google Scholar] [CrossRef]
- Srinivasan, S.; Escobar, D.; Jurczyk, M.; Goswami, Y.; Stefanakos, E. Nanocatalyst doping of Zn(BH4)2 for on-board hydrogen storage. J. Alloys Compd. 2008, 462, 294–302. [Google Scholar] [CrossRef]
- Ravnsbaek, D.; Filinchuk, Y.; Cerenius, Y.; Jakobsen, H.J.; Besenbacher, F.; Skibsted, J.; Jensen, T.R. A series of mixed-metal borohydrides. Angew. Chem. Int. Ed. 2009, 48, 6659–6663. [Google Scholar] [CrossRef]
- Gu, Q.; Gao, L.; Guo, Y.; Tan, Y.; Tang, Z.; Wallwork, K.S.; Zhang, F.; Yu, X. Structure and decomposition of zinc borohydride ammonia adduct: Towards a pure hydrogen release. Energy Environ. Sci. 2012, 5, 7590–7600. [Google Scholar] [CrossRef]
- Mikheeva, V.I.; Mal’tseva, N.N.; Alekseeva, L.S. Reaction of Potassium Tetrahydroborate with Zinc Chloride in Diethyl Ether at 0 °C. Russ. J. Inorg. Chem. 1968, 13, 682–685. [Google Scholar]
- Yang, C.-H.; Tsai, W.-T.; Chang, J.-K. Hydrogen desorption behavior of vanadium borohydride synthesized by modified mechano-chemical process. Int. J. Hydrogen Energy 2011, 36, 4993–4999. [Google Scholar] [CrossRef]
- Korablov, D.; Ravnsbæk, D.B.; Ban, V.; Filinchuk, Y.; Besenbacher, F.; Jensen, T.R. Investigation of MBH4–VCl2, M = Li, Na or K. Int. J. Hydrogen Energy 2013, 38, 8376–8383. [Google Scholar] [CrossRef]
- Park, K.; Lee, H.-S.; Remhof, A.; Lee, Y.-S.; Yan, Y.; Kim, M.-Y.; Kim, S.J.; Züttel, A.; Cho, Y.W. Thermal properties of Y(BH4)3 synthesized via two different methods. Int. J. Hydrogen Energy 2013, 38, 9263–9270. [Google Scholar] [CrossRef]
- Nöth, H. Anorganische Reaktionen der Alkaliboranate. Angew. Chem. 1961, 73, 371–383. [Google Scholar] [CrossRef]
- Wiberg, E.; Henle, W. Notizen: Zur Kenntnis eines Silber-bor-wasserstoffs AgBH4. Z. Naturforsch. B 1952, 7, 575–576. [Google Scholar] [CrossRef]
- Rice, G.W.; Woodin, R.L. Zirconium Borohydride as a Zirconium Boride Precursor. J. Am. Chem. Soc. 1988, 71, C181–C183. [Google Scholar] [CrossRef]
- Richter, B.; Grinderslev, J.B.; Møller, K.T.; Paskevicius, M.; Jensen, T.R. From Metal Hydrides to Metal Borohydrides. Inorg. Chem. 2018, 57, 10768–10780. [Google Scholar] [CrossRef]
- Grinderslev, J.B.; Møller, K.T.; Bremholm, M.; Jensen, T.R. Trends in Synthesis, Crystal Structure, and Thermal and Magnetic Properties of Rare-Earth Metal Borohydrides. Inorg. Chem. 2019, 58, 5503–5517. [Google Scholar] [CrossRef]
- Bannenberg, L.J.; Heere, M.; Benzidi, H.; Montero, J.; Dematteis, E.M.; Suwarno, S.; Jaroń, T.; Winny, M.; Orłowski, P.A.; Wegner, W.; et al. Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. Int. J. Hydrogen Energy 2020, 45, 33687–33730. [Google Scholar] [CrossRef]
- Sharma, M.; Didelot, E.; Spyratou, A.; Lawson Daku, L.M.; Černý, R.; Hagemann, H. Halide Free M(BH4)2 (M = Sr, Ba, and Eu) Synthesis, Structure, and Decomposition. Inorg. Chem. 2016, 55, 7090–7097. [Google Scholar] [CrossRef]
- Remhof, A.; Borgschulte, A.; Friedrichs, O.; Mauron, P.; Yan, Y.; Züttel, A. Solvent-free synthesis and decomposition of Y(BH4)3. Scr. Mater. 2012, 66, 280–283. [Google Scholar] [CrossRef]
- Roedern, E.; Lee, Y.-S.; Ley, M.B.; Park, K.; Cho, Y.W.; Skibsted, J.; Jensen, T.R. Solid state synthesis, structural characterization and ionic conductivity of bimetallic alkali-metal yttrium borohydrides MY(BH4)4 (M = Li and Na). J. Mater. Chem. A 2016, 4, 8793–8802. [Google Scholar] [CrossRef]
- Ley, M.B.; Paskevicius, M.; Schouwink, P.; Richter, B.; Sheppard, D.A.; Buckley, C.E.; Jensen, T.R. Novel solvates M(BH₄)₃S(CH₃)₂ and properties of halide-free M(BH₄)₃ (M = Y or Gd). Dalton Trans. 2014, 43, 13333–13342. [Google Scholar] [CrossRef]
- Richter, B.; Ravnsbæk, D.B.; Tumanov, N.; Filinchuk, Y.; Jensen, T.R. Manganese borohydride; synthesis and characterization. Dalton Trans. 2015, 44, 3988–3996. [Google Scholar] [CrossRef] [PubMed]
- ISO 11357-1:2016Kunststoffe—Dynamische Differenz-Thermoanalyse (DSC)—Teil 1: Allgemeine Grundlagen; 83.080.01; Deutsches Institut für Normung e. V.: Berlin, Germany; Beuth Verlag GmbH: Berlin, Germany, 2017.
- Ley, M.B.; Jørgensen, M.; Černý, R.; Filinchuk, Y.; Jensen, T.R. From M(BH4)3 (M = La, Ce) Borohydride Frameworks to Controllable Synthesis of Porous Hydrides and Ion Conductors. Inorg. Chem. 2016, 55, 9748–9756. [Google Scholar] [CrossRef] [PubMed]
- Gennari, F.C.; Esquivel, M.R. Synthesis and dehydriding process of crystalline Ce(BH4)3. J. Alloys Compd. 2009, 485, L47–L51. [Google Scholar] [CrossRef]
- Zhang, B.J.; Liu, B.H.; Li, Z.P. Destabilization of LiBH4 by (Ce, La)(Cl, F)3 for hydrogen storage. J. Alloys Compd. 2011, 509, 751–757. [Google Scholar] [CrossRef]
- Aubry, J.; Monnier, G. Sur les borohydrures de manganèse, de fer, de cobalt et de nickel. Bull. Soc. Chim. Fr. 1955, 482. [Google Scholar]
- Stewart, C.; Schaeffer, G.W. The Reaction of Cobalt(II) Bromide with Lithium Borohydride and Lithium Aluminohydride. J. Inorg. Nucl. Chem. 1956, 3, 194–197. [Google Scholar] [CrossRef]
- Wiberg, E. Neuere Ergebnisse der präparativen Hydrid-Forschung. Angew. Chem. 1953, 65, 16–33. [Google Scholar] [CrossRef]
- Klingen, T.J. The Reaction of Copper(II) Chloride with Lithium Borohydride. Inorg. Chem. 1964, 3, 1058–1059. [Google Scholar] [CrossRef]
- Wiberg, E.; Henle, W. Notizen: Zur Kenntnis eines Cadmium-bor-wasserstoffs Cd(BH4)2 und eines Kupfer-bor-wasserstoffs CuBH4. Z. Naturforsch. B 1952, 7, 582. [Google Scholar] [CrossRef]
- Mal’tseva, N.N. A Study of Various Reactions of Copper Hydride. Russ. J. Inorg. Chem. 1697, 12, 1338–1341. [Google Scholar]
- Blanchard, D.; Zatti, M.; Vegge, T. Analysis of the decomposition gases from α and β-Cd(BH4)2 synthesized by temperature controlled mechanical milling. J. Alloys Compd. 2013, 547, 76–80. [Google Scholar] [CrossRef]
- Ravnsbæk, D.B.; Sørensen, L.H.; Filinchuk, Y.; Besenbacher, F.; Jensen, T.R. Screening of metal borohydrides by mechanochemistry and diffraction. Angew. Chem. Int. Ed. 2012, 51, 3582–3586. [Google Scholar] [CrossRef] [PubMed]
- Humphries, T.D.; Ley, M.B.; Frommen, C.; Munroe, K.T.; Jensen, T.R.; Hauback, B.C. Crystal structure and in situ decomposition of Eu(BH4)2 and Sm(BH4)2. J. Mater. Chem. A 2015, 3, 691–698. [Google Scholar] [CrossRef]
- Wegner, W.; Jaroń, T.; Grochala, W. Preparation of a series of lanthanide borohydrides and their thermal decomposition to refractory lanthanide borides. J. Alloys Compd. 2018, 744, 57–63. [Google Scholar] [CrossRef]
- Olsen, J.E.; Frommen, C.; Jensen, T.R.; Riktor, M.D.; Sørby, M.H.; Hauback, B.C. Structure and thermal properties of composites with RE-borohydrides (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb or Lu) and LiBH4. RSC Adv. 2014, 4, 1570–1582. [Google Scholar] [CrossRef]
- Heere, M.; Payandeh GharibDoust, S.H.; Frommen, C.; Humphries, T.D.; Ley, M.B.; Sørby, M.H.; Jensen, T.R.; Hauback, B.C. The influence of LiH on the rehydrogenation behavior of halide free rare earth (RE) borohydrides (RE = Pr, Er). Phys. Chem. Chem. Phys. 2016, 18, 24387–24395. [Google Scholar] [CrossRef] [PubMed]
- Gennari, F.C. Mechanochemical synthesis of erbium borohydride: Polymorphism, thermal decomposition and hydrogen storage. J. Alloys Compd. 2013, 581, 192–195. [Google Scholar] [CrossRef]
- Andrade-Gamboa, J.; Puszkiel, J.A.; Fernández-Albanesi, L.; Gennari, F.C. A novel polymorph of gadolinium tetrahydroborate produced by mechanical milling. Int. J. Hydrogen Energy 2010, 35, 10324–10328. [Google Scholar] [CrossRef]
- Ley, M.B.; Boulineau, S.; Janot, R.; Filinchuk, Y.; Jensen, T.R. New Li Ion Conductors and Solid State Hydrogen Storage Materials: LiM(BH4)3 Cl, M = La, Gd. J. Phys. Chem. C 2012, 116, 21267–21276. [Google Scholar] [CrossRef]
- Burkmann, K.; Habermann, F.; Schumann, E.; Kraus, J.; Störr, B.; Schmidt, H.; Brendler, E.; Seidel, J.; Bohmhammel, K.; Kortus, J.; et al. Structural and thermodynamic investigations of Zr(BH4)4 and Hf(BH4)4 between 280 K and their decomposition temperatures. New J. Chem. 2024, 48, 2743–2754. [Google Scholar] [CrossRef]
- James, B.D.; Nanda, R.K.; Wallbridge, M.G.H. Spectroscopic studies of borohydride derivatives of zirconium and hafnium. J. Chem. Soc. A 1966, 1, 182–184. [Google Scholar] [CrossRef]
- Green, J.C.; de Simone, M.; Coreno, M.; Jones, A.; Pritchard, H.M.I.; McGrady, G.S. Electronic structure of M(BH4)4, M = Zr, Hf, and U, by variable photon-energy photoelectron spectroscopy and density functional calculations. Inorg. Chem. 2005, 44, 7781–7793. [Google Scholar] [CrossRef] [PubMed]
- Marks, T.J.; Shimp, L.A. Structure and Dynamics in Metal Tetrahydroborates. I. Nuclear Magnetic Resonance Studies of Zirconium and Hafnium Tetrahydroborates. J. Am. Chem. Soc. 1972, 94, 1542–1550. [Google Scholar] [CrossRef]
- Haaland, A.; Shorokhov, D.J.; Tutukin, A.V.; Volden, H.V.; Swang, O.; McGrady, G.S.; Kaltsoyannis, N.; Downs, A.J.; Tang, C.Y.; Turner, J.F. Molecular Structures of Two Metal Tetrakis(tetrahydroborates), Zr(BH4)4 and U(BH4)4: Equilibrium Conformations and Barriers to Internal Rotation of the Triply Bridging BH4 Groups. Inorg. Chem. 2002, 41, 6646–6655. [Google Scholar] [CrossRef]
- Bernstein, E.R.; Keiderling, T.A. Optical and magnetic resonance spectra of inorganic molecular crystals-uranium borohydride [U(BH4)4] in hafnium borohydride [Hf(BH4)4]. J. Chem. Phys. 1973, 59, 2105–2122. [Google Scholar] [CrossRef]
- Wayda, L.; Schneemeyer, L.F.; Opila, R.L. Low-temperature deposition of zirconium and hafnium boride films by thermal decomposition of the metal borohydrides (M[BH4]4). Appl. Phys. Lett. 1988, 53, 361–363. [Google Scholar] [CrossRef]
- Broach, R.W.; Chuang, I.S.; Marks, T.J.; Williams, J.M. Metrical Characterization of Tridentate Tetrahydroborate Ligation to a Transition-Metal Ion. Structure and Bonding in Hf(BH4)4 by Single-Crystal Neutron Diffraction. Inorg. Chem. 1983, 22, 1081–1084. [Google Scholar] [CrossRef]
- Hoekstra, H.R.; Katz, J.J. The Preparation and Properties of the Group IV-B Metal Borohydrides. J. Am. Chem. Soc. 1949, 71, 2488–2492. [Google Scholar] [CrossRef]
- Wegner, W.; Jaroń, T.; Grochala, W. Polymorphism and hydrogen discharge from holmium borohydride, Ho(BH4)3, and KHo(BH4)4. Int. J. Hydrogen Energy 2014, 39, 20024–20030. [Google Scholar] [CrossRef]
- Payandeh GharibDoust, S.; Heere, M.; Sørby, M.H.; Ley, M.B.; Ravnsbæk, D.B.; Hauback, B.C.; Černý, R.; Jensen, T.R. Synthesis, structure and properties of new bimetallic sodium and potassium lanthanum borohydrides. Dalton Trans. 2016, 45, 19002–19011. [Google Scholar] [CrossRef] [PubMed]
- Payandeh GharibDoust, S.; Brighi, M.; Sadikin, Y.; Ravnsbæk, D.B.; Černý, R.; Skibsted, J.; Jensen, T.R. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I.J. Phys. Chem. C 2017, 121, 19010–19021. [Google Scholar] [CrossRef]
- Liu, R.; Reed, D.; Book, D. Decomposition behaviour of Mn(BH4)2 formed by ball-milling LiBH4 and MnCl2. J. Alloys Compd. 2012, 515, 32–38. [Google Scholar] [CrossRef]
- Tumanov, N.A.; Roedern, E.; Łodziana, Z.; Nielsen, D.B.; Jensen, T.R.; Talyzin, A.V.; Černý, R.; Chernyshov, D.; Dmitriev, V.; Palasyuk, T.; et al. High-Pressure Study of Mn(BH4)2 Reveals a Stable Polymorph with High Hydrogen Density. Chem. Mater. 2016, 28, 274–283. [Google Scholar] [CrossRef]
- Roedern, E.; Jensen, T.R. Thermal Decomposition of Mn(BH4)2–M(BH4)x and Mn(BH4)2–MHx Composites with M = Li, Na, Mg, and Ca. J. Phys. Chem. C 2014, 118, 23567–23574. [Google Scholar] [CrossRef]
- Varin, R.A.; Bidabadi, A.S. The effect of milling energy input during mechano-chemical activation synthesis (MCAS) of the nanocrystalline manganese borohydride (Mn(BH4)2) on its thermal dehydrogenation properties. Int. J. Hydrogen Energy 2014, 39, 11620–11632. [Google Scholar] [CrossRef]
- Varin, R.A.; Mattar, D.K.; Bidabadi, A.S.; Polanski, M. Synthesis of amorphous manganese borohydride in the (NaBH4–MnCl2) system, its hydrogen generation properties and crystalline transformation during solvent extraction. J. Energy Chem. 2017, 26, 24–34. [Google Scholar] [CrossRef]
- Varin, R.A.; Bidabadi, A.S.; Polanski, M.; Biglari, M.; Stobinski, L. The effects of filamentary Ni, graphene and lithium amide (LiNH2) additives on the dehydrogenation behavior of mechano-chemically synthesized crystalline manganese borohydride (Mn(BH4)2) and its solvent filtration/extraction. Mater. Res. Bull. 2018, 100, 394–406. [Google Scholar] [CrossRef]
- Payandeh GharibDoust, S.; Heere, M.; Nervi, C.; Sørby, M.H.; Hauback, B.C.; Jensen, T.R. Synthesis, structure, and polymorphic transitions of praseodymium(III) and neodymium(III) borohydride, Pr(BH4)3 and Nd(BH4)3. Dalton Trans. 2018, 47, 8307–8319. [Google Scholar] [CrossRef] [PubMed]
- Banks, R.H.; Edelstein, N.M.; Spencer, B.; Templeton, D.H.; Zalkin, A. Volatility and Molecular Structure of Neptunium(IV) Borohydride. J. Am. Chem. Soc. 1980, 102, 620–623. [Google Scholar] [CrossRef]
- Banks, R.H.; Edelstein, N.M.; Rietz, R.R.; Templeton, D.H.; Zalkin, A. Preparation and Properties of the Actinide Borohydrides: Pa(BH4)4, Np(BH4)4, and Pu(BH4)4. J. Am. Chem. Soc. 1978, 100, 1957–1958. [Google Scholar] [CrossRef]
- Banks, R.H.; Edelstein, N.M. ACS Symposium Series; Edelstein, N.M., Ed.; American Chemical Society: Washington, DC, USA, 1980; Volume 131, pp. 331–348. [Google Scholar]
- Banks, R.H.; Edelstein, N. Vibrational spectra and normal coordinate analysis of neptunium (IV) borohydride and neptunium (IV) borodeuteride. J. Chem. Phys. 1980, 73, 3589–3599. [Google Scholar] [CrossRef]
- Nakamori, Y.; Orimo, S. Woodhead Publishing Series in Electronic and Optical Materials; Walker, H.G., Ed.; Elsevier Reference Monographs: Cambridge, UK, 2008; pp. 420–449. [Google Scholar]
- Volkov, V.V.; Myakishev, K.G.; Grankika, Z.A. Infrared Spectra and Nature of the Molecules of Metal Tetrahydroborates of the Type M(BH4)4. Russ. J. Inorg. Chem. 1970, 15, 1490–1491. [Google Scholar]
- Fang, Z.Z.; Ma, L.P.; Kang, X.D.; Wang, P.J.; Wang, P.; Cheng, H.M. In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3. Appl. Phys. Lett. 2009, 94, 44104. [Google Scholar] [CrossRef]
- Callini, E.; Borgschulte, A.; Hugelshofer, C.L.; Ramirez-Cuesta, A.J.; Züttel, A. The Role of Ti in Alanates and Borohydrides: Catalysis and Metathesis. J. Phys. Chem. C 2014, 118, 77–84. [Google Scholar] [CrossRef]
- Volkov, V.V.; Myakishev, K.G. Mechanochemical Reaction of Synthesis of Titanium(III) Tetrahydroborate. Sib. Khim. Zh. 1992, 5, 105–108. [Google Scholar]
- Volkov, V.V.; Myakishev, K.G. Synthesis of Titanium(III) Tetrahydroborate with Titanium Trichloride and Lithium Borohydride. Izv. Akad. Nauk SSSR Ser. Khim. 1987, 6, 1429. [Google Scholar]
- Schlesinger, H.I.; Brown, H.C. Uranium(IV) Borohydride. J. Am. Chem. Soc. 1953, 75, 219–221. [Google Scholar] [CrossRef]
- Katz, J.J.; Rabinowitch, E. The Chemistry of Uranium. The Element, Its Binary and Related Compounds; Dover Publications: New York, NY, USA, 1951. [Google Scholar]
- Volkov, V.V.; Grankika, Z.A.; Myakishev, K.G. The Nature of Uranium(IV) Borohydride. Radiochemistry 1971, 13, 416–419. [Google Scholar]
- Ghiassee, N.; Clay, P.G.; Walton, G.N. Thermal Decomposition of U(BH4)4. J. Inorg. Nucl. Chem. 1981, 43, 2909–2913. [Google Scholar] [CrossRef]
- Ravnsbaek, D.B.; Filinchuk, Y.; Cerný, R.; Ley, M.B.; Haase, D.; Jakobsen, H.J.; Skibsted, J.; Jensen, T.R. Thermal polymorphism and decomposition of Y(BH4)3. Inorg. Chem. 2010, 49, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, H.-W.; Sato, T.; Umeda, N.; Miwa, K.; Towata, S.; Orimo, S.-I. Dehydriding and rehydriding properties of yttrium borohydride Y(BH4)3 prepared by liquid-phase synthesis. Int. J. Hydrogen Energy 2009, 34, 5732–5736. [Google Scholar] [CrossRef]
- Jaroń, T.; Koźmiński, W.; Grochala, W. Phase transition induced improvement in H2 desorption kinetics: The case of the high-temperature form of Y(BH4)3. Phys. Chem. Chem. Phys. 2011, 13, 8847–8851. [Google Scholar] [CrossRef]
- Gennari, F.C. Improved hydrogen storage reversibility of LiBH4 destabilized by Y(BH4)3 and YH3. Int. J. Hydrogen Energy 2012, 37, 18895–18903. [Google Scholar] [CrossRef]
- Jaroń, T.; Grochala, W. Y(BH4)3--an old-new ternary hydrogen store aka learning from a multitude of failures. Dalton Trans. 2010, 39, 160–166. [Google Scholar] [CrossRef]
- Frommen, C.; Aliouane, N.; Deledda, S.; Fonneløp, J.E.; Grove, H.; Lieutenant, K.; Llamas-Jansa, I.; Sartori, S.; Sørby, M.H.; Hauback, B.C. Crystal structure, polymorphism, and thermal properties of yttrium borohydride Y(BH4)3. J. Alloys Compd. 2010, 496, 710–716. [Google Scholar] [CrossRef]
- Jaroń, T.; Grochala, W. Y(BD4)3, an efficient store of deuterium, and impact of isotope effects on its thermal decomposition. J. Nucl. Mater. 2012, 420, 307–313. [Google Scholar] [CrossRef]
- Olsen, J.E.; Frommen, C.; Sørby, M.H.; Hauback, B.C. Crystal structures and properties of solvent-free LiYb(BH4)4−xClx, Yb(BH4)3 and Yb(BH4)2−xClx. RSC Adv. 2013, 3, 10764–10774. [Google Scholar] [CrossRef]
- Nakamori, Y.; Miwa, K.; Ninomiya, A.; Li, H.; Ohba, N.; Towata, S.; Züttel, A.; Orimo, S.-I. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments. Phys. Rev. B 2006, 74, 045126. [Google Scholar] [CrossRef]
- Gennari, F.C.; Fernández Albanesi, L.; Rios, I.J. Synthesis and thermal stability of Zr(BH4)4 and Zr(BD4)4 produced by mechanochemical processing. Inorg. Chim. Acta 2009, 362, 3731–3737. [Google Scholar] [CrossRef]
- Davies, N.; Saunders, D.; Wallbridge, M.G.H. Exchange Reactions of Zirconium Tetrakistetrahydroborate. J. Chem. Soc. A 1970, 15, 2915–2917. [Google Scholar] [CrossRef]
- Marks, T.J.; Kennelly, W.J.; Kolb, J.R.; Shimp, L.A. Structure and Dynamics in Metal Tetrahydroborates. II. Vibrational Spectra and Structures of Some Transition metal and Actinide Tetrahydroborates. Inorg. Chem. 1972, 11, 2540–2546. [Google Scholar] [CrossRef]
- Sung, J.; Goedde, D.M.; Girolami, G.S.; Abelson, J.R. Remote-plasma chemical vapor deposition of conformal ZrB2 films at low temperature: A promising diffusion barrier for ultralarge scale integrated electronics. J. Appl. Phys. 2002, 91, 3904–3911. [Google Scholar] [CrossRef]
- Rude, L.H.; Corno, M.; Ugliengo, P.; Baricco, M.; Lee, Y.-S.; Cho, Y.W.; Besenbacher, F.; Overgaard, J.; Jensen, T.R. Synthesis and Structural Investigation of Zr(BH4)4. J. Phys. Chem. C 2012, 116, 20239–20245. [Google Scholar] [CrossRef]
- James, B.D.; Smith, B.E. Convenient, High-Yield Syntheses of Bis(tetrahydroborato)bis(cyclopentadienyl)zirconium(IV) and Tetrakis(tetrahydroborato)zirconium(IV). Synth. React. Inorg. Met.-Org. Chem. 1974, 4, 461–465. [Google Scholar] [CrossRef]
- Sayer, B.G.; Thompson, J.I.A.; Hao, N.; Birchall, T.; Eaton, D.R.; McGlinchey, M.J. Zirconium-91 NMR Spectrum of Zr(BH4)4: The Zr-H Coupling Constant as a Probe for a Fast Intramolecular Process. Inorg. Chem. 1981, 20, 3748–3750. [Google Scholar] [CrossRef]
- Smith, B.E.; Shurvell, H.F.; James, B.D. Molecular Vibrations of Zirconium(IV) Tetrahydroborate, a Compound containing Triple Hydrogen Bridges. Phys. Rev. B 1978, 7, 710–722. [Google Scholar] [CrossRef]
- Igoshkin, M.; Golovnev, I.F.; Krisyuk, V.V.; Igumenov, I.K. Structure of Zirconium Tetrahydroborate Zr(BH4)4: A Molecular Dynamics Study. J. Struct. Chem. 2016, 57, 1068–1073. [Google Scholar] [CrossRef]
- Yan, Y.; Remhof, A.; Rentsch, D.; Lee, Y.-S.; Whan Cho, Y.; Züttel, A. Is Y2(B12H12)3 the main intermediate in the decomposition process of Y(BH4)3? Chem. Commun. 2013, 49, 5234–5236. [Google Scholar] [CrossRef]
- Guda, A.; Pankin, I.A.; Bugaev, A.L.; Lomachenko, K.A.; Guda, S.A.; Dmitriev, V.P.; Soldatov, A.V. X-Ray Absorption Spectroscopy Determination of the Products of Manganese Borohydride Decomposition upon Heating. Bull. Russ. Acad. Sci. Phys. 2015, 79, 139–143. [Google Scholar] [CrossRef]
- Pankin, A.; Guda, A.A.; Tumanov, N.A.; Filinchuk, Y.; Lomachenko, K.A.; Bugaev, A.L.; Guda, S.A.; Shapovalov, V.V.; Lamberti, C.; Soldatov, A.V. Experimental and theoretical study of hydrogen desorption process from Mn(BH4)2. J. Alloys Compd. 2018, 735, 277–284. [Google Scholar] [CrossRef]
- Łodziana, Z. Multivalent metal tetrahydroborides of Al, Sc, Y, Ti, and Zr. Phys. Rev. B 2010, 81, 1–12. [Google Scholar] [CrossRef]
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Černý, R.; Ravnsbæk, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal borohydrides and derivatives—Synthesis, structure and properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef] [PubMed]
- Varin, R.A.; Zbroniec, L.; Polanski, M.; Filinchuk, Y.; Černý, R. Mechano-chemical synthesis of manganese borohydride (Mn(BH4)2) and inverse cubic spinel (Li2MnCl4) in the (nLiBH4 + MnCl2) (n = 1, 2, 3, 5, 9 and 23) mixtures and their dehydrogenation behavior. Int. J. Hydrogen Energy 2012, 37, 16056–16069. [Google Scholar] [CrossRef]
- Harrison, D.; Thonhauser, T. Suppressing diborane production during the hydrogen release of metal borohydrides: The example of alloyed Al(BH4)3. Int. J. Hydrogen Energy 2016, 41, 3571–3578. [Google Scholar] [CrossRef]
- Borgschulte, A.; Callini, E.; Probst, B.; Jain, A.; Kato, S.; Friedrichs, O.; Remhof, A.; Bielmann, M.; Ramirez-Cuesta, A.J.; Züttel, A. Impurity Gas Analysis of the Decomposition of Complex Hydrides. J. Phys. Chem. C 2011, 115, 17220–17226. [Google Scholar] [CrossRef]
- Li, H.-W.; Orimo, S.; Nakamori, Y.; Miwa, K.; Ohba, N.; Towata, S.; Züttel, A. Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities. J. Alloys Compd. 2007, 446–447, 315–318. [Google Scholar] [CrossRef]
- Rumble, J.R.; Bruno, T.J. (Eds.) CRC Handbook of Chemistry and Physics; A Ready-Reference Book of Chemical and Physical Data; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Riedel, E.; Janiak, C. Anorganische Chemie, 9th ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2015. [Google Scholar]
- Callini, E.; Borgschulte, A.; Ramirez-Cuesta, A.J.; Züttel, A. Diborane release and structure distortion in borohydrides. Dalton Trans. 2013, 42, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Smith, S.C.; Lu, G.Q. Role of charge in destabilizing AlH4 and BH4 complex anions for hydrogen storage applications: Ab initio density functional calculations. Phys. Rev. B 2006, 74, 193405. [Google Scholar] [CrossRef]
- McMillan, P.F. New materials from high-pressure experiments. Nat. Mater. 2002, 1, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, T.; Gschneidner, K.A.; Lakner, J.F. High Pressure Hydrogen Absorption Study on YNi5, LaPt5 and ThNi5. J. Less-Common Met. 1981, 78, 43–47. [Google Scholar] [CrossRef]
- Vedel, I.; Redon, A.-M.; Mignot, J.-M.; Leger, J.-M. Absence of discontinuity in the pressure-volume dependence of CeAl2 and CeIn3. J. Phys. F Met. Phys. 1987, 17, 849–856. [Google Scholar] [CrossRef]
- Cannon, J.F.; Hall, H. Effect of High Pressure on the Crystal Structures of Lanthanide Trialuminides. J. Less-Common Met. 1975, 40, 313–328. [Google Scholar] [CrossRef]
- Sekar, M.; Chandra Shekar, N.; Sahu, P.; Sanjay Kumar, N.; Rajan, K. High pressure X-ray diffraction study of LaAl2 and LaAl3. Phys. B 2002, 324, 240–244. [Google Scholar] [CrossRef]
- Griessen, R.; Driessen, A. Heat of formation and band structure of binary and ternary metal hydrides. Phys. Rev. B 1984, 30, 4372–4381. [Google Scholar] [CrossRef]
- Griessen, R.; Driessen, A.; de Groot, D.G. Search for New Metal-Hydrogen Systems for Energy Storage. J. Less-Common Met. 1984, 103, 235–244. [Google Scholar] [CrossRef]
- Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. High hydrogen content complex hydrides: A density-functional study. Appl. Phys. Lett. 2006, 89, 71906. [Google Scholar] [CrossRef]
- Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Identification of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations. J. Phys. Chem. B 2006, 110, 8769–8776. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Fang, Z.Z.; Choi, Y.J.; Sohn, H.Y. The Potential of Binary Lithium Magnesium Nitride—LiMgN for Hydrogen Storage Application. MRS Online Proc. Libr. 2007, 1042, 1042-S05. [Google Scholar] [CrossRef]
- Alapati, S.V.; Karl Johnson, J.; Sholl, D.S. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Phys. Chem. Chem. Phys. 2007, 9, 1438–1452. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, R.; Ozoliņš, V.; Wolverton, C. First-Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li-Mg-N-H System. Adv. Mater. 2007, 19, 3233–3239. [Google Scholar] [CrossRef]
- Wolverton, C.; Siegel, D.J.; Akbarzadeh, A.R.; Ozoliņš, V. Discovery of novel hydrogen storage materials: An atomic scale computational approach. J. Phys. Condens. Matter 2008, 20, 64228. [Google Scholar] [CrossRef]
Priority | Specification | Note |
---|---|---|
1. Hydrogen storage density | Weight > 3–4 wt% Volume (V/V0) > 1800–2400 | V = stored hydrogen gas volume (273 K, 0.1 MPa) V0 = volume of MH |
2. Enthalpy | |∆RH| < 20 kJ/mol H2 | |
3. Equilibrium pressure | >1.0 MPa at 243 K (desorbing) <35 MPa at 393 K (absorbing) | |
4. Cyclic durability | Decrease of storage capacity <10% at 1000 cycles <5% at 100 cycles | H2 purity > 99.99% |
Alanate | wt% H | Td (°C) | Synthesis | Characterization Techniques | Ref | |
---|---|---|---|---|---|---|
Starting Materials | Procedure | |||||
AgAlH4 | 2.9 | −50 | AgClO4, LiAlH4[157] | In solution (diethyl ether) | Conductometric titration [157] VDH [158] | [157,158] |
Ce(AlH4)3 | 5.2 | −15 | Li3CeBr6, LiAlH4 | In solution (diethyl ether) | VDH, EA | [148] |
CeAlH6 | 3.5 | 100 | CeCl3, NaAlH4 | High-energy ball milling under 1–15 bar hydrogen | DSC, thermolysis, XRD | [149] |
CuAlH4 | 4.3 | −80 [148] | CuI, LiAlH4 [161,162] Li2CuBr4, LiAlH4 [148] | In solution (tetrahydrofuran [161], diethyl ether [148,162]) | VDH, EA [148,161,162] IR [161,162] | [148,161,162] |
Eu(AlH4)2 | 3.8 | 100 | EuCl2, NaAlH4 | High-energy ball milling under 1–15 bar hydrogen, no separate preparation of EuAlH5 | DSC, thermolysis, XRD | [163] |
EuAlH5 | 2.7 | 180 | ||||
Fe(AlH4)2 | 6.8 | −125 [143] −70 [144] <RT [145] | FeCl3, LiAlH4 [145,146,164] Li2FeBr4, LiAlH4 [148] | In solution (diethyl ether) | VDH, EA [144,145,146] IR [144] Thermolysis [145] DTA (not shown), XRD [146] | [143,144,145,146,148,164] |
LaAlH6 | 3.5 | 100 | LaCl3, NaAlH4 | High-energy ball milling under 1–15 bar hydrogen | DSC, thermolysis, XRD, 27Al-NMR | [149] |
Mn(AlH4)2 | 6.9 | −20 | Li2MnBr4, LiAlH4 | In solution (diethyl ether) | VDH, EA | [148] |
Mo(AlH4)5 | 8.0 | RT | No information | In solution (diethyl ether) | No information stated | [143] |
Nb2(AlH4)5 | 5.9 | 0 [165] >20 [166] | NbCl5, LiAlH4 | In solution (diethyl ether) | VDH, EA Thermolysis, DTA (not shown), XRD, IR [165] | [144,153,165,166] |
Nb2(AlH4)6 | 6.5 | −50 [165] −40 < Td < 20 [166] | VDH, EA | |||
Nb2(AlH4)7 | 7.0 | −90 [165] −70 < Td < −40 [166] | ||||
NdAlH6 | 3.4 | 100 | NdCl3, NaAlH4 | High-energy ball milling under 1–15 bar hydrogen | DSC, thermolysis, XRD | [149] |
PrAlH6 | 3.5 | 100 | PrCl3, NaAlH4 | High-energy ball milling under 1–15 bar hydrogen | DSC, thermolysis, XRD | [149] |
Sc(AlH4)3 Et2O | 8.8 | 80 | ScBr3, LiAlH4 | In solution (diethyl ether) | VDH, EA, IR, XRD, DTA, DTGA, MS | [147] |
TaH2(AlH4)2 | 4.1 | 60 [153] 130 [156] | TaCl5, LiAlH4 [153] TaBr5/TaCl5, LiAlH4 [156] | In solution (diethyl ether) | VDH, EA Thermolysis [153,156] XRD, IR, RAMAN [156] | [153,156] |
Ti(AlH4)4 | 9.4 | −70 [146] −85 [167] | TiBr4/TiCl4, LiAlH4 [146] TiCl4, LiAlH4 [167] | In solution (diethyl ether) | VDH, EA IR [144] DTA (not shown), XRD [146] | [144,146,167] |
Y(AlH4)3 | 6.7 | 50 [168] 80 [169] | YBr3, LiAlH4 [168] YCl3, LiAlH4 [169] | In solution (diethyl ether) [168] High-energy ball milling under 80 bar hydrogen, no separate preparation of YAlH6 [169] | VDH, EA IR, DTA (not shown) [168] XRD, IR, TPD, MS, DSC, HP-DSC [169] | [168,169] |
YAlH6 | 5.0 | 170 [169] | ||||
Yb(AlH4)2 | 3.4 | 70 | YbBrx, LiAlH4 | In solution (diethyl ether) | VDH, EA, DTA (not shown), XRD, IR | [144] |
Yb(AlH4)3 | 4.6 | 100 | YbCl3, LiAlH4 | High-energy ball milling under 100 bar hydrogen, no separate preparation of YbAlH6 | XRD, IR, TGA-DSC-MS, HP-DSC | [170] |
YbAlH6 | 2.9 | 180 | ||||
Zr(AlH4)4 | 7.5 | <RT | Zr(BH4)4, LiAlH4 | In solution (diethyl ether) | EA | [159] |
Boranate | wt% H | Td (°C) | Synthesis | Characterization Techniques | Ref | |
---|---|---|---|---|---|---|
Starting Materials | Procedure | |||||
Ag(BH4) | 3.28 | −30 | LiBH4, AgClO4 | In solution (diethyl ether) | VDH | [192] |
Ce(BH4)2 | 6.55 | 200–251 | CeH3, S(CH3)2*BH3 [195] LiBH4, CeCl3 [203,204,205] | In solution (dimethyl sulfide-toluene mixture [195], toluene [203]) Extraction (dimethyl sulfide [203]) High-energy ball milling [204,205] | In situ XRD (synchrotron) [195,203], XRD [204,205], FT-IR [195,204,205], PCI [195], TG-DSC-MS [195,205], TG-DSC [203], DSC [204], MP [195] | [195,203,204,205] |
Co(BH4)2 | 9.10 | −20 [206] | CoCl2/CoLi2Br4, LiBH4 [206] CoBr2, LiBH4 [207] | In solution (diethyl ether) | EA [207] | [206,207] |
CuBH4 | 5.14 | 0 | LiBH4, CuCl2 [208,209] LiBH4,CuCl [210,211] | In solution (diethyl ether [208,209,210], THF/diethyl ether [211]) | VDH, iodometry (Cu) [211] | [208,209,210,211] |
Cd(BH4)2 | 5,67 | 75 | LiBH4, CdCl2 [212] LiBH4/NaBH4/KBH4, CdCl2 [213] | High-energy ball milling | In situ XRD (synchrotron) [213], XRD [212,213], PCI [212], MS [212], DSC [212], TG-DSC [213] | [212,213] |
Dy(BH4)3 | 5.84 | 250 | DyH3, S(CH3)2*BH3 | In solution (dimethyl sulfide-toluene mixture) | In situ XRD (synchrotron), FT-IR, PCI, TG-DSC-MS, MP | [195] |
Eu(BH4)2 | 4.44 | 290–395 | EuH2, N(C2H5)2*BH3 [197] EuH2, S(CH3)2*BH3 [195] EuCl3, LiBH4 [214] EuCl2, LiBH4 [214] | In solution (N(C2H5)2*BH3 [197], dimethyl sulfide-toluene mixture [195], diethyl ether [214]) Extraction (dimethyl sulfide [214]) High-energy ball milling [214] Annealing [214] | In situ XRD (synchrotron) [195,197,214], XRD [197,214], FT-IR [195,197,214], Raman [197], PCI [195,214], TG-DSC-MS [195,214], DSC [197], MP [195] | [195,197,214] |
Eu(BH4)3 | 6.16 | <100 [215] 168 [216] | EuCl3, LiBH4 | High-energy ball milling | In situ XRD (synchrotron) [216], XRD [215,216], ATR/FT-IR [215,216], TG-DSC [215], TG-DSC-MS [216], SEM [215] | [215,216] |
Er(BH4)3 | 5.71 | 245–264 | ErH3, S(CH3)2*BH3 [195] ErCl3, LiBH4 [217,218] ErCl3, NaBH4 [218] | In solution (dimethyl sulfide-toluene mixture [195]) Extraction (dimethyl sulfide [217]) High-energy ball milling [217,218] | In situ XRD (synchrotron) [195,217], XRD [217,218], FT-IR [195,218], PCI [195,217,218], TG-DSC-MS [195,217], DSC [218], TPD-MS [217], MP [195] | [195,217,218] |
Fe(BH4)2 | 9.43 | −20 [206] −10 [164] | FeCl2, LiBH4 [206] FeCl3, LiBH4 [164] | In solution (diethyl ether) | VDH [164,206], EA [164] | [164,206] |
Gd(BH4)3 | 5.99 | 250–262 | GdH3, S(CH3)2*BH3 [194,195] GdCl3, LiBH4 [200,219,220] | In solution (toluene or tetrahydrofurane [194], S(CH3)2*BH3-toluene mixture [200], dimethyl sulfide-toluene mixture [195]) extraction (dimethyl sulfide or tetrahydrofurane [194], dimethyl sulfide [200]) High-energy ball milling [200,219,220] | In situ XRD (synchrotron) [194,195,220], XRD [194,200,219,220], FT-IR [194,195,200,219,220], 1H-NMR [194], PCI [195,200,219,220], TG-DSC-MS [194,195,200], TG-DTA-MS [220], TPD-MS [200], DSC [220], TPPA [200], TEM [194], MP [195], conductivity measurements [220] | [194,195,200,219,220] |
Hf(BH4)4 | 6.78 | 136.4 [221] | HfCl4, LiBH4 [221,222,223,224,225,226,227,228] NaHfF5, Al(BH4)3 [229] | Direct metathesis [221,222,223,224,225,226,229] In solution (diethyl ether [227,228]) | VDH [222,229], EA [222,229], VPM [229], single crystal neutron diffraction [228], XRD [221], gas electron diffraction [225], DSC [221], TG-DSC-MS [221], IR [222,224,225], photoelectron spectroscopy [223], melting point [221,229], boiling point [229], CP [221], S° [221], ΔBH [221], NMR (1H [221,222,224,227], 11B [221,222,224]), DFT [221] | [221,222,223,224,225,226,227,228,229] |
Ho(BH4)3 | 5.77 | 252 [195] 236 [230] | HoH3, S(CH3)2*BH3 [195] HoCl3, LiBH4 [230] | In solution (dimethyl sulfide-toluene mixture [195]) High-energy ball milling [230] | In situ XRD (synchrotron) [195], XRD [230], FT-IR [195,230], PCI [195], TG-DSC-MS [195], TG-DSC [230], MP [195] | [195,230] |
La(BH4)3 | 6.59 | 242–258 | LaH3, S(CH3)2*BH3 [195] LiBH4, LaCl3 [203,205,231,232] | In solution (dimethyl sulfide-toluene mixture [195], toluene [203,231,232]) extraction with dimethyl sulfide [203,231,232] High-energy ball milling [205] | In situ XRD (synchrotron) [195,203], XRD [205], FT-IR [195,205], PCI [195], TG-DSC-MS [195,205], TG-DSC [203], MP [195] | [195,203,205,231,232] |
Lu(BH4)3 | 3.94 | 220 | LuH3, S(CH3)2*BH3 | In solution (dimethyl sulfide-toluene mixture) | In situ XRD (synchrotron), FT-IR, PCI, TG-DSC-MS, MP | [195] |
Mn(BH4)2 | 9.53 | 125–150 | MnCl2, LiBH4 [180,181,201,233,234,235,236] MnCl2, NaBH4 [180,237] | High-energy ball milling [180,181,233,234] In solution (dimethyl sulfide-toluene mixture [201], diethyl ether [234,235]) Extraction (dimethyl sulfide [201,234,235], diethyl ether [237]) High-energy ball milling [236,237,238] | In situ XRD (synchrotron) [201,234,235], XRD [180,181,233,234,236,237,238], (ATR-)FT-IR [201,233,236,237,238], Raman [180,181,233,234], PCI [236,237,238], TG-MS [180,181,233], DSC [233,236], TG-DSC-MS [201,234,235,237,238], TDS-GC/MS [180,181], DFT [234], FE-SEM [237,238], ICP-OES [235] | [180,181,201,233,234,235,236,237,238] |
Nd(BH4)3 | 6.41 | 235–245 | NdH3, S(CH3)2*BH3 | In solution (toluene or tetrahydrofurane [194], dimethyl sulfide-toluene mixture [195,239]) Extraction with dimethyl sulfide or tetrahydrofurane [194] | In situ XRD (synchrotron) [194,195,239], XRD [194], NPD [239], FT-IR [194,195], 1H-NMR [194], PCI [195], TG-DSC-MS [194,195,239], TEM [194], MP [195], DFT [239] | [194,195,239] |
Ni(BH4)2 | 9.12 | −20 | NiCl2, LiBH4 | In solution (diethyl ether) | / | [206] |
Np(BH4)4 | 4.30 | <RT [240,241] | NpF4, Al(BH4)3 | Direct metathesis in glass tube | VPM [240], XRD [240,242], IR [241,242,243], Raman [241,242,243], EPR [242], C°P [243], S° [243] | [240,241,242,243] |
Pa(BH4)4 | 5.55 | >RT | PaF4, Al(BH4)3 | Direct metathesis in glass tube | XRD [241,242], IR [241,242], Raman [241,242], EPR [242] | [241,242] |
Pr(BH4)3 | 6.52 | 236–252 | PrH3, S(CH3)2*BH3 [195,239] PrCl3, LiBH4 [217] | In solution (dimethyl sulfide-toluene mixture [195,239], diethyl ether [217]) Extraction (dimethyl sulfide [217]) | In situ XRD (synchrotron) [195,217,239], XRD [217], NPD [239], FT-IR [195], PCI [195,217], TG-DSC-MS [195,217,239], TPD-MS [217], MP [195], DFT [239] | [195,217,239] |
Pu(BH4)4 | 4.19 | <RT [241] | PuF4, Al(BH4)3 | Direct metathesis in glass tube | XRD [241,242], IR [241,242], Raman [241,242], EPR [242] | [241,242] |
Sc(BH4)3 | 13.52 | 207–215 | ScCl3, LiBH4 | High-energy ball milling | XRD, Raman, TDS-GC/MS | [179,180,181,244] |
Sm(BH4)2 | 4.48 | 300–318 | SmH2, S(CH3)2*BH3 [194,195] SmCl3, LiBH4 [214,215,216] | In solution (toluene or tetrahydrofurane [194], dimethyl sulfide-toluene mixture [195], diethyl ether [214]) Extraction (dimethyl sulfide or tetrahydrofurane [194], dimethyl sulfide [214]) High-energy ball milling [215,216] | In situ XRD (synchrotron) [194,195,214,216], XRD [194,214,215,216], ATR/FT-IR [194,195,214,215,216], 1H-NMR [194], PCI [195,214], TG-DSC-MS [194,195,214,215,216], SEM [215], TEM [194], MP [195] | [194,195,214,215,216] |
Sm(BH4)3 | 6.21 | 170 [215] 168 [216] | SmCl3, LiBH4 | High-energy ball milling | In situ XRD (synchrotron) [216], XRD [215,216], ATR/FT-IR [215,216], TG-DSC-MS [215,216], SEM [215] | [215,216] |
Tb(BH4)3 | 5.95 | 250 [195] 243 [215] | TbH3, S(CH3)2*BH3 [195] TbCl3, LiBH4 [215] | In solution (dimethyl sulfide-toluene mixture) [195] High-energy ball milling [215] | In situ XRD (synchrotron) [195], XRD [215], ATR/FT-IR [195,215], PCI [195], TG-DSC-MS [195,215], SEM [215], MP [195] | [195,215] |
Th(BH4)4 | 5.53 | >150–203 [229,241,245] | ThF4, Al(BH4)3 | Direct metathesis in glass tube | VDH [229], EA [229], VPM [229], XRD [241], IR [241,245], Raman [241], TG [245], melting point [229] | [229,241,245] |
Ti(BH4)3 | 13.09 | <RT−78 [229,246,247] | TiCl4, LiBH4 [229,247] TiCl3, LiBH4 [247,248,249] TiF3, LiBH4 [246] | Direct metathesis [229] Mixing in mortar [247] High-energy ball milling [246,247,248,249] | VDH [229,248,249], EA [229,248,249], XRD [246], TG-DSC-MS [246], TG [247], MS [247], (FT-)IR [246,247,249] | [229,246,247,248,249] |
Tm(BH4)3 | 5.71 | 253 | TmH3, S(CH3)2*BH3 | In solution (dimethyl sulfide-toluene mixture) | In situ XRD (synchrotron), FT-IR, PCI, TG-DSC-MS, MP | [195] |
U(BH4)4 | 5.42 | <RT [241,250] | UF4, Al(BH4)3 | Direct metathesis in glass tube | VDH [250], EA [250,251], VPM [250,251], XRD [241,252], IR [241,245,252,253], Raman [241], thermographic investigation [252] | [241,245,250,251,252,253] |
Y(BH4)3 | 9.06 | 191–276 | YCl3, LiBH4 [181,190,199,200,254,255,256,257,258] YH3, B2H6 [190] YH3, S(CH3)2*BH3 [194] YCl3, Li11BD4 [259] YCl3, LiBD4 [260] | High-energy ball milling [181,190,200,254,255,256,257,258,259,260] In solution (toluene or tetrahydrofurane [194], dimethyl sulfide-boran complex in toluene [200], diethyl ether [199,255]) Extraction (dimethyl sulfide or tetrahydrofurane [194], dimethyl sulfide [199,200]) | EA [258], in situ XRD (synchrotron) [190,194,199,200,254,259], XRD [181,190,194,199,200,254,255,256,257,258,259,260], PND [259], FT-IR [194,257,258,260], Raman [181,255,258,260], NMR (1H [194,258], 11B [258], 1H-MAS [256], 11B-MAS [254], 89Y-MAS [256]), PCI [200,255,257], DSC [190,199,257], DSC-TPD [259], TG [199], TG-DSC-MS/FT-IR [256,258,260], TG-DSC [254], TG-MS [181,190], TG-DSC-MS [194,200], TDS-GC [181], TPD-MS [181,200], TG-DTA-MS [255], TPPA [199,200], SEM-EDS [258], TEM [194], BET [190] | [181,190,194,199,200,254,255,256,257,258,259,260] |
Yb(BH4)2 | 3.98 | 329–353 | YbH3, S(CH3)2*BH3 [194] YbH2, S(CH3)2*BH3 [195] YbCl3, LiBH4 [216,261] | In solution (toluene or tetrahydrofurane [194], dimethyl sulfide-toluene mixture [195]) Extraction (dimethyl sulfide or tetrahydrofurane [194]) High-energy ball milling [216,261] | In situ XRD (synchrotron) [194,195,216,261], XRD [194,216,261], PND [261], ATR/FT-IR [194,195,216], Raman [261], 1H-NMR [194], PCI [195], TG-DSC-MS [194,195], TG-DSC [261], TG-DSC-MS [216], TPD [261], TEM [194], MP [195] | [194,195,216,261] |
Yb(BH4)3 | 5.56 | 122–150 | YbCl3, LiBH4 | High-energy ball milling | In situ XRD (synchrotron) [216,261], XRD [215,216,261], PND [261], Raman [261], ATR/FT-IR [215,216], TG-DSC [261], TG-DSC-MS [215,216], TPD [216,261], SEM [215] | [215,216,261] |
Zr(BH4)4 | 10.71 | 72 [179,181,262] 82 [263] 130.4 [221] | ZrCl4, NaBH4 [179] ZrCl4, LiBH4 [159,164,179,181,193,221,222,223,224,225,227,262,263,264,265,266,267,268,269,270] NaZrF5, Al(BH4)3 [159,229] KZrF5, Al(BH4)3 [159] Na2ZrF6, Al(BH4)3 [243] Zr(iso-propylate)4, B2H6 [159] | Direct metathesis [159,193,221,222,223,224,225,229,243,264,265,266] In solution (diethyl ether) [159,227,268,269,270] High-energy ball milling [179,181,262,263,267] | VDH [159,222,229], EA [159,222,229], VPM [229,268], in situ XRD (synchrotron) [267], XRD [179,181,221,262,263,267], electron diffraction [225], (FT-I)IR [222,224,225,243,245,263,264,265,267,268,270], Raman [179,181,262], NMR (1H [221,222,227,269], 11B [221,222,224,269], 91Zr [221,269]), photoelectron spectroscopy [223], DSC [221,263], TPD-GC [179,181,262], TG-MS [179,181,262], TG-DSC-MS [221], melting point [159,221,263,268], boiling point [229], CP [221], S° [221], ΔBH [221], DFT [221,262], MDS [271] | [159,179,181,193,221,222,223,224,225,227,229,243,245,262,263,264,265,266,267,268,269,270,271] |
Categories | Types | wt% H | Thermodynamics | Kinetics |
---|---|---|---|---|
AB2-type Laves phase alloys | TiCr2-based | <2 | Most desorbing equilibrium pressure > 1.0 MPa at 298 K | Most desorption finishes within 5 min |
ZrFe2-based | <2 | Most desorbing equilibrium pressure > 1.0 MPa at 298 K | Most desorption finishes within 5 min | |
Solid solution alloys | Vanadium-based | >3 | Most desorbing equilibrium pressure < 0.1 MPa at 298 K | Most desorption finishes within 10 min |
Complex hydrides | Transition metal alanates | Most > 4 | Most desorbing under −50 °C | Unknown |
Transition metal boranates | Most > 5 | Most desorbing under 0 °C | Unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Habermann, F.; Burkmann, K.; Felderhoff, M.; Mertens, F. Unstable Metal Hydrides for Possible On-Board Hydrogen Storage. Hydrogen 2024, 5, 241-279. https://doi.org/10.3390/hydrogen5020015
Cao Z, Habermann F, Burkmann K, Felderhoff M, Mertens F. Unstable Metal Hydrides for Possible On-Board Hydrogen Storage. Hydrogen. 2024; 5(2):241-279. https://doi.org/10.3390/hydrogen5020015
Chicago/Turabian StyleCao, Zhijie, Franziska Habermann, Konrad Burkmann, Michael Felderhoff, and Florian Mertens. 2024. "Unstable Metal Hydrides for Possible On-Board Hydrogen Storage" Hydrogen 5, no. 2: 241-279. https://doi.org/10.3390/hydrogen5020015
APA StyleCao, Z., Habermann, F., Burkmann, K., Felderhoff, M., & Mertens, F. (2024). Unstable Metal Hydrides for Possible On-Board Hydrogen Storage. Hydrogen, 5(2), 241-279. https://doi.org/10.3390/hydrogen5020015