Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Hydrogen Generation
3.2. Mechanistic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balat, M. Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Claxton, L.D. The History, Genotoxicity, and Carcinogenicity of Carbon-Based Fuels and Their Emissions. Part 3: Diesel and Gasoline. Mutat. Res./Rev. Mutat. Res. 2015, 763, 30–85. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-Y.; Ferreira, J.M.F.; Sakka, Y. Hydrogen-generation Materials for Portable Applications. J. Am. Ceram. Soc. 2008, 91, 3825–3834. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The Hydrogen Issue. ChemSusChem 2011, 4, 21–36. [Google Scholar] [CrossRef] [PubMed]
- San Marchi, C.; Hecht, E.S.; Ekoto, I.W.; Groth, K.M.; LaFleur, C.; Somerday, B.P.; Mukundan, R.; Rockward, T.; Keller, J.; James, C.W. Overview of the DOE Hydrogen Safety, Codes and Standards Program, Part 3: Advances in Research and Development to Enhance the Scientific Basis for Hydrogen Regulations, Codes and Standards. Int. J. Hydrogen Energy 2017, 42, 7263–7274. [Google Scholar] [CrossRef]
- Park, W.; Hyun, S.H.; Oh, S.E.; Logan, B.E.; Kim, I.S. Removal of Headspace CO2 Increases Biological Hydrogen Production. Environ. Sci. Technol. 2005, 39, 4416–4420. [Google Scholar] [CrossRef] [PubMed]
- Kapdan, I.K.; Kargi, F.; Oztekin, R.; Argun, H. Bio-Hydrogen Production from Acid Hydrolyzed Wheat Starch by Photo-Fermentation Using Different Rhodobacter sp. Int. J. Hydrogen Energy 2009, 34, 2201–2207. [Google Scholar] [CrossRef]
- Turner, J.; Sverdrup, G.; Mann, M.K.; Maness, P.C.; Kroposki, B.; Ghirardi, M.; Evans, R.J.; Blake, D. Renewable Hydrogen Production. Int. J. Energy Res. 2008, 32, 379–407. [Google Scholar] [CrossRef]
- Cao, E.; Chen, Z.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S.; Xie, Y.; Wu, Y.; et al. Boron-Induced Electronic-Structure Reformation of CoP Nanoparticles Drives Enhanced PH-Universal Hydrogen Evolution. Angew. Chem. Int. Ed. 2020, 59, 4154–4160. [Google Scholar] [CrossRef]
- Canavesio, C.; Nassini, H.E.; Bohé, A.E. Evaluation of an Iron-Chlorine Thermochemical Cycle for Hydrogen Production. Int. J. Hydrogen Energy 2015, 40, 8620–8632. [Google Scholar] [CrossRef]
- Bahari, N.A.; Wan Isahak, W.N.R.; Masdar, M.S.; Yaakob, Z. Clean Hydrogen Generation and Storage Strategies via CO2 Utilization into Chemicals and Fuels: A Review. Int. J. Energy Res. 2019, 43, 5128–5150. [Google Scholar] [CrossRef]
- Zaidman, B.; Wiener, H.; Sasson, Y. Formate Salts as Chemical Carriers in Hydrogen Storage and Transportation. Int. J. Hydrogen Energy 1986, 11, 341–347. [Google Scholar] [CrossRef]
- Horváth, H.; Papp, G.; Kovács, H.; Kathó, Á.; Joó, F. Iridium(I)–NHC-Phosphine Complex-Catalyzed Hydrogen Generation and Storage in Aqueous Formate/Bicarbonate Solutions Using a Flow Reactor—Effective Response to Changes in Hydrogen Demand. Int. J. Hydrogen Energy 2019, 44, 28527–28532. [Google Scholar] [CrossRef]
- Shirman, R.; Bahuguna, A.; Sasson, Y. Effect of Precursor on the Hydrogen Evolution Activity and Recyclability of Pd-Supported Graphitic Carbon Nitride. Int. J. Hydrogen Energy 2021, 46, 36210–36220. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Yan, J.-M.; Ping, Y.; Wang, H.-L.; Zheng, W.-T.; Jiang, Q. An Efficient CoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature. Angew. Chem. 2013, 125, 4502–4505. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Q.; Gao, L.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. Recent Progress in Hydrogen Production from Formic Acid Decomposition. Int. J. Hydrogen Energy 2018, 43, 7055–7071. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal Hydride Materials for Solid Hydrogen Storage: A Review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Tarasov, B.P.; Fursikov, P.V.; Volodin, A.A.; Bocharnikov, M.S.; Shimkus, Y.Y.; Kashin, A.M.; Yartys, V.A.; Chidziva, S.; Pasupathi, S.; Lototskyy, M.V. Metal Hydride Hydrogen Storage and Compression Systems for Energy Storage Technologies. Int. J. Hydrogen Energy 2021, 46, 13647–13657. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, X.; Bai, X. Catalytic Dehydrogenation of Liquid Organic Hydrogen Carrier Dodecahydro-N-Ethylcarbazole over Palladium Catalysts Supported on Different Supports. Environ. Sci. Pollut. Res. 2020, 27, 36172–36185. [Google Scholar] [CrossRef]
- Luo, N.; Cao, F.; Zhao, X.; Xiao, T.; Fang, D. Thermodynamic Analysis of Aqueous-Reforming of Polylols for Hydrogen Generation. Fuel 2007, 86, 1727–1736. [Google Scholar] [CrossRef]
- Shirman, R.; Sasson, Y. Hydrogen Generation from Sodium Hypophosphite Catalyzed by Metallic Nanoparticles Supported on Graphitic Carbon Nitride. Int. J. Hydrogen Energy 2023, 48, 27611–27618. [Google Scholar] [CrossRef]
- Nikoleishvili, P.; Gorelishvili, G.; Kveselava, V.; Kurtanidze, R.; Gogoli, D.; Sharabidze, D. Hydrogen Generation from the Hydrolysis of Sodium Hypophosphite Using CoB2O4 Catalyst. ECS Meet. Abstr. 2016, MA2016-01, 1555. [Google Scholar] [CrossRef]
- Mahmoodi, K.; Alinejad, B. Enhancement of Hydrogen Generation Rate in Reaction of Aluminum with Water. Int. J. Hydrogen Energy 2010, 35, 5227–5232. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J.R. Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25, 3820–3839. [Google Scholar] [CrossRef] [PubMed]
- Tzimas, E.; Filiou, C.; Peteves, S.D.; Veyret, J.B. Hydrogen Storage: State-of-the-Art and Future Perspective; EU Commission: Petten, The Netherlands, 2003; pp. 1511–1519. [Google Scholar]
- Abanades, S.; Charvin, P.; Flamant, G.; Neveu, P. Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy. Energy 2006, 31, 2805–2822. [Google Scholar] [CrossRef]
- Abanades, S. Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy. ChemEngineering 2019, 3, 63. [Google Scholar] [CrossRef]
- Gai, W.Z.; Liu, W.H.; Deng, Z.Y.; Zhou, J.G. Reaction of Al Powder with Water for Hydrogen Generation under Ambient Condition. Int. J. Hydrogen Energy 2012, 37, 13132–13140. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Rothenberg, G.; Wiener, H.; Sasson, Y. Solid–Solid Palladium-Catalysed Water Reduction with Zinc: Mechanisms of Hydrogen Generation and Direct Hydrogen Transfer Reactions. New J. Chem. 2000, 24, 305–308. [Google Scholar] [CrossRef]
- Bartali, R.; Speranza, G.; Aguey-Zinsou, K.F.; Testi, M.; Micheli, V.; Canteri, R.; Fedrizzi, M.; Gottardi, G.; Coser, G.; Crema, L.; et al. Efficient Hydrogen Generation from Water Using Nanocomposite Flakes Based on Graphene and Magnesium. Sustain. Energy Fuels 2018, 2, 2516–2525. [Google Scholar] [CrossRef]
- Parmuzina, A.V.; Kravchenko, O.V. Activation of Aluminium Metal to Evolve Hydrogen from Water. Int. J. Hydrogen Energy 2008, 33, 3073–3076. [Google Scholar] [CrossRef]
- Rosen, M.A. Advances in Hydrogen Production by Thermochemical Water Decomposition: A Review. Energy 2010, 35, 1068–1076. [Google Scholar] [CrossRef]
- Chen, K.F.; Li, S.; Zhang, W.X. Renewable Hydrogen Generation by Bimetallic Zero Valent Iron Nanoparticles. Chem. Eng. J. 2011, 170, 562–567. [Google Scholar] [CrossRef]
- Tasker, S.Z.; Standley, E.A.; Jamison, T.F. Recent Advances in Nickel Catalysis. Nature 2014, 509, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
Metal | % Conversion with NiCl2 | % Conversion without NiCl2 |
---|---|---|
Zn | 94 | 0 |
Mg | 32 | 6 |
Fe | 8 | 0 |
Mn | 14 | 0 |
Entry | (g) | (g) | % Conversion |
---|---|---|---|
1 | 9.8 | 0 | 0 |
2 | 9.8 | 0.005 | 54 |
3 | 9.8 | 0.01 | 90 |
4 | 9.8 | 0.05 | 94 |
5 | 9.8 | 0.1 | 95 |
6 | 0 | 0.05 | 0 |
7 | 0.3 | 0.05 | 20 |
8 | 0.7 | 0.05 | 51 |
9 | 3.2 | 0.05 | 91 |
10 | 13.1 | 0.05 | 90 |
Salt | % Conversion |
---|---|
NaCl | 3 |
MgCl2 | 0.8 |
NiCl2 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirman, R.; Sasson, Y. Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles. Hydrogen 2024, 5, 230-240. https://doi.org/10.3390/hydrogen5020014
Shirman R, Sasson Y. Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles. Hydrogen. 2024; 5(2):230-240. https://doi.org/10.3390/hydrogen5020014
Chicago/Turabian StyleShirman, Ron, and Yoel Sasson. 2024. "Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles" Hydrogen 5, no. 2: 230-240. https://doi.org/10.3390/hydrogen5020014
APA StyleShirman, R., & Sasson, Y. (2024). Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles. Hydrogen, 5(2), 230-240. https://doi.org/10.3390/hydrogen5020014