Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Hydrogen Generation
3.2. Mechanistic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balat, M. Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Claxton, L.D. The History, Genotoxicity, and Carcinogenicity of Carbon-Based Fuels and Their Emissions. Part 3: Diesel and Gasoline. Mutat. Res./Rev. Mutat. Res. 2015, 763, 30–85. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-Y.; Ferreira, J.M.F.; Sakka, Y. Hydrogen-generation Materials for Portable Applications. J. Am. Ceram. Soc. 2008, 91, 3825–3834. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The Hydrogen Issue. ChemSusChem 2011, 4, 21–36. [Google Scholar] [CrossRef] [PubMed]
- San Marchi, C.; Hecht, E.S.; Ekoto, I.W.; Groth, K.M.; LaFleur, C.; Somerday, B.P.; Mukundan, R.; Rockward, T.; Keller, J.; James, C.W. Overview of the DOE Hydrogen Safety, Codes and Standards Program, Part 3: Advances in Research and Development to Enhance the Scientific Basis for Hydrogen Regulations, Codes and Standards. Int. J. Hydrogen Energy 2017, 42, 7263–7274. [Google Scholar] [CrossRef]
- Park, W.; Hyun, S.H.; Oh, S.E.; Logan, B.E.; Kim, I.S. Removal of Headspace CO2 Increases Biological Hydrogen Production. Environ. Sci. Technol. 2005, 39, 4416–4420. [Google Scholar] [CrossRef] [PubMed]
- Kapdan, I.K.; Kargi, F.; Oztekin, R.; Argun, H. Bio-Hydrogen Production from Acid Hydrolyzed Wheat Starch by Photo-Fermentation Using Different Rhodobacter sp. Int. J. Hydrogen Energy 2009, 34, 2201–2207. [Google Scholar] [CrossRef]
- Turner, J.; Sverdrup, G.; Mann, M.K.; Maness, P.C.; Kroposki, B.; Ghirardi, M.; Evans, R.J.; Blake, D. Renewable Hydrogen Production. Int. J. Energy Res. 2008, 32, 379–407. [Google Scholar] [CrossRef]
- Cao, E.; Chen, Z.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S.; Xie, Y.; Wu, Y.; et al. Boron-Induced Electronic-Structure Reformation of CoP Nanoparticles Drives Enhanced PH-Universal Hydrogen Evolution. Angew. Chem. Int. Ed. 2020, 59, 4154–4160. [Google Scholar] [CrossRef]
- Canavesio, C.; Nassini, H.E.; Bohé, A.E. Evaluation of an Iron-Chlorine Thermochemical Cycle for Hydrogen Production. Int. J. Hydrogen Energy 2015, 40, 8620–8632. [Google Scholar] [CrossRef]
- Bahari, N.A.; Wan Isahak, W.N.R.; Masdar, M.S.; Yaakob, Z. Clean Hydrogen Generation and Storage Strategies via CO2 Utilization into Chemicals and Fuels: A Review. Int. J. Energy Res. 2019, 43, 5128–5150. [Google Scholar] [CrossRef]
- Zaidman, B.; Wiener, H.; Sasson, Y. Formate Salts as Chemical Carriers in Hydrogen Storage and Transportation. Int. J. Hydrogen Energy 1986, 11, 341–347. [Google Scholar] [CrossRef]
- Horváth, H.; Papp, G.; Kovács, H.; Kathó, Á.; Joó, F. Iridium(I)–NHC-Phosphine Complex-Catalyzed Hydrogen Generation and Storage in Aqueous Formate/Bicarbonate Solutions Using a Flow Reactor—Effective Response to Changes in Hydrogen Demand. Int. J. Hydrogen Energy 2019, 44, 28527–28532. [Google Scholar] [CrossRef]
- Shirman, R.; Bahuguna, A.; Sasson, Y. Effect of Precursor on the Hydrogen Evolution Activity and Recyclability of Pd-Supported Graphitic Carbon Nitride. Int. J. Hydrogen Energy 2021, 46, 36210–36220. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Yan, J.-M.; Ping, Y.; Wang, H.-L.; Zheng, W.-T.; Jiang, Q. An Efficient CoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature. Angew. Chem. 2013, 125, 4502–4505. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Q.; Gao, L.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. Recent Progress in Hydrogen Production from Formic Acid Decomposition. Int. J. Hydrogen Energy 2018, 43, 7055–7071. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal Hydride Materials for Solid Hydrogen Storage: A Review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Tarasov, B.P.; Fursikov, P.V.; Volodin, A.A.; Bocharnikov, M.S.; Shimkus, Y.Y.; Kashin, A.M.; Yartys, V.A.; Chidziva, S.; Pasupathi, S.; Lototskyy, M.V. Metal Hydride Hydrogen Storage and Compression Systems for Energy Storage Technologies. Int. J. Hydrogen Energy 2021, 46, 13647–13657. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, X.; Bai, X. Catalytic Dehydrogenation of Liquid Organic Hydrogen Carrier Dodecahydro-N-Ethylcarbazole over Palladium Catalysts Supported on Different Supports. Environ. Sci. Pollut. Res. 2020, 27, 36172–36185. [Google Scholar] [CrossRef]
- Luo, N.; Cao, F.; Zhao, X.; Xiao, T.; Fang, D. Thermodynamic Analysis of Aqueous-Reforming of Polylols for Hydrogen Generation. Fuel 2007, 86, 1727–1736. [Google Scholar] [CrossRef]
- Shirman, R.; Sasson, Y. Hydrogen Generation from Sodium Hypophosphite Catalyzed by Metallic Nanoparticles Supported on Graphitic Carbon Nitride. Int. J. Hydrogen Energy 2023, 48, 27611–27618. [Google Scholar] [CrossRef]
- Nikoleishvili, P.; Gorelishvili, G.; Kveselava, V.; Kurtanidze, R.; Gogoli, D.; Sharabidze, D. Hydrogen Generation from the Hydrolysis of Sodium Hypophosphite Using CoB2O4 Catalyst. ECS Meet. Abstr. 2016, MA2016-01, 1555. [Google Scholar] [CrossRef]
- Mahmoodi, K.; Alinejad, B. Enhancement of Hydrogen Generation Rate in Reaction of Aluminum with Water. Int. J. Hydrogen Energy 2010, 35, 5227–5232. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J.R. Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25, 3820–3839. [Google Scholar] [CrossRef] [PubMed]
- Tzimas, E.; Filiou, C.; Peteves, S.D.; Veyret, J.B. Hydrogen Storage: State-of-the-Art and Future Perspective; EU Commission: Petten, The Netherlands, 2003; pp. 1511–1519. [Google Scholar]
- Abanades, S.; Charvin, P.; Flamant, G.; Neveu, P. Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy. Energy 2006, 31, 2805–2822. [Google Scholar] [CrossRef]
- Abanades, S. Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy. ChemEngineering 2019, 3, 63. [Google Scholar] [CrossRef]
- Gai, W.Z.; Liu, W.H.; Deng, Z.Y.; Zhou, J.G. Reaction of Al Powder with Water for Hydrogen Generation under Ambient Condition. Int. J. Hydrogen Energy 2012, 37, 13132–13140. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Rothenberg, G.; Wiener, H.; Sasson, Y. Solid–Solid Palladium-Catalysed Water Reduction with Zinc: Mechanisms of Hydrogen Generation and Direct Hydrogen Transfer Reactions. New J. Chem. 2000, 24, 305–308. [Google Scholar] [CrossRef]
- Bartali, R.; Speranza, G.; Aguey-Zinsou, K.F.; Testi, M.; Micheli, V.; Canteri, R.; Fedrizzi, M.; Gottardi, G.; Coser, G.; Crema, L.; et al. Efficient Hydrogen Generation from Water Using Nanocomposite Flakes Based on Graphene and Magnesium. Sustain. Energy Fuels 2018, 2, 2516–2525. [Google Scholar] [CrossRef]
- Parmuzina, A.V.; Kravchenko, O.V. Activation of Aluminium Metal to Evolve Hydrogen from Water. Int. J. Hydrogen Energy 2008, 33, 3073–3076. [Google Scholar] [CrossRef]
- Rosen, M.A. Advances in Hydrogen Production by Thermochemical Water Decomposition: A Review. Energy 2010, 35, 1068–1076. [Google Scholar] [CrossRef]
- Chen, K.F.; Li, S.; Zhang, W.X. Renewable Hydrogen Generation by Bimetallic Zero Valent Iron Nanoparticles. Chem. Eng. J. 2011, 170, 562–567. [Google Scholar] [CrossRef]
- Tasker, S.Z.; Standley, E.A.; Jamison, T.F. Recent Advances in Nickel Catalysis. Nature 2014, 509, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
Metal | % Conversion with NiCl2 | % Conversion without NiCl2 |
---|---|---|
Zn | 94 | 0 |
Mg | 32 | 6 |
Fe | 8 | 0 |
Mn | 14 | 0 |
Entry | (g) | (g) | % Conversion |
---|---|---|---|
1 | 9.8 | 0 | 0 |
2 | 9.8 | 0.005 | 54 |
3 | 9.8 | 0.01 | 90 |
4 | 9.8 | 0.05 | 94 |
5 | 9.8 | 0.1 | 95 |
6 | 0 | 0.05 | 0 |
7 | 0.3 | 0.05 | 20 |
8 | 0.7 | 0.05 | 51 |
9 | 3.2 | 0.05 | 91 |
10 | 13.1 | 0.05 | 90 |
Salt | % Conversion |
---|---|
NaCl | 3 |
MgCl2 | 0.8 |
NiCl2 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirman, R.; Sasson, Y. Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles. Hydrogen 2024, 5, 230-240. https://doi.org/10.3390/hydrogen5020014
Shirman R, Sasson Y. Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles. Hydrogen. 2024; 5(2):230-240. https://doi.org/10.3390/hydrogen5020014
Chicago/Turabian StyleShirman, Ron, and Yoel Sasson. 2024. "Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles" Hydrogen 5, no. 2: 230-240. https://doi.org/10.3390/hydrogen5020014
APA StyleShirman, R., & Sasson, Y. (2024). Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles. Hydrogen, 5(2), 230-240. https://doi.org/10.3390/hydrogen5020014