Material and Performance Optimisation for Syngas Preparation Using Artificial Intelligence (AI)-Based Machine Learning (ML)
Abstract
:1. Introduction
2. Methodology
2.1. Numerical Modelling for AI Data Generation
2.1.1. Chemically Reacting Species Transport
2.1.2. Fluid Flow
2.1.3. Energy
2.2. Computational Assessment
2.3. Artificial Intelligence-Based Machine Learning (ML) Modelling
2.3.1. Model Development
2.3.2. Model Training Based on Machine Learning (ML)
2.3.3. ML Model Validation
3. Optimisation Using the Machine Learning Model
3.1. Assessment for Potential Material Optimisation
3.2. Assessment for Potential Process Optimisation
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivers-Tiffée, E.; Weber, A.; Herbstritt, D. Materials and technologies for SOFC-components. J. Eur. Ceram. Soc. 2001, 21, 1805–1811. [Google Scholar] [CrossRef]
- Delette, G.; Laurencin, J.; Usseglio-Viretta, F.; Villanova, J.; Bleuet, P.; Lay-Grindler, E.; Le Bihan, T. Thermo-elastic properties of SOFC/SOEC electrode materials determined from three-dimensional microstructural reconstructions. Int. J. Hydrogen Energy 2013, 38, 12379–12391. [Google Scholar] [CrossRef]
- Cui, D.; Yang, C.; Huang, K.; Chen, F. Effects of testing configurations and cell geometries on the performance of a SOFC: A modeling approach. Int. J. Hydrogen Energy 2010, 35, 10495–10504. [Google Scholar] [CrossRef]
- Froitzheim, J.; Meier, G.; Niewolak, L.; Ennis, P.; Hattendorf, H.; Singheiser, L.; Quadakkers, W. Development of high strength ferritic steel for interconnect application in SOFCs. J. Power Sources 2008, 178, 163–173. [Google Scholar] [CrossRef]
- Peksen, M. 3D CFD/FEM analysis of thermomechanical long-term behaviour in SOFCs: Furnace operation with different fuel gases. Int. J. Hydrogen Energy 2015, 40, 12362–12369. [Google Scholar] [CrossRef]
- Rasmussen, J.F.B.; Hendriksen, P.V.; Hagen, A. Study of Internal and External Leaks in Tests of Anode-Supported SOFCs. Fuel Cells 2008, 8, 385–393. [Google Scholar] [CrossRef]
- Dokiya, M. SOFC system and technology. Solid State Ionics 2002, 152–153, 383–392. [Google Scholar] [CrossRef]
- Nguyen, X.-V.; Chang, C.-T.; Jung, G.-B.; Chan, S.-H.; Lee, W.-T.; Chang, S.-W.; Kao, I.-C. Study of sealants for SOFC. Int. J. Hydrogen Energy 2016, 41, 21812–21819. [Google Scholar] [CrossRef]
- Tietz, F. Thermal expansion of SOFC materials. Ionics 1999, 5, 129–139. [Google Scholar] [CrossRef]
- George, R.A. Status of tubular SOFC field unit demonstrations. J. Power Sources 2000, 86, 134–139. [Google Scholar] [CrossRef]
- Föger, K.; Love, J. Fifteen years of SOFC development in Australia. Solid State Ionics 2004, 174, 119–126. [Google Scholar] [CrossRef]
- Blum, L.; Batfalsky, P.; Fang, Q.; de Haart, L.G.J.; Malzbender, J.; Margaritis, N.; Menzler, N.H.; Peters, R. SOFC Stack and System Development at Forschungszentrum Jülich. J. Electrochem. Soc. 2015, 162, F1199–F1205. [Google Scholar] [CrossRef]
- Peksen, M.; Al-Masri, A.; Peters, R.; Blum, L.; Stolten, D. Recent Developments of 3D Coupled Multiphysics SOFC Modelling at Forschungszentrum Jülich. ECS Trans. 2013, 57, 2537–2541. [Google Scholar] [CrossRef]
- Huang, C.; Shy, S.; Lee, C. On flow uniformity in various interconnects and its influence to cell performance of planar SOFC. J. Power Sources 2008, 183, 205–213. [Google Scholar] [CrossRef]
- Peksen, M. A coupled 3D thermofluid–thermomechanical analysis of a planar type production scale SOFC stack. Int. J. Hydrogen Energy 2011, 36, 11914–11928. [Google Scholar] [CrossRef]
- Greco, F.; Nakajo, A.; Wuillemin, Z.; Van Herle, J. Thermo-Mechanical Reliability of SOFC Stacks during Combined Long-Term Operation and Thermal Cycling. ECS Trans. 2015, 68, 1921–1931. [Google Scholar] [CrossRef]
- Fang, Q.; Blum, L.; Batfalsky, P.; Menzler, N.H.; Packbier, U.; Stolten, D. Durability test and degradation behavior of a 2.5 kW SOFC stack with internal reforming of LNG. Int. J. Hydrogen Energy 2013, 38, 16344–16353. [Google Scholar] [CrossRef]
- Peksen, M.; Meric, D.; Al-Masri, A.; Stolten, D. A 3D multiphysics model and its experimental validation for predicting the mixing and combustion characteristics of an afterburner. Int. J. Hydrogen Energy 2015, 40, 9462–9472. [Google Scholar] [CrossRef]
- Peksen, M.; Peters, R.; Blum, L.; Stolten, D. 3D coupled CFD/FEM modelling and experimental validation of a planar type air pre-heater used in SOFC technology. Int. J. Hydrogen Energy 2011, 36, 6851–6861. [Google Scholar] [CrossRef]
- Douvartzides, S.; Coutelieris, F.; Demin, A.; Tsiakaras, P. Electricity from ethanol fed SOFCs: The expectations for sustainable development and technological benefits. Int. J. Hydrogen Energy 2004, 29, 375–379. [Google Scholar] [CrossRef]
- Hafsia, A.; Bariza, Z.; Djamel, H.; Hocine, B.M.; Andreadis, G.M.; Soumia, A. SOFC fuel cell heat production: Analysis. Energy Procedia 2011, 6, 643–650. [Google Scholar] [CrossRef]
- Föger, K.; Godfrey, B.; Pham, T. Development of 25 kW SOFC system. Fuel Cells Bull. 1999, 2, 9–11. [Google Scholar] [CrossRef]
- Farhad, S.; Hamdullahpur, F.; Yoo, Y. Performance evaluation of different configurations of biogas-fuelled SOFC micro-CHP systems for residential applications. Int. J. Hydrogen Energy 2010, 35, 3758–3768. [Google Scholar] [CrossRef]
- Peksen, M. Safe heating-up of a full scale SOFC system using 3D multiphysics modelling optimisation. Int. J. Hydrogen Energy 2018, 43, 354–362. [Google Scholar] [CrossRef]
- Yi, Y.; Rao, A.D.; Brouwer, J.; Samuelsen, G.S. Fuel flexibility study of an integrated 25kW SOFC reformer system. J. Power Sources 2005, 144, 67–76. [Google Scholar] [CrossRef]
- Lee, K.H.; Strand, R.K. SOFC cogeneration system for building applications, part 2: System configuration and operating condition design. Renew. Energy 2009, 34, 2839–2846. [Google Scholar] [CrossRef]
- Fang, Q.; Blum, L.; Peters, R.; Peksen, M.; Batfalsky, P.; Stolten, D. SOFC stack performance under high fuel utilization. Int. J. Hydrogen Energy 2015, 40, 1128–1136. [Google Scholar] [CrossRef]
- Blum, L.; Packbier, U.; Vinke, I.C.; de Haart, L.G.J. Long-Term Testing of SOFC Stacks at Forschungszentrum Jülich. Fuel Cells 2012, 13, 646–653. [Google Scholar] [CrossRef]
- Rechberger, J.; Kaupert, A.; Hagerskans, J.; Blum, L. Demonstration of the First European SOFC APU on a Heavy Duty Truck. Transp. Res. Procedia 2016, 14, 3676–3685. [Google Scholar] [CrossRef]
- Ho, T.X.; Kosinski, P.; Hoffmann, A.C.; Vik, A. Numerical analysis of a planar anode-supported SOFC with composite electrodes. Int. J. Hydrogen Energy 2009, 34, 3488–3499. [Google Scholar] [CrossRef]
- Peksen, M.; Peters, R.; Blum, L.; Stolten, D. Hierarchical 3D multiphysics modelling in the design and optimisation of SOFC system components. Int. J. Hydrogen Energy 2011, 36, 4400–4408. [Google Scholar] [CrossRef]
- Riensche, E.; Achenbach, E.; Froning, D.; Haines, M.; Heidug, W.; Lokurlu, A.; von Andrian, S. Clean combined-cycle SOFC power plant—Cell modelling and process analysis. J. Power Sources 2000, 86, 404–410. [Google Scholar] [CrossRef]
- Peksen, M.; Al-Masri, A.; Peters, R.; Blum, L.; Stolten, D. 3D Multiphysics Modelling and Design Optimisation of a Complete SOFC System Operating in Jülich. ECS Trans. 2014, 64, 155–159. [Google Scholar] [CrossRef]
- Peksen, M.; Al-Masri, A.; Peters, R.; Blum, L.; Stolten, D. Recent Developments in 3D Multiphysics Modelling of Whole Fuel Cell Systems for Assisting Commercialisation and Improved Reliability. ECS Trans. 2017, 75, 15–22. [Google Scholar] [CrossRef]
- Peksen, M.; Al-Masri, A.; Blum, L.; Stolten, D. 3D Coupled Thermofluid-Thermomechanical Modelling and Experimental Validation of a Whole Solid Oxide Fuel Cell System. ECS Trans. 2013, 50, 139–142. [Google Scholar] [CrossRef]
- Yang, C.; Jing, X.; Li, P.; Kan, A.; Wu, Y.; Ye, W.; Yuan, J. Performance analysis of mesoscale reactions in fuel electrode and effect on dynamic multiphysics processes in rSOFC with syngas. Int. J. Hydrogen Energy 2021, 46, 9523–9540. [Google Scholar] [CrossRef]
- Shen, M.; Ai, F.; Ma, H.; Xu, H.; Zhang, Y. Progress and prospects of reversible solid oxide fuel cell materials. iScience 2021, 24, 103464. [Google Scholar] [CrossRef]
- Yang, C.; Jing, X.; Miao, H.; Wu, Y.; Shu, C.; Wang, J.; Zhang, H.; Yu, G.; Yuan, J. Analysis of effects of meso-scale reactions on multiphysics transport processes in rSOFC fueled with syngas. Energy 2019, 190, 116379. [Google Scholar] [CrossRef]
- Barelli, L.; Bidini, G.; Cinti, G.; Ottaviano, A. Study of SOFC-SOE transition on a RSOFC stack. Int. J. Hydrogen Energy 2017, 42, 26037–26047. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, Y.; Zheng, Y.; Cai, N. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems. J. Power Sources 2017, 340, 60–70. [Google Scholar] [CrossRef]
- Yu, D.; Hu, J.; Wang, W.; Gu, B. Comprehensive techno-economic investigation of biomass gasification and nanomaterial based SOFC/SOEC hydrogen production system. Fuel 2023, 333, 126442. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Li, R. Chapter 10—Bioconversion and Chemical Conversion of Biogas for Fuel Production. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts; Hosseini, M., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2019; pp. 187–205. [Google Scholar] [CrossRef]
- Van Herle, J.; Membrez, Y.; Bucheli, O. Biogas as a fuel source for SOFC co-generators. J. Power Sources 2004, 127, 300–312. [Google Scholar] [CrossRef]
- Ma, S.; Loreti, G.; Wang, L.; Maréchal, F.; Van Herle, J.; Dong, C. Comparison and optimization of different fuel processing options for biogas-fed solid-oxide fuel cell plants. Int. J. Hydrogen Energy 2021, 47, 551–564. [Google Scholar] [CrossRef]
- Li, N.; Liu, B.; Jia, L.; Yan, D.; Li, J. Liquid biofuels for solid oxide fuel cells: A review. J. Power Sources 2023, 556, 232437. [Google Scholar] [CrossRef]
- Vakkilainen, E.K. Steam Generation from Biomass: Construction and Design of Large Boilers. 2016. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85022084416&partnerID=40&md5=3223cd4cf4e1188a7e90bb3d38697a82 (accessed on 15 June 2023).
- Gandía, L.M.; Arzamendi, G.; Diéguez, P.M.; He, L.; Yang, J.; Chen, D. Chapter 6—Hydrogen from Biomass: Advances in Thermochemical Processes. In Renewable Hydrogen Technologies; Elsevier: Amsterdam, The Netherlands, 2013; pp. 111–133. [Google Scholar] [CrossRef]
- Marcantonio, V.; Del Zotto, L.; Ouweltjes, J.P.; Bocci, E. Main issues of the impact of tar, H2S, HCl and alkali metal from biomass-gasification derived syngas on the SOFC anode and the related gas cleaning technologies for feeding a SOFC system: A review. Int. J. Hydrogen Energy 2021, 47, 517–539. [Google Scholar] [CrossRef]
- Gandía, L.M.; Arzamendi, G.; Diéguez, P.M.; Martínez-Merino, V.; Gil, M.J.; Cornejo, A. Chapter 5—Biomass Sources for Hydrogen Production. In Renewable Hydrogen Technologies; Elsevier: Amsterdam, The Netherlands, 2013; pp. 87–110. [Google Scholar] [CrossRef]
- Cordiner, S.; Feola, M.; Mulone, V.; Romanelli, F. Three-Dimensional Based Model of a Planar SOFC Fuelled by Biomass Gas. In Proceedings of the International Conference on Fuel Cell Science, Engineering and Technology, Irvine, CA, USA, 19–21 June 2006. [Google Scholar]
- Karim, R.; Naser, J. Numerical Modelling of Solid Biomass Combustion: Difficulties in Initiating the Fixed Bed Combustion. Energy Procedia 2017, 110, 390–395. [Google Scholar] [CrossRef]
- Alnaqi, A.A.; Alsarraf, J.; Al-Rashed, A.A. The waste heat of a biofuel-powered SOFC for green hydrogen production using thermochemical cycle; Economic, environmental analysis, and tri-criteria optimization. Fuel 2023, 335, 126599. [Google Scholar] [CrossRef]
- Geis, M.; Herrmann, S.; Fendt, S.; Jeong, H.; Lenser, C.; Menzler, N.H.; Spliethoff, H. Coupling SOFCs to biomass gasification—The influence of phenol on cell degradation in simulated bio-syngas. Part I: Electrochemical analysis. Int. J. Hydrogen Energy 2018, 43, 20417–20427. [Google Scholar] [CrossRef]
- Jeong, H.; Geis, M.; Lenser, C.; Lobe, S.; Herrmann, S.; Fendt, S.; Menzler, N.H.; Guillon, O. Coupling SOFCs to biomass gasification—The influence of phenol on cell degradation in simulated bio-syngas. Part II—Post-test analysis. Int. J. Hydrogen Energy 2018, 43, 20911–20920. [Google Scholar] [CrossRef]
- Osman, A.I.; Deka, T.J.; Baruah, D.C.; Rooney, D.W. Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass-Convers. Biorefinery 2020, 13, 8383–8401. [Google Scholar] [CrossRef]
- Fischer, F.; Hauser, M.; Hauck, M.; Herrmann, S.; Fendt, S.; Jeong, H.; Lenser, C.; Menzler, N.H.; Spliethoff, H. Effect of internal hydrocarbon reforming during coupled operation of a biomass gasifier with hot gas cleaning and SOFC stacks. Energy Sci. Eng. 2019, 7, 1140–1153. [Google Scholar] [CrossRef]
- Li, Y.; Pang, Y.; Tu, H.; Torrigino, F.; Biollaz, S.M.; Li, Z.; Huang, Y.; Yin, X.; Grimm, F.; Karl, J. Impact of syngas from biomass gasification on solid oxide fuel cells: A review study for the energy transition. Energy Convers. Manag. 2021, 250, 114894. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Dincer, I. Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. Int. J. Hydrogen Energy 2015, 40, 7694–7706. [Google Scholar] [CrossRef]
- Radenahmad, N.; Azad, A.T.; Saghir, M.; Taweekun, J.; Abu Bakar, M.S.; Reza, S.; Azad, A.K. A review on biomass derived syngas for SOFC based combined heat and power application. Renew. Sustain. Energy Rev. 2020, 119, 109560. [Google Scholar] [CrossRef]
- Yang, Y.; Du, X.; Yang, L.; Huang, Y.; Xian, H. Investigation of methane steam reforming in planar porous support of solid oxide fuel cell. Appl. Therm. Eng. 2009, 29, 1106–1113. [Google Scholar] [CrossRef]
- Din, Z.U.; Zainal, Z. Biomass integrated gasification–SOFC systems: Technology overview. Renew. Sustain. Energy Rev. 2016, 53, 1356–1376. [Google Scholar] [CrossRef]
- Vollmar, H.-E.; Maier, C.-U.; Nölscher, C.; Merklein, T.; Poppinger, M. Innovative concepts for the coproduction of electricity and syngas with solid oxide fuel cells. J. Power Sources 2000, 86, 90–97. [Google Scholar] [CrossRef]
- Peksen, M. Chapter 8—Multiphysics Modelling of Energy Systems. In Multiphysics Modelling; Peksen, M., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 211–236. [Google Scholar] [CrossRef]
- Peksen, M.; Blum, L.; Stolten, D. Optimisation of a solid oxide fuel cell reformer using surrogate modelling, design of experiments and computational fluid dynamics. Int. J. Hydrogen Energy 2012, 37, 12540–12547. [Google Scholar] [CrossRef]
- Peksen, M.; Peters, R.; Blum, L.; Stolten, D. Numerical modelling and experimental validation of a planar type pre-reformer in SOFC technology. Int. J. Hydrogen Energy 2009, 34, 6425–6436. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Blum, L.; Peters, R. Operational behavior and reforming kinetics over Ni/YSZ of a planar type pre-reformer for SOFC systems. Int. J. Hydrogen Energy 2014, 39, 7131–7141. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Deja, R.; Peters, R.; Blum, L. Methane/steam global reforming kinetics over the Ni/YSZ of planar pre-reformers for SOFC systems. Chem. Eng. J. 2016, 292, 113–122. [Google Scholar] [CrossRef]
- Audasso, E.; Bianchi, F.R.; Bosio, B. 2D Simulation for CH4 Internal Reforming-SOFCs: An Approach to Study Performance Degradation and Optimization. Energies 2020, 13, 4116. [Google Scholar] [CrossRef]
- Moon, D.J.; Ryu, J.W. Electrocatalytic reforming of carbon dioxide by methane in SOFC system. Catal. Today 2003, 87, 255–264. [Google Scholar] [CrossRef]
- Chen, F.; Zha, S.; Dong, J.; Liu, M. Pre-reforming of propane for low-temperature SOFCs. Solid State Ionics 2004, 166, 269–273. [Google Scholar] [CrossRef]
- Liso, V.; Olesen, A.C.; Nielsen, M.P.; Kær, S.K. Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system. Energy 2011, 36, 4216–4226. [Google Scholar] [CrossRef]
- Diéguez, P.M.; Martín, J.L.-S.; Idareta, I.; Uriz, I.; Arzamendi, G.; Gandía, L.M. Chapter 18—Hydrogen Hazards and Risks Analysis through CFD Simulations. In Renewable Hydrogen Technologies; Elsevier: Amsterdam, The Netherlands, 2013; pp. 437–452. [Google Scholar] [CrossRef]
- Wu, B. Advances in the use of CFD to characterize, design and optimize bioenergy systems. Comput. Electron. Agric. 2013, 93, 195–208. [Google Scholar] [CrossRef]
- Baraldi, D.; Melideo, D.; Kotchourko, A.; Ren, K.; Yanez, J.; Jedicke, O.; Giannissi, S.; Tolias, I.; Venetsanos, A.; Keenan, J.; et al. Development of a model evaluation protocol for CFD analysis of hydrogen safety issues the SUSANA project. Int. J. Hydrogen Energy 2017, 42, 7633–7643. [Google Scholar] [CrossRef]
- Said, S.A.; Simakov, D.S.; Waseeuddin, M.; Román-Leshkov, Y. Solar molten salt heated membrane reformer for natural gas upgrading and hydrogen generation: A CFD model. Sol. Energy 2016, 124, 163–176. [Google Scholar] [CrossRef]
- Peksen, M. 3D transient multiphysics modelling of a complete high temperature fuel cell system using coupled CFD and FEM. Int. J. Hydrogen Energy 2014, 39, 5137–5147. [Google Scholar] [CrossRef]
- Calzolari, G.; Liu, W. Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review. Build. Environ. 2021, 206, 108315. [Google Scholar] [CrossRef]
- Hassan, H.; Ren, Z.; Zhou, C.; Khan, M.A.; Pan, Y.; Zhao, J.; Huang, B. Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review. Comput. Methods Programs Biomed. 2022, 218, 106731. [Google Scholar] [CrossRef]
- Usman, A.; Rafiq, M.; Saeed, M.; Nauman, A.; Almqvist, A.; Liwicki, M. Machine Learning Computational Fluid Dynamics. In Proceedings of the 33rd Workshop of the Swedish Artificial Intelligence Society, SAIS 2021, Online, 14–15 June 2021. [Google Scholar] [CrossRef]
- Van Cranenburgh, S.; Wang, S.; Vij, A.; Pereira, F.; Walker, J. Choice modelling in the age of machine learning—Discussion paper. J. Choice Model. 2021, 42, 100340. [Google Scholar] [CrossRef]
- Wei, H.; Bao, H.; Ruan, X. Perspective: Predicting and optimizing thermal transport properties with machine learning methods. Energy AI 2022, 8, 100153. [Google Scholar] [CrossRef]
- Miraftabzadeh, S.M.; Longo, M.; Foiadelli, F.; Pasetti, M.; Igual, R. Advances in the Application of Machine Learning Techniques for Power System Analytics: A Survey. Energies 2021, 14, 4776. [Google Scholar] [CrossRef]
- Nti, E.K.; Cobbina, S.J.; Attafuah, E.E.; Opoku, E.; Gyan, M.A. Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review. Sustain. Futur. 2022, 4, 100068. [Google Scholar] [CrossRef]
- Peksen, M.; Peters, R.; Blum, L.; Stolten, D. Design and Optimisation of SOFC System Components using a Trio Approach: Measurements, Design of Experiments, and 3D Computational Fluid Dynamics. ECS Trans. 2009, 25, 1195. [Google Scholar] [CrossRef]
- Peksen, M.M. Artificial Intelligence-Based Machine Learning toward the Solution of Climate-Friendly Hydrogen Fuel Cell Electric Vehicles. Vehicles 2022, 4, 663–680. [Google Scholar] [CrossRef]
- Peksen, M.; Spliethoff, H. Optimising pre-reforming for quality r-SOC syngas preparation using artificial intelligence (AI) based machine learning (ML). Int. J. Hydrogen Energy 2023, 48, 24002–24017. [Google Scholar] [CrossRef]
- Peksen, M. Chapter 2—Multiphysics Modelling of Fluid Flow Systems. In Multiphysics Modelling; Peksen, M., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 37–75. [Google Scholar] [CrossRef]
- Blum, L.; Deja, R.; Peters, R.; Stolten, D. Comparison of efficiencies of low, mean and high temperature fuel cell Systems. Int. J. Hydrogen Energy 2011, 36, 11056–11067. [Google Scholar] [CrossRef]
- De Aguiar, P.; Bourguignon, B.; Khots, M.; Massart, D.; Phan-Than-Luu, R. D-optimal designs. Chemom. Intell. Lab. Syst. 1995, 30, 199–210. [Google Scholar] [CrossRef]
Factor Level | −1 | 0 | 1 |
---|---|---|---|
Fuel_mass flow rate [kg/s] | A | B | C |
Air_mass flow rate [kg/s] | A | B | C |
Air temperature [°C] | 640 | 700 | 725 |
Fuel oxygen content [%] | 0 | 5 | 10 |
Catalyst porosity [-] | 0.2 | 0.35 | 0.50 |
GPR | SVM | Linear-Regression | Multi-Regression | |
---|---|---|---|---|
RMSE | 5.50 | 6.08 | 5.88 | 4.096 |
R-Squared | 0.57 | 0.48 | 0.50 | 0.93 |
Fuel [kg/s] | Air [kg/s] | Air [°C] | O2 [%] | Catalyst | % ML | % CFD | % Error | |
---|---|---|---|---|---|---|---|---|
Case 1 | 7.0 × 10−5 | 3.9 × 10−4 | 650 | 5 | 40 | 20.14 | 20.52 | −1.76 |
Case 2 | 7.0 × 10−5 | 3.9 × 10−4 | 650 | 5 | 47 | 20.73 | 20.48 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peksen, M.M. Material and Performance Optimisation for Syngas Preparation Using Artificial Intelligence (AI)-Based Machine Learning (ML). Hydrogen 2023, 4, 474-492. https://doi.org/10.3390/hydrogen4030032
Peksen MM. Material and Performance Optimisation for Syngas Preparation Using Artificial Intelligence (AI)-Based Machine Learning (ML). Hydrogen. 2023; 4(3):474-492. https://doi.org/10.3390/hydrogen4030032
Chicago/Turabian StylePeksen, Murphy M. 2023. "Material and Performance Optimisation for Syngas Preparation Using Artificial Intelligence (AI)-Based Machine Learning (ML)" Hydrogen 4, no. 3: 474-492. https://doi.org/10.3390/hydrogen4030032
APA StylePeksen, M. M. (2023). Material and Performance Optimisation for Syngas Preparation Using Artificial Intelligence (AI)-Based Machine Learning (ML). Hydrogen, 4(3), 474-492. https://doi.org/10.3390/hydrogen4030032