CO Removal from Hydrogen Stream through Methanation on Ru/C Catalysts Doped with Lanthanum and Barium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalysts Synthesis
2.2. Characterization Studies
2.3. Catalytic Activity Studies
3. Results
3.1. N2 Physisorption
3.2. CO Chemisorption
3.3. XRPD
3.4. H2-TPR
3.5. Raman Spectral Analysis
3.6. SEM-EDX
3.7. Evaluation of Catalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Megia, P.J.; Vizcaino, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, S.; Jain, A. Significance of Hydrogen as Economic and Environmentally Friendly Fuel. Energies 2021, 14, 7389. [Google Scholar] [CrossRef]
- Rangel, M.D.C.; Querino, P.S.; Borges, S.M.S.; Marchetti, S.G.; Assaf, J.M.; Vásquez, D.P.R.; Rodella, C.B.; Silva, T.D.F.; da Silva, A.H.M.; Ramon, A.P. Hydrogen purification over lanthanum-doped iron oxides by WGSR. Catal. Today 2017, 296, 262–271. [Google Scholar] [CrossRef]
- Mueller-Langer, F.; Tzimas, E.; Kaltschmitt, M.; Peteves, S. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrogen Energy 2007, 32, 3797–3810. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Smart energy solutions with hydrogen options. Int. J. Hydrogen Energy 2018, 43, 8579–8599. [Google Scholar] [CrossRef]
- Fiorio, J.L.; Gothe, M.L.; Kohlrausch, E.C.; Zardo, M.L.; Tanaka, A.A.; de Lima, R.B.; da Silva, A.G.M.; Garcia, M.A.S.; Vidinha, P.; Machado, G. Nanoengineering of Catalysts for Enhanced Hydrogen Production. Hydrogen 2022, 3, 218–254. [Google Scholar] [CrossRef]
- IEA. Technology Roadmap–Energy and GHG Reductions in the Chemical Industry via Catalytic Processes; IEA: Paris, France, 2013.
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Env. 2016, 1, 10–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dong, C.; Tang, X.; Qin, X.; Liu, X.; Peng, M.; Xu, Y.; Song, C.; Zhang, J.; Liang, X.; et al. CO-tolerant RuNi/TiO2 catalyst for the storage and purification of crude hydrogen. Nat. Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef]
- Lang, S.M.; Bernhardt, T.M.; Krstić, M.; Bonačić-Koutecký, V. The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: A gas-phase approach. Angew. Chem. Int. Ed. 2014, 53, 5467–5471. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Kondarides, D.I.; Verykios, X.E. Mechanistic study of the selective methanation of CO over Ru/TiO2 catalyst: Identification of active surface species and reaction pathways. J. Phys. Chem. C 2011, 115, 1220–1230. [Google Scholar] [CrossRef]
- de Cássia Colman, R.; Torres, L.A.; de Lima, A.F.F.; Appel, L.G. Removing CO and acetaldehyde from hydrogen streams generated by ethanol reforming. Int. J. Hydrogen Energy 2009, 34, 9832–9837. [Google Scholar] [CrossRef]
- Kustov, A.L.; Frey, A.M.; Larsen, K.E.; Johannessen, T.; Nørskov, J.K.; Christensen, C.H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Appl. Catal. A Gen. 2007, 320, 98–104. [Google Scholar] [CrossRef]
- Gao, Z.; Dai, Q.; Ma, H.; Li, Z. Ceria supported nickel catalysts for CO removal from H2-rich gas. J. Rare Earths 2016, 34, 1213–1220. [Google Scholar] [CrossRef]
- Chen, A.; Miyao, T.; Higashiyama, K.; Yamashita, H.; Watanabe, M. High catalytic performance of ruthenium-doped mesoporous nickel-aluminum oxides for selective CO methanation. Angew. Chem. Int. Ed. 2010, 49, 9895–9898. [Google Scholar] [CrossRef]
- Prins, R.; Wang, A.; Xiang, L. Introduction to Heterogeneous Catalysis; Imperial College Press and World Scientific Publishing: London, UK; Singapore, 2016. [Google Scholar] [CrossRef]
- Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation – From fundamentals to current projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Panagiotopoulou, P. Hydrogenation of CO2 over supported noble metal catalysts. Appl. Catal. A Gen. 2017, 542, 63–70. [Google Scholar] [CrossRef]
- Cant, N.W.; Bell, A.T. Studies of carbon monoxide hydrogenation over ruthenium using transient response techniques. J. Catal. 1982, 73, 257–271. [Google Scholar] [CrossRef]
- Dagle, R.A.; Wang, Y.; Xia, G.G.; Strohm, J.J.; Holladay, J.; Palo, D.R. Selective CO methanation catalysts for fuel processing applications. Appl. Catal. A Gen. 2007, 326, 213–218. [Google Scholar] [CrossRef]
- Tada, S.; Kikuchi, R. Preparation of Ru nanoparticles on TiO2 using selective deposition method and their application to selective CO methanation. Catal. Sci. Technol. 2014, 4, 26–29. [Google Scholar] [CrossRef]
- Eckle, S.; Denkwitz, Y.; Behm, R.J. Activity, selectivity, and adsorbed reaction intermediates/reaction side products in the selective methanation of CO in reformate gases on supported Ru catalysts. J. Catal. 2010, 269, 255–268. [Google Scholar] [CrossRef]
- Garbarino, G.; Bellotti, D.; Riani, P.; Magistri, L.; Busca, G. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability. Int. J. Hydrogen Energy 2015, 40, 9171–9182. [Google Scholar] [CrossRef]
- Cisneros, S.; Chen, S.; Diemant, T.; Bansmann, J.; Abdel-Mageed, A.M.; Goepel, M.; Olesen, S.E.; Welter, E.S.; Parlinska-Wojtan, M.; Gläser, R.; et al. Effects of SiO2-doping on high-surface-area Ru/TiO2 catalysts for the selective CO methanation. Appl. Catal. B Environ. 2021, 282, 119483. [Google Scholar] [CrossRef]
- Chen, S.; Abdel-Mageed, A.M.; Gauckler, C.; Olesen, S.E.; Chorkendorff, I.; Behm, R.J. Selective CO methanation on isostructural Ru nanocatalysts: The role of support effects. J. Catal. 2019, 373, 103–115. [Google Scholar] [CrossRef]
- Tada, S.; Kikuchi, R.; Urasaki, K.; Satokawa, S. Effect of reduction pretreatment and support materials on selective CO methanation over supported Ru catalysts. Appl. Catal. A Gen. 2011, 404, 149–154. [Google Scholar] [CrossRef]
- Eckle, S.; Anfang, H.G.; Behm, R.J. What drives the selectivity for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts? Appl. Catal. A Gen. 2011, 391, 325–333. [Google Scholar] [CrossRef]
- Truszkiewicz, E.; Zegadło, K.; Wojda, D.; Mierzwa, B.; Kępiński, L. The effect of the ruthenium crystallite size on the activity of Ru/carbon systems in CO methanation. Top. Catal. 2017, 60, 1299–1305. [Google Scholar] [CrossRef]
- Truszkiewicz, E.; Bielecka, A.; Moszyński, D.; Ostrowski, A. Lowering risk of methanation of carbon support in Ru/carbon catalysts for CO methanation by adding lanthanum. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Méndez-Mateos, D.; Barrio, V.L.; Requies, J.M.; Cambra, J.F. Effect of the addition of alkaline earth and lanthanide metals for the modification of the alumina support in Ni and Ru catalysts in CO2 methanation. Catalysts 2021, 11, 353. [Google Scholar] [CrossRef]
- Gonzalez, R.D.; Miura, H. Methanation and Fischer-Tropsch studies on potassium-promoted silica-supported Ru catalysts. J. Catal. 1982, 77, 338–347. [Google Scholar] [CrossRef]
- Petala, A.; Panagiotopoulou, P. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: I. Effect of alkali additives on catalytic activity and selectivity. Appl. Catal. B Environ. 2018, 224, 919–927. [Google Scholar] [CrossRef]
- Sakakini, B.H. Temperature-programmed surface reaction (TPSR) of pre-adsorbed carbon CO and COH2 synthesis over Ru-CsAl2O3 catalysts. J. Mol. Catal. A Chem. 1997, 127, 203–209. [Google Scholar] [CrossRef]
- Iost, K.N.; Borisov, V.A.; Temerev, V.L.; Smirnova, N.S.; Surovikin, Y.V.; Trenikhin, M.V.; Arbuzov, A.B.; Gulyaeva, T.I.; Shlyapin, D.A.; Tsyrulnikov, P.G.; et al. Effect of the carbon support graphitization on the activity and thermal stability of Ru-Ba-Cs/C ammonia decomposition catalysts. React. Kinet. Mech. Catal. 2019, 127, 85–102. [Google Scholar] [CrossRef]
- Xiong, J.; Dong, X.; Li, L. CO selective methanation in hydrogen-rich gas mixtures over carbon nanotube supported Ru-based catalysts. J. Nat. Gas Chem. 2012, 21, 445–451. [Google Scholar] [CrossRef]
- Xiong, J.; Dong, X.; Song, Y.; Dong, Y. A high performance Ru-ZrO2/carbon nanotubes-Ni foam composite catalyst for selective CO methanation. J. Power Sources 2013, 242, 132–136. [Google Scholar] [CrossRef]
- Jiménez, V.; Panagiotopoulou, P.; Sánchez, P.; Valverde, J.L.; Romero, A. Synthesis and characterization of ruthenium supported on carbon nanofibers with different graphitic plane arrangements. Chem. Eng. J. 2011, 168, 947–954. [Google Scholar] [CrossRef]
- Kumi, D.O.; Dlamini, M.W.; Phaahlamohlaka, T.N.; Mhlanga, S.D.; Coville, N.J.; Scurrell, M.S. Selective CO Methanation Over Ru Supported on Carbon Spheres: The Effect of Carbon Functionalization on the Reverse Water Gas Shift Reaction. Catal. Lett. 2018, 148, 3502–3513. [Google Scholar] [CrossRef] [Green Version]
- Truszkiewicz, E.; Kowalczyk, K.; Dębska, A.; Wojda, D.; Iwanek, E.; Kępiński, L.; Mierzwa, B. Methanation of CO on Ru/graphitized-carbon catalysts: Effects of the preparation method and the carbon support structure. Int. J. Hydrogen Energy 2020, 45, 31985–31999. [Google Scholar] [CrossRef]
- Truszkiewicz, E.; Raróg-Pilecka, W.; Zybert, M.; Wasilewska-Stefańska, M.; Topolska, E.; Michalska, K. Effect of the ruthenium loading and barium addition on the activity of ruthenium/carbon catalysts in carbon monoxide methanation. Pol. J. Chem. Technol. 2014, 16, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.S.; Hihara, T.; Inazu, K.; Aika, K.I. Effect of methanation of active carbon support on the barium-promoted ruthenium catalyst for ammonia synthesis. Catal. Lett. 2001, 76, 193–199. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Jodzis, S.; Raróg, W.; Zieliński, J.; Pielaszek, J. Effect of potassium and barium on the stability of a carbon-supported ruthenium catalyst for the synthesis of ammonia. Appl. Catal. A Gen. 1998, 173, 153–160. [Google Scholar] [CrossRef]
- Rossetti, I.; Pernicone, N.; Forni, L. Promoters effect in Ru/C ammonia synthesis catalyst. Appl. Catal. A Gen. 2001, 208, 271–278. [Google Scholar] [CrossRef]
- AlKetbi, M.; Polychronopoulou, K.; Abi Jaoude, M.; Vasiliades, M.A.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Zedan, A.F.; Efstathiou, A.M. Cu-Ce-La-Ox as efficient CO oxidation catalysts: Effect of Cu content. Appl. Surf. Sci. 2020, 505, 144474. [Google Scholar] [CrossRef]
- Ahmad, W.; Younis, M.N.; Shawabkeh, R.; Ahmed, S. Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/Γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure. Catal. Commun. 2017, 100, 121–126. [Google Scholar] [CrossRef]
- Siakavelas, G.; Charisiou, N.; AlKhoori, A.; Sebastian, V.; Hinder, S.; Baker, M.; Yentekakis, I.; Polychronopoulou, K.; Goula, M. Highly selective and stable Ni/La-M (M=Sm, Pr, and Mg)-CeO2 catalysts for CO2 methanation. J. CO2 Util. 2021, 51, 101618. [Google Scholar] [CrossRef]
- Song, M.; Shi, L.; Xu, X.; Du, X.; Chen, Y.; Zhuang, W.; Tao, X.; Sun, L.; Xu, Y. Ni/M/SiO2 catalyst (M=La, Ce or Mg) for CO2 methanation: Importance of the Ni active sites. J. CO2 Util. 2022, 64. [Google Scholar] [CrossRef]
- Siakavelas, G.; Charisiou, N.; AlKhoori, S.; AlKhoori, A.; Sebastian, V.; Hinder, S.; Baker, M.; Yentekakis, I.; Polychronopoulou, K.; Goula, M. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction. Appl. Catal. B Environ. 2020, 282, 119562. [Google Scholar] [CrossRef]
- Quindimil, A.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J.A.; González-Velasco, J.R. Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Appl. Catal. B Environ. 2018, 238, 393–403. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Q. Lanthanum-Modified MCF-Derived Nickel Phyllosilicate Catalyst for Enhanced CO2 Methanation: A Comprehensive Study. ACS Appl. Mater. Interfaces 2020, 12, 19587–19600. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Motak, M.; Grzybek, T.; Gálvez, M.E.; Da Costa, P. The influence of lanthanum incorporation method on the performance of nickel-containing hydrotalcite-derived catalysts in CO2 methanation reaction. Catal. Today 2018, 307, 205–211. [Google Scholar] [CrossRef]
- Tada, S.; Kikuchi, R.; Takagaki, A.; Sugawara, T.; Oyama, S.T.; Satokawa, S. Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation. Catal. Today 2014, 232, 16–21. [Google Scholar] [CrossRef]
- Tada, S.; Kikuchi, R. Mechanistic study and catalyst development for selective carbon monoxide methanation. Catal. Sci. Technol. 2015, 5, 3061–3070. [Google Scholar] [CrossRef]
- Ni, J.; Lin, J.; Wang, X.; Lin, B.; Lin, J.; Jiang, L. Promoting Effects of Lanthan on Ru/AC for Ammonia Synthesis: Tuning Catalytic Efficiency and Stability Simultaneously. Chemistryselect 2017, 2, 6040–6046. [Google Scholar] [CrossRef]
- Zamani, Y.; Bakavoli, M.; Rahimizadeh, M.; Mohajeri, A.; Seyedi, S.M. Synergetic Effect of La and Ba Promoters on Nanostructured Iron Catalyst in Fischer-Tropsch Synthesis. Cuihua Xuebao/Chin. J. Catal. 2012, 33, 1119–1124. [Google Scholar] [CrossRef]
- Ronduda, H.; Zybert, M.; Patkowski, W.; Ostrowski, A.; Jodłowski, P.; Szymański, D.; Kępiński, L.; Raróg-Pilecka, W. Boosting the Catalytic Performance of Co/Mg/La Catalyst for Ammonia Synthesis by Selecting a Pre-Treatment Method. Catalysts 2021, 11, 941. [Google Scholar] [CrossRef]
- Jiménez, V.; Sánchez, P.; Panagiotopoulou, P.; Valverde, J.L.; Romero, A. Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl. Catal. A Gen. 2010, 390, 35–44. [Google Scholar] [CrossRef]
- Borodziński, A.; Bonarowska, M. Relation between Crystallite Size and Dispersion on Supported Metal Catalysts. Langmuir 1997, 13, 5613–5620. [Google Scholar] [CrossRef]
- Hansen, T.W.; Hansen, P.L.; Dahl, S.; Jacobsen, C.J. Support Effect and Active Sites on Promoted Ruthenium Catalysts for Ammonia Synthesis. Catal. Lett. 2002, 84, 7–12. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, T.; Wu, Y.; Ma, Q.; Gong, N.; Yang, J.; Xie, H.; Zhang, M.; Ma, J.; Tan, Y. Promotion effect of La on oxygen vacancy formation over Zn-Cr based catalyst for isobutanol synthesis from syngas. Fuel 2020, 288, 119633. [Google Scholar] [CrossRef]
- Beck, A.; Huang, X.; Artiglia, L.; Zabilskiy, M.; Wang, X.; Rzepka, P.; Palagin, D.; Willinger, M.-G.; van Bokhoven, J.A. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Zeng, H.S.; Inazu, K.; Aika, K.-I. The Working State of the Barium Promoter in Ammonia Synthesis over an Active-Carbon-Supported Ruthenium Catalyst Using Barium Nitrate as the Promoter Precursor. J. Catal. 2002, 211, 33–41. [Google Scholar] [CrossRef]
- Bardwell, C.J.; Bickley, R.I.; Poulston, S.; Twigg, M.V. Thermal decomposition of bulk and supported barium nitrate. Thermochim. Acta 2015, 613, 94–99. [Google Scholar] [CrossRef]
- Tarka, A.; Zybert, M.; Ronduda, H.; Patkowski, W.; Mierzwa, B.; Kępiński, L.; Raróg-Pilecka, W. On Optimal Barium Promoter Content in a Cobalt Catalyst for Ammonia Synthesis. Catalysts 2022, 12, 199. [Google Scholar] [CrossRef]
- Guo, Y.; Mei, S.; Yuan, K.; Wang, D.-J.; Liu, H.-C.; Yan, C.-H.; Zhang, Y.-W. Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catal. 2018, 8, 6203–6215. [Google Scholar] [CrossRef]
- Qin, Y.; Bai, X. Hydrogenation of N-ethylcarbazole over Ni-Ru alloy nanoparticles loaded on graphitized carbon prepared by carbothermal reduction. Fuel 2021, 307, 121921. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, S.; Xu, J.; Wei, K. Effect of thermal and oxidative treatments of activated carbon on its surface structure and suitability as a support for barium-promoted ruthenium in ammonia synthesis catalysts. Carbon 2002, 40, 2597–2603. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectrum of graphene and graphene layers. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Dresselhaus, M.; Jorio, A.; Saito, R. Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annu. Rev. Condens. Matter Phys. 2010, 1, 89–108. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Guo, Y.; Cao, C.; Ni, J.; Lin, J.; Jiang, L. Carbon support surface effects in the catalytic performance of Ba-promoted Ru catalyst for ammonia synthesis. Catal. Today 2018, 316, 230–236. [Google Scholar] [CrossRef]
- Iost, K.N.; Borisov, V.A.; Temerev, V.L.; Surovikin, Y.V.; Pavluchenko, P.E.; Trenikhin, M.V.; Lupanova, A.A.; Arbuzov, A.B.; Shlyapin, D.A.; Tsyrulnikov, P.G.; et al. Study on the metal-support interaction in the Ru/C catalysts under reductive conditions. Surfaces Interfaces 2018, 12, 95–101. [Google Scholar] [CrossRef]
- Tejada, L.M.M.; Muñoz, A.; Centeno, M.A.; Odriozola, J.A. In-situ Raman spectroscopy study of Ru/TiO2 catalyst in the selective methanation of CO. J. Raman Spectrosc. 2015, 47, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotopoulou, P.; Kondarides, D.I.; Verykios, X.E. Selective methanation of CO over supported Ru catalysts. Appl. Catal. B Environ. 2009, 88, 470–478. [Google Scholar] [CrossRef]
- Zhang, X.; Han, R.; Liu, Y.; Li, H.; Shi, W.; Yan, X.; Zhao, X.; Li, Y.; Liu, B. Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: A review. Chem. Eng. J. 2023, 460. [Google Scholar] [CrossRef]
- Buaki-Sogó, M.; Zubizarreta, L.; García-Pellicer, M.; Quijano-López, A. Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage. Molecules 2020, 25, 3123. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Song, G.; Zou, J.; Luo, S.; Meng, A.; Li, Z. Chromium doping and in-grown heterointerface construction for modifying Ni3FeN toward bifunctional electrocatalyst toward alkaline water splitting. Int. J. Hydrogen Energy 2023, 48, 15921–15933. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Z.; Yan, Z.; Lu, G.; Rintoul, L. Catalytic ammonia decomposition over Ru/carbon catalysts: The importance of the structure of carbon support. Appl. Catal. A Gen. 2007, 320, 166–172. [Google Scholar] [CrossRef]
- Muñoz-Murillo, A.; Martínez, T.L.M.; Domínguez, M.; Odriozola, J.A.; Centeno, M. Selective CO methanation with structured RuO2/Al2O3 catalysts. Appl. Catal. B Environ. 2018, 236, 420–427. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Q.; Gu, F.; Liu, B.; Zhong, Z.; Su, F. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 2015, 5, 22759–22776. [Google Scholar] [CrossRef]
Sample Symbol | SBET (m2/g) | Vp (cm3/g) | Dp (nm) |
---|---|---|---|
C | 50.72 | 0.0705 | 4.75 |
Ru/C | 45.97 | 0.0669 | 5.23 |
LaRu/C | 47.90 | 0.0683 | 4.95 |
Ba0.1LaRu/C | 35.79 | 0.0549 | 5.33 |
Ba0.2LaRu/C | 42.38 | 0.0601 | 5.01 |
Catalyst | Metal Atoms (mmol/gcat) | CO Adsorbed (μmol/gcat) | CO/Metal Atoms in the Sample (mol/mol) | dRu (nm) |
Ru/C | 0.495 | 55.1 | 0.111 | 7.1 |
LaRu/C | 0.507 | 35.9 | 0.071 | - |
Ba0.1LaRu/C | 0.549 | 18.1 | 0.033 | - |
Ba0.2LaRu/C | 0.594 | 11.8 | 0.020 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truszkiewicz, E.; Bielecka, A.; Iwanek, E.M.; Ojrzyńska, M.; Ostrowski, A. CO Removal from Hydrogen Stream through Methanation on Ru/C Catalysts Doped with Lanthanum and Barium. Hydrogen 2023, 4, 389-407. https://doi.org/10.3390/hydrogen4020027
Truszkiewicz E, Bielecka A, Iwanek EM, Ojrzyńska M, Ostrowski A. CO Removal from Hydrogen Stream through Methanation on Ru/C Catalysts Doped with Lanthanum and Barium. Hydrogen. 2023; 4(2):389-407. https://doi.org/10.3390/hydrogen4020027
Chicago/Turabian StyleTruszkiewicz, Elżbieta, Aleksandra Bielecka, Ewa M. Iwanek (nee Wilczkowska), Milena Ojrzyńska, and Andrzej Ostrowski. 2023. "CO Removal from Hydrogen Stream through Methanation on Ru/C Catalysts Doped with Lanthanum and Barium" Hydrogen 4, no. 2: 389-407. https://doi.org/10.3390/hydrogen4020027
APA StyleTruszkiewicz, E., Bielecka, A., Iwanek, E. M., Ojrzyńska, M., & Ostrowski, A. (2023). CO Removal from Hydrogen Stream through Methanation on Ru/C Catalysts Doped with Lanthanum and Barium. Hydrogen, 4(2), 389-407. https://doi.org/10.3390/hydrogen4020027