Effect of Chemical Management on Weed Diversity and Community Structure in Soybean–Corn Succession in Brazil’s Triângulo Mineiro Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Crop Management and Herbicide Treatments
2.3. Weed Community Survey
2.4. Geostatistical Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Weed Diversity and Floristic Composition
3.2. Effects of Management Systems on Weed Density and Biomass
3.3. Dominant Species and Importance Value Index (IVI)
3.4. Floristic Similarity and Community Composition
3.5. Spatial Distribution of Commelina Benghalensis
3.6. Implications for Resistance Management and Biodiversity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souza, R.G.; Cardoso, D.B.O.; Mamede, M.C.; Hamawaki, O.T.; Sousa, L.B. Desempenho agronômico de soja, sob interferência de plantas infestantes. Cult. Agronômica 2019, 28, 194–203. [Google Scholar] [CrossRef]
- Hussain, M.A.; Gao, X.; Qin, D.Q.; Qin, X.; Wu, G. Role of Biotic and Abiotic Factors for Sustainable Cotton Production. In Best Crop Management and Processing Practices for Sustainable Cotton Production; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Korres, N.E. Ecologically Based Weed Management: Concepts, Challenges, and Limitations; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Radosevich, S.; Holt, J.; Ghersa, C. Weed Ecology: Implications for Management, 2nd ed.; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Costa, A.G.F.; Bacha, A.L.; Pires, R.N.; Pavani, M.C.M.D.; Alves, P.L.C.A. Interferência de Commelina benghalensis no crescimento inicial de Eucalyptus grandis no inverno e no verão. Ciência Florest. 2021, 31, 590–606. [Google Scholar] [CrossRef]
- Silva, A.F.; Concenço, G.; Aspiazu, I.; Galon, L.; Ferreira, E.A. Métodos de Controle de Planta Daninhas. In Controle de Plantas Daninhas: Métodos Físico, Mecânico, Cultural, Biológico e Alelopatia; Oliveira, M.F., Brighenti, A.M., Eds.; Embrapa Milho e Sorgo: Sete Lagoas, Brazil, 2018; pp. 11–33. [Google Scholar]
- Cardina, J.; Johnson, G.A.; Sparrow, D.H. The nature and consequence of weed spatial distribution. Weed Sci. 1997, 45, 364–373. [Google Scholar] [CrossRef]
- Trangmar, B.B.; Yost, R.S.; Uehara, G. Application of geostatistics to spatial studies of soil properties. Adv. Agron. 1985, 38, 45–94. [Google Scholar] [CrossRef]
- Balastreire, L.A.; Baio, F.H. Avaliação de uma metodologia prática para o mapeamento de plantas daninhas. Rev. Bras. De Eng. Agrícola E Ambient. 2001, 5, 349–352. [Google Scholar] [CrossRef]
- De Barros, R.P.; Reis, L.S.; Magalhães, I.C.S.; Da Silva, W.F.; Da Costa, J.G.; Dos Santos, A.F. Phytosociology of weed community in two vegetable growing systems. Afr. J. Agric. Res. 2018, 13, 28–293. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET). Banco de Dados Meteorológicos: Tabela de Dados Das Estações. 2022. Available online: https://tempo.inmet.gov.br/TabelaEstacoes/A001 (accessed on 18 August 2022).
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 9 August 2025).
- Sorensen, T.A. Method of establishing groups of equal amplitude in plant society based on similarity of species content. In Ecologia, 3rd ed.; Odum, E.P., Ed.; McGraw-Hill Interamericana: City of Mexico, Mexico, 1972; pp. 341–405. [Google Scholar]
- Lorenzi, H. Manual de Identificação e Controle de Plantas Daninhas, 7th ed.; Instituto Plantarum: Nova Odessa, Brazil, 2014. [Google Scholar]
- Pinto, P.H.G.; Lima, S.F.; Andrade, M.G.O.; Contardi, L.M.; Ávila, J.; Reis, B.O.; Bernardo, V.F.; Vendruscolo, E.P. Weeds in soybean cultivation with different predecessor cover crops. Rev. Agric. Neotrop. 2021, 8, e5890. [Google Scholar] [CrossRef]
- Santos, W.F.; Procópio, S.O.; Silva, A.G.; Fernandes, M.F.; Barroso, A.L.L. Weed phytosociological and floristic survey in agricultural areas of Southwestern Goiás region. Planta Daninha 2016, 34, 65–80. [Google Scholar] [CrossRef]
- Kissmann, K.G.; Groth, D. Plantas Infestantes e Nocivas, 2nd ed.; BASF: Ludwigshafen, Germany, 1991; Volume 1. [Google Scholar]
- Lima, S.F.; Timossi, P.C.; Almeida, D.P.; da Silva, U.R. Fitossociologia de plantas daninhas em convivência com plantas de cobertura. Rev. Caating 2014, 27, 37–47. [Google Scholar]
- Cruz, L.; Ferreira, L.; Canuto, R.; Canuto, D. Levantamento fitossociológico de plantas daninhas e controle de Cyperus rotundus L. com glifosato em pré-semeadura de feijão. Agrar. Acad. 2019, 6, 197–205. [Google Scholar] [CrossRef]
- Benedetti, J.G.R.; Pereira, L.; Alves, P.L.D.C.A.; Yamauti, M.S. Período anterior a interferência de plantas daninhas em soja transgênica. Sci. Agrar. 2009, 10, 289–295. [Google Scholar] [CrossRef]
- Concenço, G.; Silva, C.J.; Tomazi, M.; Correia, I.V.T.; Souza, N.C.D.S.; Andres, A. Infestation of weed species in pre-planting of soybean in succession to winter crops. Planta Daninha 2013, 31, 551–558. [Google Scholar] [CrossRef]
- Santos, I.C.; Silva, A.A.; Ferreira, F.A.; Miranda, G.V.; Pinheiro, R.A.N. Eficiência de glyphosate no controle de Commelina benghalensis e Commelina diffusa. Planta Daninha 2001, 19, 135–143. [Google Scholar] [CrossRef]
- Wilson, A.K. Commelinaceae-a review of the distribution, biology and control of the important weeds belonging to this family. Trop. Pest Manag. 1981, 27, 405–418. [Google Scholar] [CrossRef]








| Management System | Dose (kg ha−1) | ||||||
|---|---|---|---|---|---|---|---|
| Soybean | Corn | ||||||
| Desiccation (30 October 2019) | PRE 1 (1 November 2019) | POST 2 (7 November 2019) | POST-Seq 3 (21 November 2019) | POST-Seq 3 (3 December 2019) | PRE 1 (11 March 2020) | POST 2 (30 March 2020) | |
| Two MOAs | gly (1440 g e.a. ha−1) | gly (1440 g e.a. ha−1) | gly (1440 g e.a. ha−1) | gly (1440 g e.a. ha−1) | gly (720 g e.a. ha−1) + atz (1000 g ha−1) | ||
| Four MOAs | gly (1440 g e.a. ha−1) | gly (1440 g e.a. ha−1) + fen (110 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + clt (96 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) | atz (1000 g ha−1) + tmb (100 g ha−1) + ast (0.5% v/v) | ||
| Five MOAs | gly (1440 g e.a. ha−1) 2,4-D (670 g e.a. ha−1) | clt (192 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) | gly (1440 g e.a. ha−1) + clt (96 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + atz (1000 g ha−1) + 2,4-D (670 g e.a. ha−1) | gly (1440 g e.a. ha−1) + 2,4-D (670 g e.a. ha−1) | |
| Six MOAs | gly (1440 g e.a. ha−1) + chl (20 g ha−1) | diq (600 g ha−1) + mtz (384 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + fen (110 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + clt (96 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + atz (1000 g ha−1) | atz (1000 g ha−1) + tmb (100 g ha−1) + ast (0.5% v/v) | |
| Management System | Dose (kg ha−1) | |||||
|---|---|---|---|---|---|---|
| Soybean | Corn | |||||
| Desiccation (29 October 2020) | PRE 1 (30 October 2020) | POST 2 (17 November 2020) | POST-Seq 3 (26 November 2020) | Desiccation (3 November 2021) | POST (30 March 2021) | |
| Two MOAs | gly (1440 g e.a. ha−1) | gly (1440 g e.a. ha−1) | gly (1440 g a e.a ha−1) | gly (1440 g a e.a ha−1) | gly (720 g e.a. ha−1) + atz (1000 g ha−1) | |
| Four MOAs | gly (1440 g e.a. ha−1) | gly (1440 g e.a. ha−1) + fen (110 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + clt (96 g ha−1) + ast (0.5% v/v) | gly (1440 g a e.a ha−1) | atz (1000 g ha−1) + tmb (100 g ha−1) + ast (0.5% v/v) | |
| Five MOAs | gly (1440 g e.a. ha−1) + 2,4-D (670 g e.a. ha−1) | gly (1440 g e.a. ha−1) + clt (96 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + atz (1000 g ha−1) + 2,4-D (670 g e.a. ha−1) + ast (0.5% v/v) | atz (1000 g ha−1) + tmb (100 g ha−1) + ast (0.5% v/v) | ||
| Six MOAs | gly (1440 g e.a. ha−1) + chl (20 g ha−1) | diq (600 g ha−1) + mtz (384 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + fen (110 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + clt (96 g ha−1) + ast (0.5% v/v) | gly (1440 g e.a. ha−1) + atz (1000 g ha−1) + ast (0.5% v/v) | atz (1000 g ha−1) + tmb (100 g ha−1) + ast (0.5% v/v) |
| Management System | Soybean Crop 2019/2020 | Corn Crop 2020 | Soybean Crop 2020/2021 | Corn Crop 2021 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dens (Plants m2) | BS (g m2) | N° Total of Species | Dens (Plans m2) | BS (g m2) | N° Total of Species | Dens (Plants m2) | BS (g m2) | N° Total of Species | Dens (Plants m2) | BS (g m2) | N° Total of Species | |
| Two MOAs | 45.5 | 264.7 a * | 14 | 17.89 | 25.02 a * | 14 | 1.56 | 0.23 ns | 5 | 0.44 | 0.88 ns | 3 |
| Four MOAs | 32 | 58.88 bc | 16 | 13.89 | 11.20 b | 13 | 6.78 | 2.78 | 3 | 0.89 | 1.08 | 2 |
| Five MOAs | 63.7 | 104.81 b | 16 | 6.56 | 4.15 b | 6 | 2.89 | 1.21 | 5 | 0.67 | 0.49 | 3 |
| Six MOAs | 25.8 | 25.57 c | 15 | 4.22 | 1.38 b | 6 | 12.78 | 1.57 | 3 | 0.22 | 0.16 | 2 |
| Family | Scientific Name | Common Name | Lifecycle | Mode of Reproduction |
|---|---|---|---|---|
| Amaranthaceae | Alternanthera tenella Colla Amaranthus spp. | Perrotleaf Pigweed | Annual or perennial Annual | Mainly by seeds Seed |
| Asteraceae | Ageratum conyzoides L. Bidens pilosa L. Blainvillea dichotoma (Murray) Stewart Conyza spp. Gamochaeta coarctata (Willd.) Kerguélen Melampodium perfoliatum (Cavanilles) Kunth Parthenium hysterophorus L. | Goatweed Beggartick Erva-palha Hairy fleabane Purple cudweed Perfoliate blackfoot Ragweed parthenium | Annual Annual Annual Annual Annual Annual Annual | Seed Seed Seed Seed Seed Seed Seed |
| Sonchus oleraceus L. Tridax procumbens L. | Sowthistle Buttons | Annual Annual | Seed Seed | |
| Commelinaceae | Commelina benghalensis L. | Benghal dayflower | Annual | Seed |
| Convolvulaceae | Ipomoea spp. | Morning glory | Annual | Seed |
| Cyperaceae | Cyperus spp. | Sedge | Annual | Tubers, Seed |
| Euphorbiaceae | Euphorbia heterrophylla L. Chamaesyce spp. | Wild poinsettia Gardens spurge | Annual Annual | Seed Seed |
| Fabaceae | Glycine max L. Merril Senna spp. | Voluntary soybean Sicklepod | Annual Perennial | Seed Seed |
| Malvaceae | Sida spp. | Buffpetal | Perennial | Seed |
| Poaceae | Cenchrus echinatus (L.) Pers. Digitaria horizontalis Willd. Digitaria insularis (L.) Fedde Echinochloa spp. Eleusine indica (L.) Gaertn | Southern sandbur Large crabgrass Sourgrass Barnyardgrass Goosegrass | Annual Annual Perennial Annual Annual | Seed Seed Seed and rhizomes Seed Seed |
| Panicum maximum Jacq. Setaria parviflora (Poir.) Kerguélen Sorghum bicolor L. Moench Urochloa decumbens (Stapf) R.D. Webster Zea mays L. | Guinea grass Knotroot foxtail Sorghum Signalgrass Voluntary corn | Perennial Annual Annual Annual Annual | Seed or rhizome Seed Seed Seed Seed | |
| Portulacaceae | Portulaca oleracea L. | Purslane | Annual | Seed |
| Rubiaceae | Richardia brasiliensis Gomes Spermacoce latifolia Aubl. | Brazil pusley Broadleaf buttonweed | Annual Annual | Seed Seed |
| Solanaceae | Nicandra physalodes (L.) Pers. Solanum americanum Mill. | Apple-of-Peru American black nightshade | Annual Annual | Seed Seed |
| Similarity Index (%) | ||||
|---|---|---|---|---|
| Management system | Two MOAs | Four MOAs | Five MOAs | Six MOAs |
| Two MOAs | 100.00 | 86.67 | 86.67 | 75.86 |
| Four MOAs | 100.00 | 68.75 | 70.97 | |
| Five MOAs | 100.00 | 77.42 | ||
| Six MOAs | 100.00 | |||
| Similarity Index (%) | ||||
|---|---|---|---|---|
| Management system | Two MOAs | Four MOAs | Five MOAs | Six MOAs |
| Two MOAs | 100.00 | 75.00 | 54.54 | 53.33 |
| Four MOAs | 100.00 | 44.44 | 54.54 | |
| Five MOAs | 100.00 | 57.14 | ||
| Six MOAs | 100.00 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Silva, J.R.O.; Karam, D.; Mendes, K.F. Effect of Chemical Management on Weed Diversity and Community Structure in Soybean–Corn Succession in Brazil’s Triângulo Mineiro Region. Ecologies 2026, 7, 12. https://doi.org/10.3390/ecologies7010012
Silva JRO, Karam D, Mendes KF. Effect of Chemical Management on Weed Diversity and Community Structure in Soybean–Corn Succession in Brazil’s Triângulo Mineiro Region. Ecologies. 2026; 7(1):12. https://doi.org/10.3390/ecologies7010012
Chicago/Turabian StyleSilva, Júlia Resende Oliveira, Décio Karam, and Kassio Ferreira Mendes. 2026. "Effect of Chemical Management on Weed Diversity and Community Structure in Soybean–Corn Succession in Brazil’s Triângulo Mineiro Region" Ecologies 7, no. 1: 12. https://doi.org/10.3390/ecologies7010012
APA StyleSilva, J. R. O., Karam, D., & Mendes, K. F. (2026). Effect of Chemical Management on Weed Diversity and Community Structure in Soybean–Corn Succession in Brazil’s Triângulo Mineiro Region. Ecologies, 7(1), 12. https://doi.org/10.3390/ecologies7010012

