Evolution and Driving Factors of Ecosystem Service Value in the Henan Section of the Yellow River Basin at Different Grid Scales
Abstract
1. Introduction
2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Sources and Preprocessing
3. Research Methods
3.1. Research Approach
3.2. Calculation of Ecosystem Service Values
3.3. Human Impact Index for ESV
3.4. Spatial Autocorrelation Analysis
3.4.1. Global Spatial Autocorrelation
3.4.2. Local Spatial Autocorrelation
3.5. Sensitivity Analysis
3.6. Geodetector
- (1)
- The factor detector uses ESV as the dependent variable (Y) and each influencing factor as the independent variable (X). The explanatory power of spatial differentiation for ESV is quantified by the q value:
- (2)
- The interaction detector evaluates whether the combined effect of two driving factors enhances or weakens their interaction with ESV changes. Interaction types are categorized as shown in Table 3.
4. Results and Analysis
4.1. Spatial Patterns of ESV
4.2. Spatial Autocorrelation Analysis of Ecosystem Services
4.2.1. Global Spatial Autocorrelation Analysis
4.2.2. Local Spatial Autocorrelation Analysis
4.3. Sensitivity of ESV to Coefficient Variation
4.4. Geographic Detector Analysis of ESV Drivers
4.4.1. Factor Detection Results
4.4.2. Interaction Detection Results
5. Discussion, Conclusions and Recommendations
5.1. Discussion
5.2. Conclusions
- (1)
- Across all grid scales, the spatial distribution of ESV in the Henan section exhibits distinct regional variation with overall consistency: higher values are found in the west and north, and lower values in the east and south. High-value areas are concentrated in ecologically sensitive zones, including water bodies, forests, and grasslands. Forests display the highest sensitivity to ESV and are the main ecological factor driving ESV growth.
- (2)
- ESV in the Henan section demonstrates significant global positive correlation (Moran’s I > 0.67) at all grid scales. High–high clusters are concentrated in water bodies and mountainous forested areas, while low–low clusters are found in the eastern regions and central plains, where human impact is pronounced. Spatial clustering is strongest at finer grid scales and weakens as the scale increases.
- (3)
- Geographic detector results reveal that ESV spatial differentiation is jointly shaped by natural environmental and socioeconomic factors, with pairwise interaction effects surpassing those of individual factors. Human activities contribute most significantly across all grid scales, particularly at the 3 km scale, confirming their role as the principal drivers of ESV spatial heterogeneity in the Henan section.
5.3. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, C.; Song, Y.; Ye, L. Spatiotemporal Evolution and Driving Factors of Ecosystem Service Values in Fujian Province. Nat. Reserves 2024, 4, 81–94. [Google Scholar]
- Li, Z.; Chen, J.; Zhang, W.; Lei, L.; Sha, Z. Analysis of Ecosystem Service Value Evolution and Influencing Factors in Hubei Province. Surv. Mapp. Sci. 2023, 48, 245–257. [Google Scholar]
- Deng, L.; Yang, J.; Yin, X.; Jia, K.; Sun, J.; Shu, S.; Huang, A. Ecosystem Service Supply-Demand Dynamics and Responses to Urbanization at Multiple Spatial Scales in the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2024, 44, 9094–9107. [Google Scholar]
- Cao, Q.; Zhang, X.; Ma, H.; Wu, J. Advances in Landscape Ecological Risk Research and an Ecosystem Services-Based Evaluation Framework: ESRISK. Acta Geogr. Sin. 2018, 73, 843–855. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. An improved method for valuing ecosystem services based on unit area value equivalence factors. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Valuation of ecological assets on the Qinghai-Tibet Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Liao, G.; Lin, Z.; He, P.; Gao, X.; Fang, C.; Deng, O.; Wang, S.; Deng, L. Assessment of Value and Supply-Demand Patterns of Rural Ecosystem Services in Sichuan Hilly Areas Based on “Three-Life Land Use”. Ecol. Sci. 2024, 43, 151–162. [Google Scholar]
- Chen, R.; Yang, C.; Yang, Y.; Dong, X. Spatial-temporal evolution and driving factors of ecosystem service values in the Dongting Lake Ecological Economic Zone. Acta Ecol. Sin. 2022, 33, 169–179. [Google Scholar]
- Gürlük, S.; Rehber, E. A travel cost study to estimate recreational value for a bird refuge at Lake Manyas, Turkey. J. Environ. Manag. 2008, 88, 1350–1360. [Google Scholar] [CrossRef]
- Qi, J. Study on the Amenity Value of Park Green Spaces in Anyang City Based on the Hedonic Pricing Method. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2013. [Google Scholar]
- Zhang, X.; Li, M. Evaluation of the Amenity Value of Open Spaces in Yanji City Based on the Hedonic Price Method. J. Yanbian Univ. (Agric. Sci.) 2011, 33, 200–205. [Google Scholar]
- Ma, A. Research on Ecological Compensation for Farmland and Spatial Benefit Transfer. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2011. [Google Scholar]
- Pan, T.; Wu, S.; Dai, E.; Liu, Y. Spatiotemporal Variations in Water Supply Services of the Sanjiangyuan Ecosystem Based on the InVEST Model. J. Appl. Ecol. 2013, 24, 183–189. [Google Scholar]
- Li, C.; Wu, Y.; Gao, B. Coupling and Coordination of Urbanization and Resource-Environment Carrying Capacity in the Central Yunnan Urban Agglomeration. Res. Soil Water Conserv. 2022, 29, 389–397. [Google Scholar]
- Wang, J.F.; Xu, C.D. Geodetector: Principles and Prospects. Acta Geographica Sinica 2017, 72, 116–134. [Google Scholar]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Zhu, X.; Xue, L. Spatiotemporal Variation and Influencing Factors of Ecosystem Service Value in the Shaanxi-Gansu-Ningxia Revolutionary Old Base Area. J. Zhejiang Univ. (Sci.) 2022, 49, 498–507. [Google Scholar]
- Geng, J.; Li, L.; Guo, S.; Chen, M.; Qu, B.; Huang, J. Spatiotemporal Evolution and Multi-Scenario Prediction of Ecosystem Service Values in Resource-Based Cities of Henan Province Based on the PLUS Model. Environ. Sci. 2025, 49, 1–17. [Google Scholar]
- Zhao, H.; Liu, G.; Yang, Z.; Liu, X.; Miao, Q.; Fu, H. Assessment and Multi-Scenario Prediction of Ecosystem Services in Liaoning Province from 2000 to 2020. Environ. Sci. 2024, 45, 4137–4151. [Google Scholar]
- Sun, C.; Yu, H.; Hao, S. Trade-offs and Synergies in Ecosystem Services and Their Driving Factors in the Liaohe River Basin. Acta Ecol. Sin. 2025, 45, 2952–2967. [Google Scholar]
- Qi, Y.; Zhang, P.; Liu, L.; Ma, X.; Wang, H.; Zhao, J. Multi-scenario Optimization of Land Use Structure and Prediction of Ecosystem Service Values in the Guanzhong Plain Urban Agglomeration. J. Appl. Ecol. 2023, 34, 2507–2517. [Google Scholar]
- Jin, T.; Zhang, Y.; Zhu, Y.; Gong, J.; Yan, L. Spatiotemporal Variations and Correlations of Ecosystem Service Values and Landscape Ecological Risks in Forest Areas of the Loess Plateau: A Case Study of the Ziwuling Region. Acta Ecol. Sin. 2021, 32, 1623–1632. [Google Scholar]
- Zhong, F.; Chen, Z. Impacts of human disturbance on ecosystem service supply and demand in the middle Yangtze River urban agglomeration across multiple scales. Acta Ecol. Sin. 2025, 36, 271–283. [Google Scholar]
- Yang, J.; Gao, F.; Xu, H.; Liu, K.; Han, F. Spatiotemporal evolution and driving factors of ecosystem service values in the Aksu River basin. Environ. Sci. 2025, 46, 2385–2397. [Google Scholar]
- Wang, G.; Zhang, F. Spatiotemporal Evolution and Influencing Factors of Ecosystem Service Values in the Liaohe River Delta over the Past 30 Years. Environ. Sci. 2024, 45, 228–238. [Google Scholar]
- Yang, S.; Li, Z. Spatiotemporal Pattern Evolution of Ecosystem Service Values in the Yihe River Basin under Land Use Change. Environ. Sci. 2024, 45, 4722–4732. [Google Scholar]
- Li, Y.; Liu, J.; Bai, X.; Feng, X.; Qiu, L. Multi-scale Spatial Differentiation of Ecosystem Service Values in the Upper Yangtze River Watershed Conservation Area: Patterns, Processes, and Drivers. Acta Ecol. Sin. 2025, 45, 3062–3078. [Google Scholar]
- Liu, T.; Zhang, H.; Yang, M. Spatiotemporal Evolution and Prediction of Coordination Between Ecosystem Services and Human Activities. Yangtze River 2024, 55, 101–109. [Google Scholar]
- Qiao, B.; Zhu, C.; Cao, X.; Xiao, J.; Zhaxi, L.; Yan, Y.; Chen, G.; Shi, F. Spatial Autocorrelation Analysis of Land Use and Ecosystem Service Values at Grid Scale in Maduo County, Qinghai. J. Appl. Ecol. 2020, 31, 1660–1672. [Google Scholar]
- Pu, S.; Jin, L.; Wei, L. Research on the Evolution of Spatiotemporal Patterns and Influencing Factors of Land Marketization in the Middle and Upper Reaches of the Yangtze River. J. Guizhou Norm. Univ. (Nat. Sci. Ed.) 2022, 40, 38–45, 61. [Google Scholar]
- Yue, S.; Zhang, S.; Yan, Y. Impact of Land Use Change in the Northeast China Belt on Ecosystem Service Values. Acta Geogr. Sin. 2007, 62, 879–886. [Google Scholar]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]





| Driving Factors | Data | Resolution/m | Data Source | Methods |
|---|---|---|---|---|
| Natural environmental factors | DEM | 30 | Geospatial Data Cloud (https://www.gscloud.cn/) accessed on 12 May 2025. | Extracting elevation information for the study area using ArcGIS 10.8 for clipping and resampling. |
| Land use data | 30 | China Land Cover Dataset (https://www.resdc.cn/) accessed on 12 May 2025. | Align with DEM data space and unify the projection coordinate system. | |
| NDVI | 1000 | National Science and Technology Resource Sharing Service Platform (https://www.nesdc.org.cn/) accessed on 12 May 2025. | The max value synthesis method integrated the monthly data into annual NDVI data. | |
| Climate factors | Precipitation | 1000 | National Glacier, Permafrost, and Desert Scientific Data Center (https://www.ncdc.ac.cn/) accessed on 12 May 2025. | Converted to raster data using interpolation methods. |
| Temperature | 1000 | National Glacier, Permafrost, and Desert Scientific Data Center (https://www.ncdc.ac.cn/) accessed on 12 May 2025. | ||
| Socioeconomic factors | GDP per capita | 1000 | National Qinghai–Tibet Plateau Scientific Data Center (https://data.tpdc.ac.cn/) accessed on 15 May 2025. | Processing using site interpolation |
| Population Density | 1000 | Landscan Population Dataset (https://landscan.ornl.gov/) accessed on 15 May 2025. | Crop to the study area and resample to a spatial resolution consistent with other drivers. | |
| Socioeconomic Data | Crop acreage and yield data | - | National Compilation of Agricultural Product Cost and Revenue Data (https://www.stats.gov.cn/) accessed on 15 May 2025. | Extraction of the study area relied on the clipping function in ArcGIS. |
| Food price data | - | Henan Provincial Statistical Yearbook (https://tjj.henan.gov.cn/tjfw/zxfb/) accessed on 15 May 2025. | ||
| Human activity factors | Human Activity Index | 30 | Based on land use type data | Determine human activity intensity parameters for each land use type based on existing research, then spatially overlay these parameters onto grid cells to obtain the HAI value for each grid. |
| Primary Type | Secondary Type | Farmland | Forest | Grassland | Water | Unutilized Land |
|---|---|---|---|---|---|---|
| Provisioning service | Food production | 2274.31 | 519.69 | 480.25 | 1348.12 | 20.58 |
| Raw materials | 504.26 | 1193.75 | 706.65 | 751.24 | 61.75 | |
| Water production | −2685.95 | 617.46 | 391.06 | 11,196.59 | 41.16 | |
| Regulating service | Gas production | 1831.79 | 3926.01 | 2483.56 | 2747.69 | 226.40 |
| Climate production | 957.06 | 11,747.15 | 6565.65 | 6061.39 | 205.82 | |
| Purify environment | 277.86 | 3442.33 | 2167.97 | 9416.25 | 638.04 | |
| Hydrological regulation | 3077.00 | 7687.36 | 4809.32 | 130,150.03 | 432.22 | |
| Support service | Soil conservation | 1070.26 | 4780.16 | 3025.55 | 3334.28 | 267.57 |
| Maintenance nutrients | 319.02 | 365.33 | 233.26 | 257.27 | 20.58 | |
| Biodiversity | 349.89 | 4353.08 | 2751.12 | 10,723.20 | 246.98 | |
| Cultural service | Aesthetic landscape | 154.36 | 1908.98 | 1214.34 | 6812.63 | 102.91 |
| Total | 8129.87 | 40,541.32 | 24,828.71 | 182,798.69 | 2264.02 |
| Judgment Basis | Interaction |
|---|---|
| q(A ∩ B) < Min(q(A), q(B)) | Non-linear attenuation |
| Min(q(A), q(B)) < q(A ∩ B) < Max(q(A), q(B)) | One-factor nonlinear weakening |
| q(A ∩ B) > Max(q(A), q(B)) | Two-factor enhancement |
| q(A ∩ B) = q(A) + q(B) | Independent |
| q(A ∩ B) > q(A) + q(B) | Nonlinear enhancement |
| Grid Scale | Moran’s I | E(I) | Z(I) | Z(I) | P |
|---|---|---|---|---|---|
| 3 km grid | 0.766 | −0.000 | 89.019 | 0.001 | 0.000 |
| 5 km grid | 0.759 | −0.000 | 51.927 | 0.001 | 0.000 |
| 10 km grid | 0.671 | −0.000 | 34.589 | 0.001 | 0.000 |
| Land Use Type | Sensitivity Index CS | Land Use Type | Sensitivity Index CS |
|---|---|---|---|
| Farmland | 0.27 | Water | 0.11 |
| Forest | 0.59 | Build-up land | 0.00 |
| Grassland | 0.03 | Unutilized land | 0.00 |
| Grid Scale | 3 km Grid | 5 km Grid | 10 km Grid | |||
|---|---|---|---|---|---|---|
| q-Statistic | P | q-Statistic | P | q-Statistic | P | |
| Elevation (X1) | 0.376 | 0.000 | 0.342 | 0.000 | 0.272 | 0.000 |
| Slope (X2) | 0.162 | 0.000 | 0.146 | 0.000 | 0.087 | 0.000 |
| Normalized vegetation index (X3) | 0.031 | 0.000 | 0.024 | 0.000 | 0.018 | 0.000 |
| Precipitation (X4) | 0.099 | 0.000 | 0.092 | 0.000 | 0.081 | 0.000 |
| Temperature (X5) | 0.246 | 0.000 | 0.235 | 0.000 | 0.152 | 0.000 |
| Land average GDP (X6) | 0.043 | 0.000 | 0.042 | 0.000 | 0.016 | 0.000 |
| Land use type (X7) | 0.224 | 0.000 | 0.206 | 0.000 | 0.105 | 0.000 |
| Population density (X8) | 0.042 | 0.000 | 0.038 | 0.000 | 0.032 | 0.000 |
| Human influence index (X9) | 0.971 | 0.000 | 0.970 | 0.000 | 0.968 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Gu, Y.; Zhang, M.; Li, T. Evolution and Driving Factors of Ecosystem Service Value in the Henan Section of the Yellow River Basin at Different Grid Scales. Ecologies 2025, 6, 72. https://doi.org/10.3390/ecologies6040072
Wang Z, Gu Y, Zhang M, Li T. Evolution and Driving Factors of Ecosystem Service Value in the Henan Section of the Yellow River Basin at Different Grid Scales. Ecologies. 2025; 6(4):72. https://doi.org/10.3390/ecologies6040072
Chicago/Turabian StyleWang, Zihan, Yishuo Gu, Meng Zhang, and Tianxiao Li. 2025. "Evolution and Driving Factors of Ecosystem Service Value in the Henan Section of the Yellow River Basin at Different Grid Scales" Ecologies 6, no. 4: 72. https://doi.org/10.3390/ecologies6040072
APA StyleWang, Z., Gu, Y., Zhang, M., & Li, T. (2025). Evolution and Driving Factors of Ecosystem Service Value in the Henan Section of the Yellow River Basin at Different Grid Scales. Ecologies, 6(4), 72. https://doi.org/10.3390/ecologies6040072

