Landscape Ecological Integrity Assessment to Improve Protected Area Management of Forest Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Landscape Ecological Integrity Calculation and Evaluation
3. Results
3.1. Landscape Composition Analysis
3.2. Naturalness Assessment
3.3. Landscape Pattern Analysis
3.4. Landscape Index of Important Type
4. Discussion
4.1. The Ecological Integrity of the Nature Reserve
4.2. Implication for the Protected Area Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watson, J.; Dudley, N.; Segan, D.; Hockings, M. The performance and potential of protected areas. Nature 2014, 515, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Koh, L.P.; Wilcove, D.S. Gains in biodiversity conservation and ecosystem services from the expansion of the planet’s protected areas. Sci. Adv. 2022, 8, eabl9885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Luo, Z.; Mallon, D.; Li, C.; Jiang, Z. Biodiversity conservation status in China’s growing protected areas. Biol. Conserv. 2017, 210, 89–100. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogues-Bravo, D.; Rasmussen, C.M.Ø.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef]
- He, M.; Cliquet, A. Challenges for protected areas management in China. Sustainability 2020, 12, 5879. [Google Scholar] [CrossRef]
- Plumptre, A.J.; Baisero, D.; Brooks, T.M.; Buchanan, G.; Butchart, S.H.M.; Bowser, A.; Boyd, C.; Carneiro, A.P.B.; Davies, T.; Elliot, W.; et al. Targeting site conservation to increase the effectiveness of new global biodiversity targets. One Earth 2024, 7, 11–17. [Google Scholar] [CrossRef]
- Theobald, D.M. A general model to quantify ecological integrity for landscape assessments and US application. Landscape Ecol. 2013, 28, 1859–1874. [Google Scholar] [CrossRef]
- González, C. Evolution of the concept of ecological integrity and its study through networks. Ecol. Model. 2023, 476, 110224. [Google Scholar] [CrossRef]
- Karr, J.R.; Larson, E.R.; Chu, E.W. Ecological integrity is both real and valuable. Conserv. Sci. Pract. 2022, 4, e583. [Google Scholar] [CrossRef]
- Ohsawa, T. How are ecosystem services related to biodiversity and ecological integrity in each site under climate change? Ecol. Res. 2022, 37, 461–465. [Google Scholar] [CrossRef]
- Han, J.; Wang, D.; Zhang, S. Momoge Internationally Important Wetland: Ecosystem Integrity Remote Assessment and Spatial Pattern Optimization Study. Land 2022, 11, 1344. [Google Scholar] [CrossRef]
- Rosenfield, M.F.; Jakovac, C.C.; Vieira, D.L.M.; Poorter, L.; Brancalion, P.H.S.; Vieira, I.C.G.; de Almeida, D.R.A.; Massoca, P.; Schietti, J.; Albernaz, A.L.M.; et al. Ecological integrity of tropical secondary forests: Concepts and indicators. Biol. Rev. 2023, 98, 662–676. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Luo, P.; Yang, H.; Luo, C.; Li, H.; Wu, S.; Cheng, Y.; Huang, Y.; Xie, W. Exploring the relationship between forest scenic beauty with color index and ecological integrity: Case study of Jiuzhaigou and Giant Panda National Park in Sichuan, China. Forests 2022, 13, 1883. [Google Scholar] [CrossRef]
- Lõhmus, A.; Pass, E.; Margus, P. Distribution of grouse and their predators in peatland forest landscapes: A case for ecological integrity. Forest Ecol. Manag. 2023, 546, 121332. [Google Scholar] [CrossRef]
- Manolaki, P.; Chourabi, S.; Vogiatzakis, I.N. A rapid qualitative methodology for ecological integrity assessment across a Mediterranean island’s landscapes. Ecol. Complex. 2021, 46, 100921. [Google Scholar] [CrossRef]
- Parrish, J.D.; Braun, D.P.; Unnasch, R.S. Are we conserving what we say we are? measuring ecological integrity within protected areas. BioScience 2003, 53, 851–860. [Google Scholar] [CrossRef]
- Walston, L.J.; Hartmann, H.M. Development of a landscape integrity model framework to support regional conservation planning. PLoS ONE 2018, 13, e0195115. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, W.; Wang, B.; Liu, Q.; Zhou, C. Geomorphological regionalization theory system and division methodology of China. J. Geogr. Sci. 2020, 30, 212–232. [Google Scholar] [CrossRef]
- Holt, B.G.; Lessard, J.P.; Borregaard, M.K.; Fritz, S.A.; Araújo, M.B.; Dimitrov, D.; Fabre, P.-H.; Graham, C.H.G.; Graves, G.R.; Jønsson, K.A.; et al. An update of wallace’s zoogeographic regions of the world. Science 2013, 339, 74–78. [Google Scholar] [CrossRef]
- Gao, E.; He, J.; Wang, Z.; Xu, Y.; Tang, X.; Jiang, H. China’s zoogeographical regionalization based on terrestrial vertebrates. Biodiv. Sci. 2017, 25, 1321–1330. [Google Scholar] [CrossRef]
- Põldveer, E.; Korjus, H.; Kiviste, A.; Kangur, A.; Paluots, T.; Laarmann, D. Assessment of spatial stand structure of hemiboreal conifer dominated forests according to different levels of naturalness. Ecol. Indic. 2020, 110, 105944. [Google Scholar] [CrossRef]
- Bender, D.J.; Contreras, T.A.; Fahrig, L. Habitat loss and population decline: A meta-analysis of the patch size effect. Ecology 1998, 79, 517–533. [Google Scholar] [CrossRef]
- Park, Y.; Guldmann, J.-M. Measuring continuous landscape patterns with gray-level co-occurrence matrix (GLCM) indices: An alternative to patch metrics? Ecol. Indic. 2020, 109, 105802. [Google Scholar] [CrossRef]
- Flowers, B.; Huang, K.-T.; Aldana, G.O. Analysis of the habitat fragmentation of ecosystems in belize using landscape metrics. Sustainability 2020, 12, 3024. [Google Scholar] [CrossRef]
- Riitters, K.; Costanza, J.K.; Coulston, J.W.; Vogt, P.; Schleeweis, K. Interpreting image texture metrics applied to landscape gradient data. Landsc. Ecol. 2023, 38, 2179–2188. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts: Amherst, MA, USA, 2012. [Google Scholar]
- Dunham, A.; Iacarella, J.C.; Hunter, K.L.; Davies, S.C.; Dudas, S.; Gale, K.S.P.; Rubidge, E.; Archer, S.K. Conserving ecosystem integrity: Ecological theory as a guide for marine protected area monitoring. Ecol. Appl. 2024, 34, e3005. [Google Scholar] [CrossRef]
- Zhu, H.; Tan, Y. The origin of evergreen broad-leaved forests in East Asia from the evidence of floristic elements. Plants 2024, 13, 1106. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y.; Lin, W. A connectivity modeling and evaluating methodological framework in biodiversity hotspots based on naturalness and linking wilderness. Conserv. Sci. Pract. 2022, 4, e12750. [Google Scholar]
- Liu, F.; Feng, C.; Zhou, Y.; Zhang, L.; Du, J.; Huang, W.; Luo, J.; Wang, W. Effectiveness of functional zones in National Nature Reserves for the protection of forest ecosystems in China. J. Environ. Manag. 2022, 308, 114593. [Google Scholar] [CrossRef]
- de Souza, J.C.; Mendes, T.S.G.; Bignotto, R.B.; de Alcantara, E.H.; Massi, K.G. Land use dynamics in a tropical protected area buffer zone: Is the management plan helping? J. Environ. Stud. Sci. 2025, 15, 156–166. [Google Scholar] [CrossRef]
- Rao, J.; Ouyang, X.; Pan, P.; Huang, C.; Li, J.; Ye, Q. Ecological Risk Assessment of Forest Landscapes in Lushan National Nature Reserve in Jiangxi Province, China. Forests 2024, 15, 484. [Google Scholar] [CrossRef]
- Fisher, J.; Allen, S.; Yetman, G.; Pistolesi, L. Assessing the influence of landscape conservation and protected areas on social wellbeing using random forest machine learning. Sci. Rep. 2024, 14, 11357. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Liao, X.; Wang, S.; Ye, S.; Wang, D.; Yue, H.; Liu, J. Evaluation of a CNN model to map vegetation classification in a subalpine coniferous forest using UAV imagery. Ecol. Inform. 2025, 87, 103111. [Google Scholar] [CrossRef]
- Wu, T.; Lu, S.; Ding, Y. Ecological Security Evaluation System Integrated with Circuit Theory for Regional Ecological Security Pattern Construction: A Coordinated Study of Chang-Zhu-Tan Metropolitan Area in China. Land 2025, 14, 257. [Google Scholar] [CrossRef]
- Mu, H.; Guo, S.; Li, X.; Zhou, Y.; Lü, Y.; Du, X.; Huang, J.; Ma, C.; Zhang, X.; Xia, Z.; et al. Quantifying landscape connectivity gaps between protected area and natural habitat. J. Clean. Prod. 2024, 437, 140729. [Google Scholar] [CrossRef]
- Kenny, C.T.; McCartan, C.; Kuriwaki, S.; Simko, T.; Imai, K. Evaluating bias and noise induced by the U.S. Census Bureau’s privacy protection methods. Sci. Adv. 2024, 10, eadl2524. [Google Scholar] [CrossRef]
- Liu, S.; Li, T.; Cong, B.; Yang, L.; Zhang, Z.; Zhao, L. Unveiling the suitable habitats and future conservation strategies of Tridacna maxima in the Indo-Pacific core area based on species distribution model. Ecol. Evol. 2024, 14, e70187. [Google Scholar] [CrossRef]
Naturalness Level | Description |
---|---|
Natural patch | Not disturbed by humans or their animals. |
Recovering patch | The vegetation may have been established by human activities or naturally regenerated and have signs of past management. |
Managed patch | Artificial systems such as planted land; the vegetation has been deliberately determined by humans, with loss of the previous habitat. |
Landscape Types | Experimental Zone (ha) | Buffer Zone (ha) | Core Zone (ha) | Total Area (ha) |
---|---|---|---|---|
Evergreen broad-leaved forest | 719.57 | 238.86 | 287.13 | 1245.56 |
Mixed evergreen deciduous broad-leaved forest | 483.36 | 382.02 | 995.51 | 1860.89 |
Deciduous broad-leaved forest | 1006.73 | 585.14 | 689.42 | 2281.28 |
Mixed coniferous broad-leaved forest | 603.05 | 343.23 | 676.61 | 1622.89 |
Natural coniferous forest | 1491.62 | 675.27 | 368.36 | 2535.25 |
Bamboo forest | 162.14 | 76.50 | 36.29 | 274.93 |
Planted coniferous forest | 146.83 | 54.41 | 84.21 | 285.45 |
Grasslands | 99.26 | 20.12 | 6.86 | 126.25 |
Shrublands | 2.85 | 3.35 | 2.15 | 8.35 |
Navel orange plantations | 32.13 | 6.06 | 1.06 | 39.24 |
Oil-seed camellia plantations | 36.66 | 11.40 | 11.16 | 59.21 |
Tea plantations | 0.00 | 2.07 | 0.00 | 2.07 |
Total area (ha) | 4784.19 | 2398.44 | 3158.76 | 10,341.39 |
Naturalness Class | Natural Patches (ha) | Recovering Patches (ha) | Managed Patches (ha) | Total Area (ha) |
---|---|---|---|---|
Experimental zone | 2209.66 | 2358.92 | 215.62 | 4784.19 |
Buffer zone | 1206.02 | 1118.48 | 73.94 | 2398.44 |
Core zone | 1972.05 | 1090.28 | 96.43 | 3158.76 |
Total area (ha) | 5387.73 | 4567.68 | 385.98 | 10,341.39 |
Landscape Pattern Indices | PD | MPS | LPI | MSI | AWMPFD | CONTAG |
---|---|---|---|---|---|---|
Experimental zone | 7.40 | 13.51 | 11.59 | 15.14 | 9.43 | 279.87 |
Buffer zone | 6.59 | 15.18 | 7.52 | 15.85 | 0.64 | 111.00 |
Core zone | 3.86 | 25.89 | 16.93 | 19.84 | 1.76 | 101.46 |
The nature reserve | 4.76 | 21.02 | 7.17 | 19.15 | 2.30 | 444.64 |
Functional Zone | Landscape Types | PD | MPS | LPI | MSI | AWMPFD |
---|---|---|---|---|---|---|
The nature reserve | Evergreen broad-leaved forest | 6.83 | 14.65 | 18.61 | 16.94 | 1.78 |
Mixed evergreen deciduous broad-leaved forest | 1.13 | 88.60 | 39.86 | 10.51 | 2.36 | |
Deciduous broad-leaved forest | 2.63 | 38.01 | 27.34 | 14.50 | 1.78 | |
Mixed coniferous broad-leaved forest | 2.22 | 45.07 | 33.37 | 24.66 | 2.62 | |
Natural coniferous forest | 2.33 | 42.95 | 11.47 | 33.90 | 3.66 | |
Experimental zone | Evergreen broad-leaved forest | 9.03 | 11.07 | 32.05 | 15.81 | 2.77 |
Mixed evergreen deciduous broad-leaved forest | 2.48 | 40.28 | 48.19 | 6.83 | 0.36 | |
Deciduous broad-leaved forest | 3.58 | 27.96 | 55.06 | 13.16 | 2.26 | |
Mixed coniferous broad-leaved forest | 4.31 | 23.19 | 21.77 | 17.05 | 0.35 | |
Natural coniferous forest | 3.35 | 29.83 | 19.49 | 26.80 | 3.85 | |
Buffer zone | Evergreen broad-leaved forest | 11.31 | 8.84 | 37.03 | 13.39 | 5.10 |
Mixed evergreen deciduous broad-leaved forest | 4.45 | 22.45 | 47.24 | 6.72 | 2.38 | |
Deciduous broad-leaved forest | 3.76 | 26.58 | 26.51 | 11.55 | 1.60 | |
Mixed coniferous broad-leaved forest | 4.96 | 20.17 | 37.97 | 16.32 | 4.19 | |
Natural coniferous forest | 3.56 | 28.11 | 21.78 | 26.24 | 5.50 | |
Core zone | Evergreen broad-leaved forest | 3.83 | 26.10 | 15.28 | 3.89 | 0.37 |
Mixed evergreen deciduous broad-leaved forest | 1.51 | 66.37 | 53.72 | 7.21 | 4.09 | |
Deciduous broad-leaved forest | 4.06 | 24.62 | 40.09 | 10.22 | 1.90 | |
Mixed coniferous broad-leaved forest | 2.07 | 48.33 | 41.39 | 5.18 | 1.70 | |
Natural coniferous forest | 4.07 | 24.56 | 22.02 | 10.26 | 3.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Liu, Y. Landscape Ecological Integrity Assessment to Improve Protected Area Management of Forest Ecosystem. Ecologies 2025, 6, 38. https://doi.org/10.3390/ecologies6020038
Yu M, Liu Y. Landscape Ecological Integrity Assessment to Improve Protected Area Management of Forest Ecosystem. Ecologies. 2025; 6(2):38. https://doi.org/10.3390/ecologies6020038
Chicago/Turabian StyleYu, Mingquan, and Yizhen Liu. 2025. "Landscape Ecological Integrity Assessment to Improve Protected Area Management of Forest Ecosystem" Ecologies 6, no. 2: 38. https://doi.org/10.3390/ecologies6020038
APA StyleYu, M., & Liu, Y. (2025). Landscape Ecological Integrity Assessment to Improve Protected Area Management of Forest Ecosystem. Ecologies, 6(2), 38. https://doi.org/10.3390/ecologies6020038