Contribution of Citizen Science Data on the Evaluation of Local Biodiversity of Benthic Macroinvertebrate Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Macroinvertebrate Sampling with Volunteers
2.3. Macroinvertebrate Data from ARPA Database
2.4. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bi-shop, I.J.; Warner, S.; van Noordwijk, T.C.G.E.; Nyoni, F.C.; Loiselle, S. Citizen Science Monitoring for Sustainable Development Goal Indicator 6.3.2 in England and Zambia. Sustainability 2020, 12, 10271. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Carlson, T.; Haklay, M.M.; Oliver, J.L.; Fraisl, D.; Mondardini, R.; Brocklehurst, M.; Shanley, L.A.; Schade, S.; et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2019, 2, 922–930. [Google Scholar] [CrossRef]
- Reid, D.; Tippler, C.; Evans, C.; Kotevska, S. Comparison of stream macroinvertebrate monitoring data from citizen scientists and an aquatic ecologist. In Proceedings of the 8th Australian Stream Management Conference, Leura, Australia, 31 July–3 August 2016; Available online: https://www.researchgate.net/publication/306379070_Comparison_of_stream_macroinvertebrate_monitoring_data_from_citizen_scientists_and_an_aquatic_ecologist (accessed on 8 December 2024).
- Seelen, L.M.S.; Flaim, G.; Jennings, E.; De Senerpont Domis, L.N. Saving water for the future: Public awareness of water usage and water quality. J. Environ. Manag. 2019, 242, 246–257. [Google Scholar] [CrossRef]
- Vander Heijden, J.; Ten Heuvelhof, E. The Mechanics of Virtue: Lessons on Public Participation from Implementing the Water Framework Directive in the Netherlands. Environ. Policy Gov. 2012, 22, 177–188. [Google Scholar] [CrossRef]
- Nardi, F.; Cudennec, C.; Abrate, T.; Allouch, C.; Annis, A.; Assumpção, T.; Aubert, A.H.; Bérod, D.; Braccini, A.M.; Buytaert, W.; et al. Citizens AND Hydrolo-gy (CANDHY): Conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges. Hydrol. Sci. J. 2021, 67, 2534–2551. [Google Scholar] [CrossRef]
- Walker, D.W.; Smigaj, M.; Tani, M. The benefits and negative impacts of citizen science applications to water as experienced by participants and communities. WIREs Water 2021, 8, e1488. [Google Scholar] [CrossRef]
- Safford, H.; Peters, C.A. Citizen science for dissolved oxygen monitoring: Case studies from Georgia and Rhode Island. Environ. Eng. Sci. 2018, 35, 362–372. [Google Scholar] [CrossRef]
- Gumiero, B.; De Matteis, F.M.; Di Stefano, C.; Rodríguez-González, P.M.; Dufour, S.; Di Grazia, F.; Gonzales del Tanago, M. Monitoring Riparian Vegetation: Toward a Citizen Science Approach. SSRN 2023. Available online: https://www.researchgate.net/publication/376498541_Monitoring_Riparian_Vegetation_Toward_a_Citizen_Science_Approach (accessed on 5 January 2025).
- Barrows, A.P.W.; Christiansen, K.S.; Bode, E.T.; Hoellein, T.J. A watershed-scale, citizen science approach to quantifying microplastic concentration in a mixed land-use river. Water Res. 2018, 147, 382–392. [Google Scholar] [CrossRef]
- Setälä, O.; Tirroniemi, J.; Lehtiniemi, M. Testing citizen science as a tool for monitoring surface water microplastics. Environ. Monit. Assess. 2022, 194, 851. [Google Scholar] [CrossRef]
- Loperfido, J.V.; Just, C.L.; Papanicolaou, A.N.; Schnoor, J.L. In situ sensing to understand diel turbidity cycles, suspended solids, and nutrient transport in Clear Creek, Iowa. Water Resour. Res. 2010, 46, W06525. [Google Scholar] [CrossRef]
- Sakai, N.; Mohamad, Z.F.; Nasaruddin, A.; Kadir, S.N.A.; Salleh, M.S.A.M.; Sulaiman, A.H. Eco-Heart Index as a tool for community-based water quality monitoring and assessment. Ecol. Indic. 2018, 91, 38–46. [Google Scholar] [CrossRef]
- Shupe, S.M. High resolution stream water quality assessment in the Vancouver, British Columbia region: A citizen science study. Sci. Total Environ. 2017, 603–604, 745–759. [Google Scholar] [CrossRef]
- Firehock, K.; West, J. A Brief History of Volunteer Biological Water Monitoring Using Macroinvertebrates. J. N. Am. Benthol. Soc. 1995, 14, 197–202. [Google Scholar] [CrossRef]
- Edwards, P.M. The value of long-term stream invertebrate data collected by citizen scientists. PLoS ONE 2016, 11, e0153713. [Google Scholar] [CrossRef]
- Burgess, H.K.; DeBey, L.B.; Froehlich, H.E.; Schmidt, N.; Theobald, E.J.; Ettinger, A.K.; HilleRisLambers, J.; Tewksbury, J.; Parrish, J.K. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Conserv. 2017, 208, 113–120. [Google Scholar] [CrossRef]
- Ramírez, S.B.; van Meerveld, I.; Seibert, J. Citizen science approaches for water quality measurements. Sci. Total Environ. 2023, 897, 165436. [Google Scholar] [CrossRef]
- Edwards, P.M.; Bedell, D.; Hubler, S.L.; Larson, C.A.; Macneale, K.H.; Mickelson, E.; Prescott, C.; Webb, E.; Wilhelm, J. An Index of Biotic Integrity for Macroinvertebrate Stream Bioassessment Conducted by Community Scientists. Freshw. Sci. 2024, 43, 183–197. [Google Scholar] [CrossRef]
- von Gönner, J.V.; Bowler, D.E.; Gröning, J.; Klauer, A.K.; Liess, M.; Neuer, L.; Bonn, A. Citizen science for assessing pesticide impacts in agricultural streams. Sci. Total Environ. 2023, 857, 159607. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M. Stream Ecology: Structure and Function of Running Waters, 2nd ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 229–254. [Google Scholar] [CrossRef]
- Burgazzi, G.; Laini, A.; Viaroli, P.; Fenoglio, S.; Schreiner, V.C.; Schäfer, R.B.; Doretto, A. Basin-scale variables drive macroinvertebrate biomass in low-order streams across different mountain ecoregions. J. Biogeogr. 2023, 50, 2030–2041. [Google Scholar] [CrossRef]
- Tornwall, B.; Sokol, E.; Skelton, J.; Brown, B.L. Trends in stream biodiversity research since the river continuum concept. Diversity 2015, 7, 16–35. [Google Scholar] [CrossRef]
- Brooks, S.J.; Fitch, B.; Davy-Bowker, J.; Codesal, S.A. Anglers’ Riverfly Monitoring Initiative (ARMI): A UK-wide citizen science project for water quality assessment. Freshw. Sci. 2019, 38, 270–280. [Google Scholar] [CrossRef]
- Chessman, B.; Williams, S.; Colin, B. Bioassessment of streams with macroinvertebrates: Effect of sampled habitat and taxonomic resolution. J. N. Am. Benthol. Soc. 2007, 26, 546–565. [Google Scholar] [CrossRef]
- Moffett, E.; Neale, M. Volunteer and professional macroinvertebrate monitoring provide concordant assessments of stream health. N. Z. J. Mar. Freshw. Res. 2015, 49, 366–375. [Google Scholar] [CrossRef]
- Moolna, A.; Duddy, M.; Fitch, B.; White, K. Citizen science and aquatic macroinvertebrates: Public engagement for catchment-scale pollution vigilance. Écoscience 2020, 27, 303–317. [Google Scholar] [CrossRef]
- Friberg, N.; Bonada, N.; Bradley, D.C.; Dunbar, M.J.; Edwards, F.K.; Grey, J.; Hayes, R.B.; Hildrew, A.G.; Lamouroux, N.; Trimmer, M.; et al. Biomonitoring of Human Impacts in Freshwater Ecosystems: The Good, the Bad and the Ugly. Adv. Ecol. Res. 2011, 44, 1–68. [Google Scholar] [CrossRef]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef]
- Jackson, M.C.; Weyl, O.L.F.; Altermatt, F.; Durance, I.; Friberg, N.; Dumbrell, A.J.; Piggott, J.J.; Tiegs, S.D.; Tockner, K.; Krug, C.B.; et al. Recommendations for the Next Generation of Global Freshwater Biological Monitoring Tools. Adv. Ecol. Res. 2016, 55, 615–636. [Google Scholar] [CrossRef]
- Maasri, A.; Jähnig, S.C.; Adamescu, M.C.; Adrian, R.; Baigun, C.; Baird, D.J.; Batista-Morales, A.; Bonada, N.; Brown, L.E.; Cai, Q.; et al. A global agenda for advancing freshwater biodiversity research. Ecol. Lett. 2022, 25, 255–263. [Google Scholar] [CrossRef]
- Bo, T.; Doretto, A.; Laini, A.; Bona, F.; Fenoglio, S. Biomonitoring with Macroinvertebrate Communities in Italy: What Happened to Our Past and What Is the Future? J. Limnol. 2017, 76, 21–28. [Google Scholar] [CrossRef]
- Meyer, J.L.; Strayer, D.L.; Wallace, J.B.; Eggert, S.L.; Helfman, G.S.; Leonard, N.E. The Contribution of Headwater Streams to Biodiversity in River Networks. J. Am. Water Resour. Assoc. 2007, 43, 86–103. [Google Scholar] [CrossRef]
- Herzon, I.; Helenius, J. Agricultural drainage ditches, their biological importance and functioning. Biol. Conserv. 2008, 141, 1171–1183. [Google Scholar] [CrossRef]
- Iwamoto, H.; Tahara, D.; Yoshida, T. Contrasting metacommunity patterns of fish and aquatic insects in drainage ditches of paddy fields. Ecol. Res. 2022, 37, 635–646. [Google Scholar] [CrossRef]
- Gething, K.J.; Little, S. The importance of artificial drains for macroinvertebrate biodiversity in reclaimed agricultural landscapes. Hydrobiologia 2020, 847, 3129–3138. [Google Scholar] [CrossRef]
- Leslie, A.W.; Lamp, W.O. Burrowing macroinvertebrates alter phosphorus dynamics in drainage ditch sediments. Aquat. Sci. 2019, 81, 23. [Google Scholar] [CrossRef]
- Chiorino, M.; Spreafico, C.; Solazzo, D.; Doretto, A. Biodiversity, Ecological Status and Ecosystem Attributes of Agricultural Ditches Based on the Analysis of Macroinvertebrate Communities. Diversity 2024, 16, 558. [Google Scholar] [CrossRef]
- Moog, O.; Schmidt-Kloiber, A.; Ofenböck, T.; Gerritsen, J. Does the Ecoregion Approach Support the Typological Demands of the EU ‘Water Framework Directive’? In Integrated Assessment of Running Waters in Europe; Hering, D., Verdonschot, P.F.M., Moog, O., Sandin, L., Eds.; Developments in Hydrobiology; Springer: Dordrecht, The Netherlands, 2004; Volume 175, pp. 17–30. [Google Scholar] [CrossRef]
- Hering, D.; Feld, C.K.; Moog, O.; Ofenböck, T. Cook Book for the Development of a Multimetric Index for Biological Condition of Aquatic Ecosystems: Experiences from the European AQEM and STAR Projects and Related Initiatives. Hydrobiologia 2006, 566, 311–324. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (Area-Altitude) Analysis of Erosional Topography. GSA Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative Analysis of Watershed Geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Nerbonne, J.F.; Ward, B.; Ollila, A.; Williams, M.; Vondracek, B. Effect of sampling protocol and volunteer bias when sampling for macroinvertebrates. J. N. Am. Benthol. Soc. 2008, 27, 640–646. [Google Scholar] [CrossRef]
- Buss, D.F.; Carlisle, D.M.; Chon, T.-S.; Culp, J.; Harding, J.S.; Keizer-Vlek, H.E.; Robinson, W.A.; Strachan, S.; Thirion, C.; Hughes, R.M. Stream Biomonitoring Using Macroinvertebrates Around the Globe: A Comparison of Large-Scale Programs. Environ. Monit. Assess. 2015, 187, 4132. [Google Scholar] [CrossRef]
- Doretto, A.; Bo, T.; Bona, F.; Fenoglio, S. Efficiency of Surber Net under Different Substrate and Flow Conditions: Insights for Macroinvertebrates Sampling and River Biomonitoring. Knowl. Manag. Aquat. Ecosyst. 2020, 421, 10. [Google Scholar] [CrossRef]
- Buffagni, A.; Erba, S. Intercalibrazione e classificazione di qualità ecologica dei fiumi per la 2000/60/EC (WFD): L’indice STAR_ICMI. IRSA-CNR Not. Metod. Anal. 2007, 1, 94–100. [Google Scholar]
- UNI EN 28265; Water Quality—Design and Use of Quantitative Samplers for Benthic Macro-Invertebrates on Stony Substrata in Shallow Freshwaters. CEN (European Committee for Standardization): Brussels, Belgium, 1994.
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Ricotta, C. On beta diversity decomposition: Trouble shared is not trouble halved. Ecology 2010, 91, 1981–1983. Available online: https://www.jstor.org/stable/25680450 (accessed on 26 March 2025).
- McGlinn, D.J.; Xiao, X.; May, F.; Engel, T.; Oliver, C.; Blowes, S.A.; Knight, T.M.; Purschke, O.; Gotelli, N.J.; Chase, J.M. Measurement of Biodiversity (MoB): A Method to Separate the Scale-Dependent Effects of Species Abundance Distribution, Density, and Aggregation on Diversity Change. Methods Ecol. Evol. 2019, 10, 258–269. [Google Scholar] [CrossRef]
- Legendre, P.; De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 2013, 16, 951–963. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 26 March 2025).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package, R Package-Version 2.2–1; 2015. Available online: https://cran.r-project.org/package=vegan (accessed on 15 February 2025).
- Cardoso, P.; Mammola, S.; Rigal, F.; Carvalho, J. BAT: Biodiversity Assessment Tools, R Package Version 2.6.0; 2021. Available online: https://CRAN.R-project.org/package=BAT (accessed on 3 January 2025).
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘ggplot2’: Create Elegant Data Visualisations Using the Grammar of Graphics. 2016. Version 2. pp. 1–189. Available online: https://ggplot2.tidyverse.org/reference/ggplot2-package.html (accessed on 20 December 2024).
- Richter, A.; Comay, O.; Svenningsen, C.S.; Larsen, J.C.; Hecker, S.; Tøttrup, A.P.; Pe’er, G.; Dunn, R.R.; Bonn, A.; Marselle, M. Motivation and support services in citizen science insect monitoring: A cross-country study. Biol. Conserv. 2021, 263, 109325. [Google Scholar] [CrossRef]
- Aceves-Bueno, E.; Adeleye, A.S.; Feraud, M.; Huang, Y.; Tao, M.; Yang, Y.; Anderson, S.E. The Accuracy of Citizen Science Data: A Quantitative Review. Bull. Ecol. Soc. Am. 2017, 98, 278–290. [Google Scholar] [CrossRef]
- Bell, S.; Marzano, M.; Cent, J.; Kobierska, H.; Podjed, D.; Vandzinskaite, D.; Reinert, H.; Armaitiene, A.; Grodzinska-Jurczak, M.; Mursic, R. What Counts? Volunteers and Their Organizations in the Recording and Monitoring of Biodiversity. Biodivers. Conserv. 2008, 17, 3443–3454. [Google Scholar] [CrossRef]
- Genet, K.S.; Sargent, L.G. Evaluation of methods and data quality from a volunteer-based amphibian call survey. Wildl. Soc. Bull. 2003, 31, 703–714. [Google Scholar]
- Danielsen, F.; Burgess, N.D.; Balmford, A.; Donald, P.F.; Funder, M.; Jones, J.P.G.; Alviola, P.; Balete, D.S.; Blomley, T.; Brashares, J.; et al. Local participation in natural resource monitoring: A characterization of approaches. Conserv. Biol. 2009, 23, 31–42. [Google Scholar] [CrossRef]
- Engel, S.R.; Voshell, J.R. Volunteer biological monitoring: Can it accurately assess the ecological condition of streams? Am. Entomol. 2002, 48, 164–177. [Google Scholar] [CrossRef]
- Seymour, V.; Wills, B.; Wilkin, P.; Burt, P.; Ikin, E.; Stevenson, P.C. Incorporating Citizen Science to Advance the Natural Capital Approach. Ecosyst. Serv. 2022, 54, 101419. [Google Scholar] [CrossRef]
- Roccatello, S.; Lagrotteria, A.; Andrà, C.; Doretto, A. Bridging Science and Society: Developing a Citizen Science Biomonitoring Approach for River Ecosystems in Italy. Ecol. Indic. 2025, 171, 113199. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Arthington, A.H. Grand Challenges to Support the Freshwater Biodiversity Emergency Recovery Plan. Front. Environ. Sci. 2021, 9, 664313. [Google Scholar] [CrossRef]
- Ottoni, F.P.; South, J.; Azevedo-Santos, V.M.; Henschel, E.; de Bragança, P.H.N. Editorial: Freshwater Biodiversity Crisis: Multidisciplinary Approaches as Tools for Conservation. Front. Environ. Sci. 2023, 11, 1155608. [Google Scholar] [CrossRef]
- Peeters, E.T.H.M.; Gerritsen, A.A.M.; Seelen, L.M.S.; Begheyn, M.; Rienks, F.; Teurlincx, S. Monitoring biological water quality by volunteers complements professional assessments. PLoS ONE 2022, 17, e0263899. [Google Scholar] [CrossRef]
- Sackey, N.; Meyer, C.; Weingart, P. Citizen Science and Learning Outcomes: Assessment of Projects in South Africa. J. Sci. Commun. 2024, 23, A02. [Google Scholar] [CrossRef]
- Fore, L.S.; Paulsen, K.; O’Laughlin, K. Assessing the performance of volunteers in monitoring streams. Freshw. Biol. 2001, 46, 109–123. [Google Scholar] [CrossRef]
- Nerbonne, J.F.; Vondracek, B. Volunteer macroinvertebrate monitoring: Assessing training needs through examining error and bias in untrained volunteers. J. N. Am. Benthol. Soc. 2003, 22, 152–163. [Google Scholar] [CrossRef]
- Balázs, B.; Mooney, P.; Nováková, E.; Bastin, L.; Jokar Arsanjani, J. Data Quality in Citizen Science. In The Science of Citizen Science; Vohland, K., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Roy, H.E.; Martinou, A.F.; Pocock, M.J.O.; Werenkraut, V.; Roy, D.B. The Global Reach of Citizen Science for Monitoring Insects. One Earth 2024, 7, 552–557. [Google Scholar] [CrossRef]
- Encarnação, J.; Teodósio, M.A.; Morais, P. Citizen Science and Biological Invasions: A Review. Front. Environ. Sci. 2021, 8, 602980. [Google Scholar] [CrossRef]
- Chandler, M.; See, L.; Copas, K.; Bonde, A.M.Z.; Claramunt López, B.; Danielsen, F.; Legind, J.K.; Masinde, S.; Miller-Rushing, A.J.; Newman, G.; et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 2017, 213, 280–294. [Google Scholar] [CrossRef]
- Hanmer, H.J.; Boothby, C.; Toms, M.P.; Noble, D.G.; Balmer, D.E. Large-scale citizen science survey of a common nocturnal raptor: Urbanization and weather conditions influence the occupancy and detectability of the Tawny Owl Strix aluco. Bird Stud. 2021, 68, 233–244. [Google Scholar] [CrossRef]
- Hsing, P.-Y.; Hill, R.A.; Smith, G.C.; Bradley, S.; Green, S.E.; Kent, V.T.; Mason, S.S.; Rees, J.; Whittingham, M.J.; Cokill, J.; et al. Large-scale mammal monitoring: The potential of a citizen science camera-trapping project in the United Kingdom. Ecol. Solut. Evid. 2022, 3, e12180. [Google Scholar] [CrossRef]
- White, S.M.; Brandy, S.; Justice, C.; Morinaga, K.A.; Naylor, L.; Ruzycki, J.; Sedell, E.R.; Steele, J.; Towne, A.; Webster, J.G.; et al. Progress Towards a Comprehensive Approach for Habitat Restoration in the Columbia Basin: Case Study in the Grande Ronde River. Fisheries 2021, 46, 229–243. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Rowley, J.J.L.; Cornwell, W.K.; Poore, A.G.B.; Major, R.E. Improving Big Citizen Science Data: Moving Beyond Haphazard Sampling. PLoS Biol. 2019, 17, e3000357. [Google Scholar] [CrossRef]
- Kelly-Quinn, M.; Biggs, J.N.; Brooks, S.; Fortuño, P.; Hegarty, S.; Jones, J.I.; Regan, F. Opportunities, approaches and challenges to the engagement of citizens in filling small waterbody data gaps. Hydrobiologia 2023, 850, 3419–3439. [Google Scholar] [CrossRef]
- Turbé, J.; Barba, M.; Pelacho, S.; Mugdal, L.D.; Robinson, L.; Serrano Sanz, F.; Sanz, C.; Tsinaraki, J.M.; Rubio, S.; Schade, S. Understanding the citizen science landscape for European environmental policy: An assessment and recommendations. Citizen Sci. Theory Pract. 2019, 4, 34. [Google Scholar] [CrossRef]
- Schröter, M.; Kraemer, F.; Mantel, M.; Kabisch, N.; Hecker, S.; Richter, A.; Neumeier, V.; Bonn, A. Citizen science for assessing ecosystem services: Status, challenges and opportunities. Ecosyst. Serv. 2017, 28, 80–94. [Google Scholar] [CrossRef]
- Kosmala, M.; Wiggins, A.; Swanson, A.; Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 2016, 14, 551–560. [Google Scholar] [CrossRef]
- Wick, A.; Bänsch-Baltruschat, B.; Keller, M.; Scharmüller, A.; Schäfer, R.; Foit, K.; Liess, M.; Maaßen, S.; Lischeid, G. Umsetzung des Nationalen Aktionsplans zur Nachhaltigen Anwendung von Pestiziden. Teil 2 Konzeptioneines Repräsentativen Monitorings zur Belastung von Kleingewässern in der Agrarlandschaft. 2019. Available online: https://www.umweltbundesamt.de/publikationen/umsetzung-des-nationalen-aktionsplans-zur-0 (accessed on 6 February 2025).
- Weisner, O.; Arle, J.; Liebmann, L.; Link, M.; Schäfer, R.B.; Schneeweiss, A.; Schreiner, V.C.; Vormeier, P.; Liess, M. Three reasons why the Water Framework Directive (WFD) fails to identify pesticide risks. Water. Res. 2022, 208, 117848. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagrotteria, A.; Roccatello, S.; Doretto, A. Contribution of Citizen Science Data on the Evaluation of Local Biodiversity of Benthic Macroinvertebrate Communities. Ecologies 2025, 6, 31. https://doi.org/10.3390/ecologies6020031
Lagrotteria A, Roccatello S, Doretto A. Contribution of Citizen Science Data on the Evaluation of Local Biodiversity of Benthic Macroinvertebrate Communities. Ecologies. 2025; 6(2):31. https://doi.org/10.3390/ecologies6020031
Chicago/Turabian StyleLagrotteria, Alessandro, Samuele Roccatello, and Alberto Doretto. 2025. "Contribution of Citizen Science Data on the Evaluation of Local Biodiversity of Benthic Macroinvertebrate Communities" Ecologies 6, no. 2: 31. https://doi.org/10.3390/ecologies6020031
APA StyleLagrotteria, A., Roccatello, S., & Doretto, A. (2025). Contribution of Citizen Science Data on the Evaluation of Local Biodiversity of Benthic Macroinvertebrate Communities. Ecologies, 6(2), 31. https://doi.org/10.3390/ecologies6020031