Thermal Requirement for Spring Emergence of Potter Wasp Parancistrocerus fulvipes: Implications for Population Management Under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Insects
2.2. Experimental Design and Conditions
2.3. Emergence Rate Model
2.4. Thermal Window, Optimal Temperature, and Degree Days Required for Adult Emergence
3. Results
3.1. Nesting and Provisioning of P. fulvipes
3.2. Development and Spring Emergence of P. fulvipes
3.3. Spring Emergence Model
3.4. Thermal Window and Degree Days Required for Adult Emergence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iwata, K. Evolution of Instinct. Comparative Ethology of Hymenoptera; Smithsonian Institution and the National Science Foundation: St. Paul, MN, USA, 1976; 535p. [Google Scholar]
- Krombein, K.V. Biosystematic studies of Ceylonese wasps III. Life history, nest and associates of Paraleptomenes mephitis (Cameron) (Hymenoptera: Eumenidae). J. Kans. Entomol. Soc. 1978, 51, 721–734. [Google Scholar]
- Cowan, D.P. The Social Biology of Wasps. The Solitary and Presocial Vespidae; Comstock Publishing Associates: Ithaca, NY, USA, 1991; 678p. [Google Scholar]
- Boesi, R.; Polidori, C.; Tormos, J.; Bevacqua, S.; Asís, J.D.; Andrietti, F. Trap-nesting Ancistrocerus sikhimensis (Hymenoptera: Eumenidae) in Nepal: Nest structure and associates (Hymenoptera: Chrysididae; Acarina: Saproglyphidae). Fla. Entomol. 2005, 88, 135–140. [Google Scholar] [CrossRef]
- Shi, P.; Ge, F.; Sun, Y.; Chen, C. A simple model for describing the effect of temperature on insect developmental rate. J. Asia-Pac. Entomol. 2011, 14, 15–20. [Google Scholar] [CrossRef]
- Gilbert, N.; Raworth, D.A. Insects and temperature—A general theory. Can. Entomol. 1996, 128, 1–13. [Google Scholar] [CrossRef]
- Ahn, J.J.; Son, Y.; He, Y.; Lee, E.; Park, Y.-L. Effects of temperature on development and voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for climate change impacts. PLoS ONE 2016, 11, e0161319. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Son, Y.; Park, Y.-L. Temperature-dependent emergence of Osmia cornifrons (Hymenoptera: Megachilidae) adults. J. Econ. Entomol. 2009, 102, 2026–2032. [Google Scholar] [CrossRef]
- Lee, E.; He, Y.; Park, Y.-L. Effects of climate change on the phenology of Osmia cornifrons: Implications for population management. Climatic Change 2018, 150, 305–317. [Google Scholar] [CrossRef]
- Choi, K.S.; Kim, D.-S. Effect of temperature on the fecundity and longevity of Ascotis selenaria (Lepidoptera: Geometridae): Developing an oviposition model. J. Econ. 2016, 109, 1267–1272. [Google Scholar]
- Adams, L.R. Determination of Accumulation of Degree Days Required for the Emergence of Osmia cornifrons (Megachilidae) in Pennsylvania. Master’s Thesis, Pennsylvania State University, College Park, PA, USA, 2001. [Google Scholar]
- Ahn, J.J.; Park, Y.-L.; Jung, C. Modeling Spring emergence of Osmia cornifrons Radoszkowski (Hymenoptera: Megachilidae) females in Korea. J. Asia-Pac. Entomol. 2014, 17, 901–905. [Google Scholar] [CrossRef]
- Malekera, M.J.; Acharya, R.; Mostafiz, M.M.; Hwang, H.-S.; Bhusal, N.; Lee, K.-Y. Temperature-dependent development models describing the effects of temperature on the development of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Insects 2022, 13, 1084. [Google Scholar] [CrossRef]
- Dixon, A.F.; Honěk, A.; Keil, P.; Kotela, M.A.A.; Šizling, A.L.; Jarošík, V. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 2009, 23, 257–264. [Google Scholar] [CrossRef]
- Lactin, D.J.; Holliday, N.; Johnson, D.; Craigen, R. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 1995, 24, 68–75. [Google Scholar] [CrossRef]
- McKinney, M.; Ahn, J.J.; Park, Y.-L. Thermal biology of Osmia cornifrons (Hymenoptera: Megachilidae) eggs and larvae. J. Apic. Res. 2017, 56, 421–429. [Google Scholar] [CrossRef]
- Régnier, B.; Legrand, J.; Rebaudo, F. Modeling temperature-dependent development rate in insects and implications of experimental design. Environ. Entomol. 2022, 51, 132–144. [Google Scholar] [CrossRef]
- Bhagarathi, L.K.; Maharaj, G. Impact of climate change on insect biology, ecology, population dynamics, and pest management: A critical review. World J. Adv. Res. Rev. 2023, 19, 541–568. [Google Scholar] [CrossRef]
- Prasad, K.H. Insect Ecology: Concepts to Management; Climate Change and Insect Ecology; Springer: Singapore, 2022; pp. 223–228. [Google Scholar]
- Mohamed, S.A.; Azrag, A.G.; Obala, F.; Ndlela, S. Estimating the demographic parameters of Tuta absoluta (Lepidoptera: Gelechiidae) using temperature-dependent development models and their validation under fluctuating temperature. Biology 2022, 11, 181. [Google Scholar] [CrossRef]
- Taylor, F. Ecology and evolution of physiological time in insects. Am. Nat. 1981, 117, 1–23. [Google Scholar] [CrossRef]
- SAS Institute. Using JMP Student Edition for Windows and Macintosh: The User’s Guide to Statistics with JMP Student Edition; SAS Institute: Cary, NC, USA, 2009. [Google Scholar]
- Padmavathi, C.; Katti, G.; Sailaja, V.; Padmakumari, A.P.; Jhansilakshmi, V.; Prabhakar, M.; Prasad, Y.G. Temperature thresholds and thermal requirements for the development of the rice leaf folder, Cnaphalocrocis medinalis. J. Insect Sci. 2013, 13, 96. [Google Scholar] [CrossRef]
- Ma, Z.S.; Bechinski, E.J. A new modelling approach to insect reproduction with same-shape reproduction distribution and rate summation: With particular reference to Russian wheat aphid. Bull. Entomol. Res. 2009, 99, 445–455. [Google Scholar] [CrossRef]
- Logan, J.; Wollkind, D.; Hoyt, S.; Tanigoshi, L. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 1976, 5, 1133–1140. [Google Scholar] [CrossRef]
- Lutterschmidt, W.I.; Hutchison, V.H. The critical thermal maximum: History and critique. Can. J. Zool. 1997, 75, 1561–1574. [Google Scholar] [CrossRef]
- Campbell, A.; Frazer, B.D.; Gilbert, N.G.A.P.; Gutierrez, A.P.; Mackauer, M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 1974, 11, 431–438. [Google Scholar] [CrossRef]
- Aghdam, H.R.; Fathipour, Y.; Radjabi, G.; Rezapanah, M. Temperature-dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environ. Entomol. 2009, 38, 885–895. [Google Scholar] [CrossRef]
- Harvey, J.A.; Tougeron, K.; Gols, R.; Heinen, R.; Abarca, M.; Abram, P.K.; Basset, Y.; Berg, M.; Boggs, C.; Brodeur, J. Scientists’ warning on climate change and insects. Ecol. Monogr. 2023, 93, e1553. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef]
- Schweiger, O.; Settele, J.; Kudrna, O.; Klotz, S.; Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 2008, 89, 3472–3479. [Google Scholar] [CrossRef]
- Krombein, K.V. Some symbiotic relations between saproglyphid mites and solitary vespid wasps (Acarina, Saproglyphidae and Hymenoptera, Vespidae). J. Wash. Acad. Sci. 1961, 51, 89–93. [Google Scholar]
- Cooper, K.W. Biology of Eumenine wasps. V. Digital communication in wasps. J. Exp. Zool. 1957, 134, 469–513. [Google Scholar] [CrossRef]
- Li, T.; Carpenter, J.M. Descriptions of eight new species of the genus Parancistrocerus Bequaert (Hymenoptera: Vespidae: Eumeninae), with a key to the Oriental species. Zootaxa 2019, 4551, 251–274. [Google Scholar] [CrossRef]
- Graham, J.R.; Campbell, J.W.; Ellis, J.D. Uninvited Guests: Identifying Parasites and Other Nest Associates of Solitary Bees and Wasps Using Artificial Nest Sites in North Central Florida. Southeast. Nat. 2023, 22, 192–206. [Google Scholar] [CrossRef]
Gender | Temperature (°C) | Number of P. fulvipes Successfully Emerged to Adult * | Mean (SEM **) Developmental Days | Median Developmental Days | Survivorship (%) | Male to Female Sex Ratio |
---|---|---|---|---|---|---|
Male | 5 | - *** | - | - | 0 | |
13 | - | - | - | 0 | ||
22 | 13 | 48.9 (2.22) a **** | 47 | 100 | ||
27.5 | 18 | 17.3 (0.31) b | 17 | 100 | ||
30 | 14 | 15.9 (0.29) c | 16 | 100 | ||
33 | 11 | 13.5 (0.27) d | 13 | 91.7 | ||
38 | - | - | - | 0 | ||
Female | 5 | - | - | - | 0 | |
13 | - | - | - | 0 | ||
22 | 25 | 79.8 (2.58) a | 84 | 96.2 | ||
27.5 | 19 | 19.7 (0.73) b | 20 | 95.0 | ||
30 | 21 | 18.23 (0.51) b | 19 | 95.5 | ||
33 | 23 | 15.5 (31) c | 16 | 88.5 | ||
38 | - | - | 0 | |||
Combined | 5 | - | - | - | 0 | - |
13 | - | - | - | 0 | - | |
22 | 38 | 68.5 (3.01) a | 72 | 91.0 | 0.59 | |
27.5 | 37 | 18.5 (0.45) b | 17 | 88.1 | 0.95 | |
30 | 35 | 17.3 (0.38) b | 17 | 85.7 | 0.67 | |
33 | 34 | 14.8 (0.27) c | 15 | 81.0 | 0.44 | |
38 | - | - | - | 0 | - |
Gender | Parameter | Estimate (SEM *) | p | |
---|---|---|---|---|
Male | ρ ** | 0.2013 | (0.0185) | 0.0017 |
TL *** | 38.0056 | (0.1571) | <0.0001 | |
Δ **** | 4.9672 | (0.4562) | 0.0017 | |
Female | ρ | 0.2014 | (0.0266) | 0.0048 |
TL | 38.0077 | (0.2261) | <0.0001 | |
Δ | 4.96483 | (0.6564) | 0.0048 | |
Combined | ρ | 0.2002 | (0.0304) | 0.0086 |
TL | 37.9951 | (0.3093) | <0.0001 | |
Δ | 4.99453 | (0.8684) | 0.0086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimzadeh, R.; Park, Y.-L. Thermal Requirement for Spring Emergence of Potter Wasp Parancistrocerus fulvipes: Implications for Population Management Under Climate Change. Ecologies 2025, 6, 20. https://doi.org/10.3390/ecologies6010020
Karimzadeh R, Park Y-L. Thermal Requirement for Spring Emergence of Potter Wasp Parancistrocerus fulvipes: Implications for Population Management Under Climate Change. Ecologies. 2025; 6(1):20. https://doi.org/10.3390/ecologies6010020
Chicago/Turabian StyleKarimzadeh, Roghaiyeh, and Yong-Lak Park. 2025. "Thermal Requirement for Spring Emergence of Potter Wasp Parancistrocerus fulvipes: Implications for Population Management Under Climate Change" Ecologies 6, no. 1: 20. https://doi.org/10.3390/ecologies6010020
APA StyleKarimzadeh, R., & Park, Y.-L. (2025). Thermal Requirement for Spring Emergence of Potter Wasp Parancistrocerus fulvipes: Implications for Population Management Under Climate Change. Ecologies, 6(1), 20. https://doi.org/10.3390/ecologies6010020