Uncertainties in Plant Species Niche Modeling under Climate Change Scenarios
Abstract
:1. Introduction
- Which are the most used data and methodologies, namely those related to model calibration;
- Which are the most common deviations from consensual best practices and what information is most omitted from methodological descriptions;
- How far the faults referred to above are identified and discussed;
- New recommendations to improve SDM results, making them clearer and more comprehensive.
2. Materials and Methods
3. Results
3.1. Species Occurrence Data
3.2. Abiotic Variables
3.2.1. Climate Variables
3.2.2. Other Environmental Variables
3.2.3. Variable Selection
3.3. Modeling Algorithm
3.4. Model Performance
3.5. Ensemble Models
3.6. Future Climate Projections
Climate Scenarios
4. Discussion
5. Conclusions
- Target species’ natural range;
- The species’ total range in the study area, including a buffer to ensure the inclusion of different environmental conditions;
- Comparison of the study area and the natural range of the species, as well as justification of the exclusion of certain areas from the model, if this is the case;
- Species’ ecological preferences according to the bibliography, to support the selection of variables.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Sillero, N.; Arenas-Castro, S.; Enriquez-Urzelai, U.; Vale, C.G.; Sousa-Guedes, D.; Martínez-Freiría, F.; Real, R.; Barbosa, A. Want to model aspecies niche? A step-by-step guideline on correlative ecological niche modelling. Ecol. Modell. 2021, 456, 109671. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography 2017, 40, 281–295. [Google Scholar] [CrossRef]
- Araújo, M.B.; Anderson, R.P.; Barbosa, A.M.; Beale, C.M.; Dormann, C.F.; Early, R.; Garcia, R.A.; Guisan, A.; Maiorano, L.; Naimi, B.; et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 2019, 5, eaat4858. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Walker, C.; Peterson, A.T.; Merow, C.; Papeş, M. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 2019, 3, 1382–1395. [Google Scholar] [CrossRef]
- Gómez-Pineda, E.; Blanco-García, A.; Lindig-Cisneros, R.; O’Neill, G.A.; Lopez-Toledo, L.; Sáenz-Romero, C. Pinus pseudostrobus assisted migration trial with rain exclusion: Maintaining Monarch Butterfly Biosphere Reserve forest cover in an environment affected by climate change. New For. 2021, 52, 995–1010. [Google Scholar] [CrossRef]
- Guo, C.; Lek, S.; Ye, S.; Li, W.; Liu, J.; Li, Z. Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques. Ecol. Modell. 2015, 306, 67–75. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Edwards, T.C., Jr.; Guisan, A.; McMahon. S.M.; Normand, S.; Wilfried Thuiller, W.; Wüest, R.O.; Zimmermann, N.E.; Elith, J. What do we gain from simplicity versus complexity in species distribution models? Ecography 2014, 37, 1267–1281. [Google Scholar] [CrossRef]
- Shen, Y.; Tu, Z.; Zhang, Y.; Zhong, W.; Xia, H.; Hao, Z.; Zhang, C.; Li, H. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. J. Environ. Manag. 2022, 322, 116024. [Google Scholar] [CrossRef]
- Xiao, F.; She, Y.; She, J.; Zhang, J.; Zhang, X.; Luo, C. Assessing habitat suitability and selecting optimal habitats for relict tree Cathaya argyrophylla in Hunan, China: Integrating pollen size, environmental factors, and niche modeling for conservation. Ecol. Indic. 2022, 145, 109669. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Pecchi, M.; Marchi, M.; Burton, V.; Giannetti, F.; Moriondo, M.; Bernetti, I.; Bindi, M.; Chirici, G. Species distribution modelling to support forest management. A literature review. Ecol. Model. 2019, 411, 108817. [Google Scholar] [CrossRef]
- Bogawski, P.; Damen, T.; Nowak, M.M.; Pędziwiatr, K.; Wilkin, P.; Mwachala, G.; Pierzchalska, J.; Wiland-Szymańska, J. Current and future potential distributions of three Dracaena Vand. ex L. species under two contrasting climate change scenarios in Africa. Ecol. Evol. 2019, 9, 6833–6848. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Zhu, T.; Wang, J.; Yan, D. The Current and Future Potential Geographical Distribution and Evolution Process of Catalpa bungei in China. Forests 2022, 13, 96. [Google Scholar] [CrossRef]
- Almeida, A.M.; Martins, M.J.; Campagnolo, M.L.; Fernandez, P.; Albuquerque, T.; Gerassis, S.; Gonçalves, J.C.; Ribeiro, M.M. Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. Sci. Rep. 2022, 12, 84. [Google Scholar] [CrossRef]
- Dimobe, K.; Ouédraogo, A.; Ouédraogo, K.; Goetze, D.; Stein, K.; Schmidt, M.; Nacoulma, B.M.I.; Gnoumou, A.; Traoré, L.; Porembski, S.; et al. Climate change reduces the distribution area of the shea tree (Vitellaria paradoxa C.F. Gaertn.) in Burkina Faso. J. Arid. Environ. 2020, 181, 104237. [Google Scholar] [CrossRef]
- Farahat, E.A.; Refaat, A.M. Predicting the impacts of climate change on the distribution of Moringa peregrina (Forssk.) Fiori—A conservation approach. J. Mt. Sci. 2021, 18, 1235–1245. [Google Scholar] [CrossRef]
- Kumar, D.; Rawat, S.; Joshi, R. Predicting the current and future suitable habitat distribution of the medicinal tree Oroxylum indicum (L.) Kurz in India. J. Appl. Res. Med. Aromat. Plants 2021, 39, 100309. [Google Scholar] [CrossRef]
- Mendoza-Fernández, A.J.; Martínez-Hernández, F.; Salmerón-Sánchez, E.; Pérez-García, F.J.; Teruel, B.; Merlo, M.E.; Mota, J.F. The relict ecosystem of maytenus senegalensis subsp. europaea in an agricultural landscape: Past, present and future scenarios. Land 2021, 10, 1. [Google Scholar] [CrossRef]
- Rana, S.K.; Rana, H.K.; Stöcklin, J.; Ranjitkar, S.; Sun, H.; Song, B. Global warming pushes the distribution range of the two alpine ‘glasshouse’ Rheum species north- and upwards in the Eastern Himalayas and the Hengduan Mountains. Front. Plant Sci. 2022, 13, 925296. [Google Scholar] [CrossRef]
- Tessarolo, G.; Lobo, J.M.; Rangel, T.F.; Hortal, J. High uncertainty in the effects of data characteristics on the performance of species distribution models. Ecol. Indic. 2021, 121, 107147. [Google Scholar] [CrossRef]
- Warren, D.L.; Dornburg, A.; Zapfe, K.; Iglesias, T.L. The effects of climate change on Australia’s only endemic Pokémon: Measuring bias in species distribution models. Methods Ecol. Evol. 2021, 12, 985–995. [Google Scholar] [CrossRef]
- Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Araújo, M.B.; Peterson, A.T. Uses and misuses of bioclimatic envelope models. modeling. Ecology 2012, 93, 1527–1539. [Google Scholar] [CrossRef]
- Fernandez, M.; Hamilton, H.; Kueppers, L.M. Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere 2013, 4, 1–17. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 2006, 30, 751–777. [Google Scholar] [CrossRef]
- Beck, J.; Böller, M.; Erhardt, A.; Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 2014, 19, 10–15. [Google Scholar] [CrossRef]
- Casajus, N.; Périé, C.; Logan, T.; Lambert, M.C.; de Blois, S.; Berteaux, D. An objective approach to select climate scenarios when projecting species distribution under climate change. PLoS ONE 2016, 11, e0152495. [Google Scholar] [CrossRef]
- Dormann, C.F.; Schymanski, S.J.; Cabral, J.; Chuine, I.; Graham, C.; Hartig, F.; Kearney, M.; Morin, X.; Römermann, C.; Schröder, B.; et al. Correlation and process in species distribution models: Bridging a dichotomy. J. Biogeogr. 2013, 39, 2119–2131. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef] [PubMed]
- Guevara, L.; Gerstner, B.E.; Kass, J.M.; Anderson, R.P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. Glob. Chang. Biol. 2018, 24, 1511–1522. [Google Scholar] [CrossRef]
- Guevara, L.; León-Paniagua, L. How to survive a glaciation: The challenge of estimating biologically realistic potential distributions under freezing conditions. Ecography 2019, 42, 1237–1245. [Google Scholar] [CrossRef]
- Marshall, B.M.; Strine, C.T. Exploring snake occurrence records: Spatial biases and marginal gains from accessible social media. PeerJ 2019, 2019, e8059. [Google Scholar] [CrossRef]
- Moonlight, P.W.; de Miranda, P.L.S.; Cardoso, D.; Dexter, K.G.; Oliveira-Filho, A.T.; Pennington, R.T.; Ramos, G.; Särkinen, T.E. The strengths and weaknesses of species distribution models in biome delimitation. Glob. Ecol. Biogeogr. 2020, 29, 1770–1784. [Google Scholar] [CrossRef]
- Rocchini, D.; Garzon-Lopez, C.X.; Marcantonio, M.; Amici, V.; Bacaro, G.; Bastin, L.; Brummitt, N.; Chiarucci, A.; Foody, G.M.; Hauffe, H.C.; et al. Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Sci. Total Environ. 2017, 584–585, 282–290. [Google Scholar] [CrossRef]
- Sillero, N.; Barbosa, A.M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 2020, 35, 213–226. [Google Scholar] [CrossRef]
- Silva, L.D.; de Azevedo, E.B.; Reis, F.V.; Elias, R.B.; Silva, L. Limitations of species distribution models based on available climate change data: A case study in the azorean forest. Forests 2019, 10, 575. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T. Bounding Species Distribution Models. 2011. Available online: http://groups.google.com/group/maxent/ (accessed on 7 October 2019).
- ElQadi, M.M.; Dorin, A.; Dyer, A.; Burd, M.; Bukovac, Z.; Shrestha, M. Mapping species distributions with social media geo-tagged images: Case studies of bees and flowering plants in Australia. Ecol. Inform. 2017, 39, 23–31. [Google Scholar] [CrossRef]
- Anderson, R.P.; Araújo, M.; Guisan, A.; Martínez-Meyer, E.; Lobo, J.M.; Peterson, A.T.; Soberón, J. Report of the Task Group on GBIF Data Fitness for Use in Distribution Modelling. 2016. Available online: http://www.gbif.org (accessed on 6 December 2023).
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Carter, T.R.; Ebi, K.; Harrison, P.A.; Kemp-Benedict, E.; Kok, K.; Kriegler, E.; Preston, B.L.; Riahi, K.; Sillmann, J.; et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Chang. 2020, 10, 1074–1084. [Google Scholar] [CrossRef]
- Beale, C.M.; Lennon, J.J. Incorporating uncertainty in predictive species distribution modelling. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 247–258. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Thuiller, W.; Jiguet, F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 2010, 33, 878–886. [Google Scholar] [CrossRef]
- Lázaro-Nogal, A.; Matesanz, S.; Hallik, L.; Krasnova, A.; Traveset, A.; Valladares, F. Population differentiation in a Mediterranean relict shrub: The potential role of local adaptation for coping with climate change. Oecologia 2016, 180, 1075–1090. [Google Scholar] [CrossRef]
- Titeux, N.; Maes, D.; Van Daele, T.; Onkelinx, T.; Heikkinen, R.K.; Romo, H.; García-Barros, E.; Munguira, M.L.; Thuiller, W.; van Swaay, C.A.M.; et al. The need for large-scale distribution data to estimate regional changes in species richness under future climate change. Divers. Distrib. 2017, 23, 1393–1407. [Google Scholar] [CrossRef]
- Chevalier, M.; Broennimann, O.; Cornuault, J.; Guisan, A. Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecol. Appl. 2021, 31, e02427. [Google Scholar] [CrossRef]
- Chevalier, M.; Zarzo-Arias, A.; Guélat, J.; Mateo, R.G.; Guisan, A. Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Front. Ecol. Evol. 2022, 10, 944116. [Google Scholar] [CrossRef]
- Scherrer, D.; Esperon-Rodriguez, M.; Beaumont, L.J.; Barradas, V.L.; Guisan, A. National assessments of species vulnerability to climate change strongly depend on selected data sources. Divers. Distrib. 2021, 27, 1367–1382. [Google Scholar] [CrossRef]
- Figueiredo, F.O.G.; Zuquim, G.; Tuomisto, H.; Moulatlet, G.M.; Balslev, H.; Costa, F.R.C. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 2018, 45, 190–200. [Google Scholar] [CrossRef]
- Zuquim, G.; Costa, F.R.C.; Tuomisto, H.; Moulatlet, G.M.; Figueiredo, F.O.G. The importance of soils in predicting the future of plant habitat suitability in a tropical forest. Plant Soil 2020, 450, 151–170. [Google Scholar] [CrossRef]
- Rovzar, C.; Gillespie, T.W.; Kawelo, K. Landscape to site variations in species distribution models for endangered plants. For. Ecol. Manag. 2016, 369, 20–28. [Google Scholar] [CrossRef]
- Velazco, S.J.E.; Galvão, F.; Villalobos, F.; De Marco, P. Using worldwide edaphic data to model plant species niches: An assessment at a continental extent. PLoS ONE 2017, 12, e0186025. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef] [PubMed]
- Sehler, R.; Li, J.; Reager, J.; Ye, H. Investigating Relationship Between Soil Moisture and Precipitation Globally Using Remote Sensing Observations. J. Contemp. Water Res. Educ. 2019, 168, 106–118. [Google Scholar] [CrossRef]
- de Tomás Marín, S.; Rodríguez-Calcerrada, J.; Arenas-Castro, S.; Prieto, I.; González, G.; Gil, L.; de la Riva, E.G. Fagus sylvatica and Quercus pyrenaica: Two neighbors with few things in common. For. Ecosyst. 2023, 10, 100097. [Google Scholar] [CrossRef]
- Vitasse, Y.; Bresson, C.C.; Kremer, A.; Michalet, R.; Delzon, S. Quantifying phenological plasticity to temperature in two temperate tree species. Funct. Ecol. 2010, 24, 1211–1218. [Google Scholar] [CrossRef]
- García-Díaz, P.; Prowse, T.A.A.; Anderson, D.P.; Lurgi, M.; Binny, R.N.; Cassey, P. A concise guide to developing and using quantitative models in conservation management. Conserv. Sci. Pract. 2019, 1, e11. [Google Scholar] [CrossRef] [PubMed]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Petitpierre, B.; Broennimann, O.; Kueffer, C.; Daehler, C.; Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 2017, 26, 275–287. [Google Scholar] [CrossRef]
- Tanner, E.P.; Papeş, M.; Elmore, R.D.; Fuhlendorf, S.D.; Davis, C.A. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species’ distributional shifts. PLoS ONE 2017, 12, e0184316. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Guerrina, M.; Conti, E.; Minuto, L.; Casazza, G. Knowing the past to forecast the future: A case study on a relictual, endemic species of the SW Alps, Berardia subacaulis. Reg. Environ. Chang. 2015, 16, 1035–1045. [Google Scholar] [CrossRef]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecol. Monogr. 2022, 92, e01486. [Google Scholar] [CrossRef]
- Qazi, A.W.; Saqib, Z.; Zaman-ul-Haq, M. Trends in species distribution modelling in context of rare and endemic plants: A systematic review. Ecol. Process. 2022, 11, 40. [Google Scholar] [CrossRef]
- Alvarado-Serrano, D.F.; Knowles, L.L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 2014, 14, 233–248. [Google Scholar] [CrossRef]
- Sor, R.; Park, Y.S.; Boets, P.; Goethals, P.L.M.; Lek, S. Effects of species prevalence on the performance of predictive models. Ecol. Modell. 2017, 354, 11–19. [Google Scholar] [CrossRef]
- Lawson, C.R.; Hodgson, J.A.; Wilson, R.J.; Richards, S.A. Prevalence, thresholds and the performance of presence-absence models. Methods Ecol. Evol. 2014, 5, 54–64. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Sofaer, H.R.; Hoeting, J.A.; Jarnevich, C.S. The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 2019, 10, 565–577. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Leroy, B.; Delsol, R.; Hugueny, B.; Meynard, C.N.; Barbet-Massin, M.; Bellard, C. Title: Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 2018, 45, 1994–2002. [Google Scholar] [CrossRef]
- Rapacciuolo, G. Strengthening the contribution of macroecological models to conservation practice. Glob. Ecol. Biogeogr. 2019, 28, 54–60. [Google Scholar] [CrossRef]
- Amobonye, A.; Lalung, J.; Mheta, G.; Pillai, S. Writing a Scientific Review Article: Comprehensive Insights for Beginners; Hindawi Limited: London, UK, 2024. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 29, 372. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Platts, P.J.; Omeny, P.A.; Marchant, R. AFRICLIM: High-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 2015, 53, 103–108. [Google Scholar] [CrossRef]
- Wouyou, H.G.; Lokonon, B.E.; Idohou, R.; Zossou-Akete, A.G.; Assogbadjo, A.E.; Kakaï, R.G. Predicting the potential impacts of climate change on the endangered Caesalpinia bonduc (L.) Roxb in Benin (West Africa). Heliyon 2022, 8, e09022. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Eziz, A.; Zhang, H.; Wang, Z.; Tang, Z.; Fang, J. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecol. Evol. 2019, 9, 13596–13607. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2007: Synthesis Report; Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Henckel, L.; Bradter, U.; Jönsson, M.; Isaac, N.J.B.; Snäll, T. Assessing the usefulness of citizen science data for habitat suitability modelling: Opportunistic reporting versus sampling based on a systematic protocol. Divers. Distrib. 2020, 26, 1276–1290. [Google Scholar] [CrossRef]
- Mateo, R.G.; Gastón, A.; Aroca-Fernández, M.J.; Saura, S.; García-Viñas, J.I. Optimization of forest sampling strategies for woody plant species distribution modelling at the landscape scale. For. Ecol. Manag. 2018, 410, 104–113. [Google Scholar] [CrossRef]
- Seoane, J.; Estrada, A.; Jones, M.M.; Ovaskainen, O. A case study on joint species distribution modelling with bird atlas data: Revealing limits to species’ niches. Ecol. Inform. 2023, 77, 102202. [Google Scholar] [CrossRef]
- Ochoa-Ochoa, L.M.; Flores-Villela, O.A.; Bezaury-Creel, J.E. Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks. Ecol. Modell. 2016, 320, 372–382. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, S.; Yang, T.; Cheng, J.; Jin, J. Maximum Entropy Niche-Based Modeling for Predicting the Potential Suitable Habitats of a Traditional Medicinal Plant (Rheum nanum) in Asia under Climate Change Conditions. Agriculture 2022, 12, 610. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Y.; Li, W.-N.; Hu, B.-W.; Zou, J.-B.; Wang, S.-Q.; Niu, J.-F.; Wang, Z.-Z. Predicting the potential distribution of perennial plant coptis chinensis franch. In china under multiple climate change scenarios. Forests 2021, 12, 1464. [Google Scholar] [CrossRef]
- Bell, D.M.; Schlaepfer, D.R. On the dangers of model complexity without ecological justification in species distribution modeling. Ecol. Modell. 2016, 330, 50–59. [Google Scholar] [CrossRef]
- Kopsco, H.L.; Smith, R.L.; Halsey, S.J. A Scoping Review of Species Distribution Modeling Methods for Tick Vectors. Front. Ecol. Evol. 2022, 10, 893016. [Google Scholar] [CrossRef]
- Phillips, S.B.; Aneja, V.P.; Kang, D.; Arya, S.P. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Ecol. Model. 2006, 190, 231–252. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.P.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Mauri, A.; Girardello, M.; Forzieri, G.; Manca, F.; Beck, P.S.; Cescatti, A.; Strona, G. Assisted tree migration can reduce but not avert the decline of forest ecosystem services in Europe. Glob. Environ. Chang. 2023, 80, 102676. [Google Scholar] [CrossRef]
- Sousa-Silva, R.; Verbist, B.; Lomba, Â.; Valent, P.; Suškevičs, M.; Picard, O.; Hoogstra-Klein, M.A.; Cosofret, V.-C.; Bouriaud, L.; Ponette, Q.; et al. Adapting forest management to climate change in Europe: Linking perceptions to adaptive responses. For. Policy Econ. 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, M.; Sharma, S. Fate of important medicinal plants in the eastern himalaya in changing climate scenarios: A case of Panax pseudoginseng wall. Appl. Ecol. Environ. Res. 2019, 17, 13493–13511. [Google Scholar] [CrossRef]
- Shrestha, B.; Tsiftsis, S.; Chapagain, D.J.; Khadka, C.; Bhattarai, P.; Shrestha, N.K.; Kolanowska, M.A.; Kindlmann, P. Suitability of habitats in nepal for dactylorhiza hatagirea now and under predicted future changes in climate. Plants 2021, 10, 467. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.N.; Mbari, N.J.; Wang, S.-W.; Liu, B.; Mwangi, B.N.; Rasoarahona, J.R.; Xin, H.-P.; Zhou, Y.-D.; Wang, Q.-F. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers. 2021, 43, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Bhattacharya, P.; Areendran, G.; Sahana, M.; Raj, K.; Sajjad, H. Predicting impact of climate change on geographical distribution of major NTFP species in the Central India Region. Model. Earth Syst. Environ. 2022, 8, 449–468. [Google Scholar] [CrossRef]
- Domisch, S.; Kuemmerlen, M.; Jähnig, S.C.; Haase, P. Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota. Ecol. Modell. 2013, 257, 1–10. [Google Scholar] [CrossRef]
Global Circulation Model (GCM) | Climate Research Centres (CRCs) | Country | Number of Documents by GCM, % | Number of Documents by CRC, % |
---|---|---|---|---|
ACCESS1-0 | Australian Community Climate and Earth System Simulator Coupled Model | Australia | 2.13 | 2.13 |
AFRICLIM | York Institute for Tropical Ecosystems (KITE) and Kenya Meteorological Service | Kenya | 4.26 | 4.26 |
BCC-CSM1.1 | Beijing Climate Centre Climate System Model | China | 12.77 | 25.54 |
BCC-CSM2-MR | 12.77 | |||
CanESM5 | Canadian Earth System Model | Canada | 2.13 | 2.13 |
CCAFS | CCAFS-Climate Statistically Downscaled Delta Method | Colombia | 6.38 | 6.38 |
CCCMA | Canadian Centre for Climate Modelling and Analysis | Canada | 2.13 | 2.13 |
CCSM4 | National Science Foundation (NSF) and National Centre for Atmospheric Research (NCAR) | United States | 29.79 | 31.92 |
CCSM5 | 2.13 | |||
CGCM3.1-T63 | Canadian Centre for Climate Modelling and Analysis | Canada | 2.13 | 2.13 |
CNRM-CM5–1 | CNRM (Centre National de Recherches Météorologiques—Groupe d’études de l’Atmosphère Météorologique) and Cerfacs (Centre Européen de Recherche et de Formation Avancée | France | 2.13 | 12.77 |
CNRM-CM6–1 | 4.26 | |||
CNRM-ESM2–1 | 6.38 | |||
CSIRO | Commonwealth Scientific and Industrial Research Organisation | Australia | 2.13 | 6.39 |
CSIRO-MK3.6 | 4.26 | |||
GFDL-CM3 | Geophysical Fluid Dynamics Laboratory (GFDL) | United States | 4.26 | 4.26 |
GISS-E2-R | Goddard Institute for Space Studies (GISS—NASA) | United States | 2.13 | 2.13 |
HadCM3 | UK Meteorological Office | United Kingdom | 2.13 | 40.43 |
HadGEM2-AO | 6.38 | |||
HadGEM2-ES | 25.53 | |||
HadGEM-CC | 4.26 | |||
HadGEM-IS | 2.13 | |||
IPSL-CM5A-LR | Institut Pierre-Simon Laplace (IPSL) | France | 2.13 | 4.26 |
IPSL-CM6A-LR | 2.13 | |||
MIROC5 | Center for Climate System Research (CCSR), National Institute for Environmental Studies (NIES) and Japan Agency for Marine-Earth Science and Technology | Japan | 6.38 | 14.9 |
MIROC6 | 2.13 | |||
MIROC-ES2L | 4.26 | |||
MIROC-ESM | 2.13 | |||
MPI-ESM-LR | Max Planck Institute for Meteorology | Germany | 2.13 | 2.13 |
MRI-CGCM3 | Meteorological Research Institute (MRI) | Japan | 8.51 | 12.77 |
MRI-ESM2-0 | 4.26 | |||
NorESM1-M | Norwegian Earth System Model (NorESM) | Norway | 2.13 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passos, I.; Figueiredo, A.; Almeida, A.M.; Ribeiro, M.M. Uncertainties in Plant Species Niche Modeling under Climate Change Scenarios. Ecologies 2024, 5, 402-419. https://doi.org/10.3390/ecologies5030025
Passos I, Figueiredo A, Almeida AM, Ribeiro MM. Uncertainties in Plant Species Niche Modeling under Climate Change Scenarios. Ecologies. 2024; 5(3):402-419. https://doi.org/10.3390/ecologies5030025
Chicago/Turabian StylePassos, Isabel, Albano Figueiredo, Alice Maria Almeida, and Maria Margarida Ribeiro. 2024. "Uncertainties in Plant Species Niche Modeling under Climate Change Scenarios" Ecologies 5, no. 3: 402-419. https://doi.org/10.3390/ecologies5030025
APA StylePassos, I., Figueiredo, A., Almeida, A. M., & Ribeiro, M. M. (2024). Uncertainties in Plant Species Niche Modeling under Climate Change Scenarios. Ecologies, 5(3), 402-419. https://doi.org/10.3390/ecologies5030025